DISKRET MATEMATIKK - EKSAMEN 12. DES. 2005 LOSVINGSFORSLAG

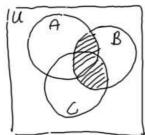
Oppgave 1										
P	19	n	170	172	un	luz	(U3	UIVUZVU3	PVR	(pvz) ng
5	5	S	U	U	S	U	U	S	'S	S'
S	5	U	U	15	U	S	U	S	S	5
S	U	15	U	U	U	U	U	0	S	0
S	U	IU 1	U	5	U	U	0	0	S	υ
U	5	S	S	U	1)	0	5	5	S	S
U	5	U	S	SI	ŬΙ	ŭ	U	U	U	U
U	U	5	5	U	ŬΙ	Ul	VI	U /	S	U,
U	U	U	S	5	VI	UI	VI	\cup	U	U
- 8				- 5				10-		7

Samhetoverditakellen visir at s og U, V 42 V 43 er elevivalenti.

Oppgave 2

i) a)
$$\rightarrow$$
 1, b) \rightarrow 4, c) \rightarrow 3, d) \rightarrow 7, e) \rightarrow 2, \neq 0 \rightarrow 5, \neq 0 \rightarrow 6, \neq 0 \rightarrow 8

(u)



Oppgave 3 Et mahiseprodukt XY er definent når antall kolonner i X. er lik antall rader i Y. Det betyr at det kenn er AC og BA som er definent.

$$AC = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \quad BA = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ 2 & -2 & 2 \end{bmatrix}$$

Oppgare 4

i)
$$a = 00110010_2 = 00110010_2 = 32_{16} = 00110010_2 = 62_8$$

= $8.6 + 2 = 50_{10}$

$$b = 01010000_2 = 01010000_2 = 50_{16} = 01010000_2 = 120_8$$
$$= 5.16 + 0 = 80_{10}$$

$$a = \frac{1}{0} \frac{1}{10000}$$

$$a = \frac{1}{0} \frac{1}{100000}$$

$$c = \frac{1}{0000010}$$

iii) La
$$X = -126$$
. Da blir $130 \equiv X \pmod{256}$.
Obs: $130 = 50 + 80$.

Oppgave 5

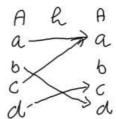
$$h(a) = f(g(a)) = f(2) = a$$

 $h(b) = f(g(b)) = f(3) = d$
 $h(c) = f(a(c)) = f(4) = a$

$$h(c) = f(g(c)) = f(4) = a$$

 $h(c) = f(g(d)) = f(4) = c$
 $h(d) = f(g(d)) = f(4) = c$

g er en-fil-en siden det går Bare en pil inn til Brent element i B. g er på siden det går en pil til alle elementene i B. f er ikke en-fil-en siden f(2) og f (4) er like. f er ikke på siden det ikke går nom pil til b.



h er ikke en-fil-en siden d's h(a) = h(c). h er ikke på erden det ikke går moen pil fil b.

Oppgave 6

- i) Det er 5 muligheter for første siffer og 6 muligheter for de fire nærte erfrene. Dermed 5.6⁴ = 6480 muligheter.
- ii) 2 + 2.0 + 3.5 + 4.1 + 5.2 = 31. Vi må ferne $X \in \{0,1,2,3,4,5,6\}$ slib at $31 = X \pmod{7}$. Dus. X = 3 siden 7 går opp i 31-3=28 Medlems memmeret blir 205123. Tar vi fallet 201523 får vi at 2+2.0+3.1+4.5+5.2 = $35 \neq 3 \pmod{7}$.

Oppgave 7

i) Py er sam fordi 5 går opp i 0 Pz er sam fordi 5 går opp i 32-2=30 P3 er sam fordi 5 går opp i 243-3=240

ii) 1 (m+1)⁵= n⁵+5m⁴+10m³+10n²+5m+1

1 2 1 Nos. a=5, b=10, c=10 ag d=5.

1 3 3 1

1 4 6 4 1 iii) Anta at P_{ik} er sam, dus.

1 5 10 10 5 1 at 5 gar opp i k^5-k .

Vi skal rise at P_{k+1} er sam, dus. at 5 gar opp i $(k+1)^5-(k+1)$ Vi her $(k+1)^5-(k+1)=k^5+5k^4+10k^3+10k^2+5k+1-k-1$ $=k^5-k+5(k^4+2k^3+2k^2+k)$. Induksjonshypkom sier at 5 gar opp i k^5-k og vi ser at 5 gar opp i det andre heddt. Dermed går 5 opp i $(k+1)^5-(k+1)$. Dus. P_{ik} sam medfører at P_{ik+1} er sam. I punkt i) her vi vist at

P₁ er sann. Induksjonsprinsippet gir dermed at Pn er sann for alle M ≥1.

La Qn vore på Skenden: m⁵-m = 0 (mod 10). Q₁ er sam fordi 10 går opp i 0. Anta at Qk er sam.

Hvis ker et parfall vil 10 gå opp i 5k. Hvis ker et oddetall vil k³ bli et oddetall og dermed h³+1 et parfall. Da vil 10 gå opp i 5(k³+1). Til sammen gir dette at 10 går opp i (k+1)⁵-(k+1). Dermed er Qn samm for alle m>1.

Oppgave 8

 $a_0 = 0$, $a_1 = 6$, $a_2 = 2a_1 + 8a_0 = 2.6 + 8.0 = 12$ $a_3 = 2a_2 + 8a_1 = 2.12 + 8.6 = 24 + 48 = 72$

Det karakteristiske polymomet $r^2 = 2r + 8$ har rottere $r_1 = 4$ og $r_2 = -2$. General horning:

an = x 4 "+ B (-2)".

 $a_0 = \alpha + \beta = 0$, $a_1 = 4\alpha - 2\beta = 6$. Det gir $\alpha = 1$ og $\beta = -1$. Dermed ishir boxningen $\alpha = 4^m - (-2)^m$

Konfroll: $a_0 = 1-1=0$, $a_1 = 4-l-2 = 6$, $a_2 = 16-4=12$, $a_3 = 64-(-8)=72$ $a_5 = 1024-(-32)=1056$ Oppgave 9

i) Det er 26 muligheter på første og siste boksker, og 26+10 = 36 muligheter de de fire andre sepnene. Dermed 26²·366 forskjellige muligheter.

ii) like mange boksfarn som siffer betyr 4 boksfam og 4 siffer. Vi kan velge de resterende 2 boksfame på (6) mulige mater blent de 6 mulige plassere.

Dermed 26.(2) 26.104 = 15.104.264

iii)

8 boksfaver: 268

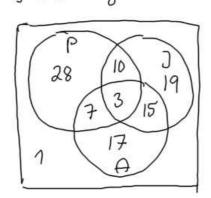
7 bolisfarn: 26² (4) 26⁵.10 6 bolesfarn: 26² (4) 26⁴.10²

5 boleslaver: 262 (6) 263.103

Svaret blir summen av disce antallene.

Oppgare 10

ha P, J og A være mengdene av den som kan PHP, JSP og ASP. NET.



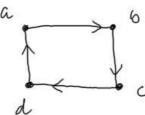
Figuren vises at kun 1 kan ingen av Eknologiene, 7 skylder kan PHP og ASPINET, men ikke ISP, 17 skylder kan kun ASP. NET.

Oppgave 11

$$AVB = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, AAB = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, AOB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Oppgane 12

i)
$$R = \{(a,b), (b,c), (c,d), (d,a)\}$$

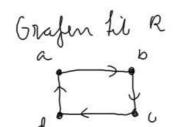


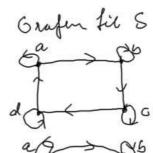
(a, a), (b, b), (c, c), (d, d)

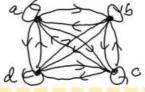
Matrix
$$M^{[4]}$$
 gir alle rein med langde 4. Dermod

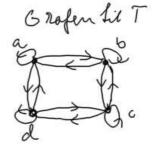
 $M^{[4]} = \begin{bmatrix} 1000 \\ 0100 \\ 0001 \end{bmatrix}$

Oppgare 13









Oppgan 14

;)	X	14	121	X+Z	(X+2)4	1
6)	1	8	1	1	1 0	
	1	1	0	1	1	
	1	6	111	1	Ò	1
	1	0	101	1	0	1
	0	1	11	1	1	l
	0	1	101	0	0	
	01	0 、	11	1	Ó	
	0	0	01	0 1	0)	

Tabellen	gir
(X+Z)y	=
xyz++ xyz	XyZ
+ × 4 2	Ć

ii)	42	4Z	72	92_
X	R	1		
$\overline{\vee}$	1			
^				-