
MATTE OG
KONSERVERINGSLOVER

André R. Brodtkorb, Researcher
Department of Mathematics and Cybernetics
SINTEF Digital

Hvem er jeg?

• Født og oppvokst i Drammen

• Driver med innebandy, tennis, løping, seiling,
metallsløyd, … (ganske nerdete egentlig)

• Studert ved UiO, ferdig med doktorgrad i 2010

• Jobbet 10 år på SINTEF i Oslo (80% permisjon nå)

• Undervist på NITH (nå Westerdals), Universitetet i Oslo,
og nå Høyskolen i Oslo

• Elsker koblingen mellom matte og data!

• Established 1950 by the Norwegian Institute of Technology.

• The largest independent research organisation in Scandinavia.

• A non-profit organisation.

• Motto: “Technology for a better society”.

• Key Figures*
• 2100 Employees from 70 different countries.

• 73% of employees are researchers.

• 3 billion NOK in turnover
(about 360 million EUR / 490 million USD).

• 9000 projects for 3000 customers.

• Offices in Norway, USA, Brazil,
Chile, and Denmark.

[Map CC-BY-SA 3.0 based on work by Hayden120 and NuclearVacuum, Wikipedia]

Dagens (popvit) forelesning

• Litt om matte og data: Hvorfor trenger vi matte, og hvorfor trenger vi data?

• Litt arbeid jeg har jobbet med på SINTEF

• Litt om konserveringslover og programmering

Advarsel: En del videoer i dag
(og litt "tung" matte)

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer
(Atanasoff and Berry)

1971: Microprocessor
(Hoff, Faggin, Mazor)

1947: Transistor
(Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
(Kilby)

2000

1971- Exponential growth
(Moore, 1965)

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. Trans, 8 cores, 2.66 GHz

History lesson: development of the microprocessor 2/2

• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance)

• 1999-2014: Parallelism doubles every 30 months

End of frequency scaling

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
1

10

100

1000

10000

Desktop processor performance (SP)

1999-2014:
Parallelism doubles
every ~30 months

1971-2004:
Frequency doubles
every ~34 months

2004-2014:
Frequency
constant

SSE (4x)

Hyper-Treading (2x)

Multi-core (2-6x)

AVX (2x)

• Heat density approaching that of nuclear
reactor core: Power wall

• Traditional cooling solutions (heat sink +
fan) insufficient

• Industry solution: multi-core and
parallelism!

What happened in 2004?

Graph taken from G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09

W
 /

cm
2

Critical dimension (um)

• The key to increasing performance,
is to consider the full algorithm and
architecture interaction.

• A good knowledge of both the
algorithm and the computer
architecture is required.

Why care about mathematics?

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

• Total performance is the product of
algorithmic and numerical performance

• Your mileage may vary: algorithmic
performance is highly problem dependent

• Many algorithms have low numerical
performance

• Need to consider both the algorithm and
the architecture for maximum
performance

Algorithmic and numerical performance

N
um

er
ic

al
 p

er
fo

rm
an

ce

Algorithmic performance

Når matte og data ikke spiller på lag

Matte er helt gresk for meg

• Euklids Elementa (300 fkr)

• Designed by Raytheon (US) as an air
defense system.

• Designed for time-limited use (up-to 8
hours) in mobile locations.

• Heavily used as static defenses using
the Gulf war.

• Failed to intercept an incoming Iraqi
Scud missile in 1991.

• 28 killed, 98 injured.

The patriot missile…

• It appears, that 0.1 seconds is not really 0.1 seconds…
• Especially if you add a large amount of them

The patriot missile…

Hours Inaccuracy (sec)
Approx. shift in

Range Gate
(meters)

0 0 0
1 .0034 7
8 .0025 55

20 .0687 137
48 .1648 330
72 .2472 494

100 .3433 687

http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

Python:

> print 0.1
0.1
> print "%.10f" % 0.1
0.1000000000
> print "%.20f" % 0.1
0.10000000000000000555
> print "%.30f" % 0.1
0.100000000000000005551115123126

http://sydney.edu.au/engineering/it/%7Ealum/patriot_bug.html

Konserveringslover

Konserveringslover - bevaringslover

• Konservere – bevare

• Eksempel: Mengden vann vil ikke endres,
men være konstant

• A conservation law describes that a quantity is conserved

• Comes from the physical laws of nature

• Example: Newtons first law: When viewed in an inertial reference

frame, an object either remains at rest or continues to move at

a constant velocity, unless acted upon by an external force.

• Example: Newtons third law: When one body exerts a force on a second body, the second body

simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

• More examples: conservation of mass (amount of water) in shallow water, amount of energy (heat) in the

heat equation, linear momentum, angular momentum, etc.

• Conservation laws are mathematically formulated as partial differential equations: PDEs

Conservation Laws

Isaac Newton, by Gottfried Kneller, public
domain

• Let us look at Newtons second law
• The vector sum of the external forces F on an object is equal to the mass m of that object multiplied by the

acceleration vector a of the object:

• �⃗�𝐹 = 𝑚𝑚 ⋅ �⃗�𝑎

• We know that acceleration, a, is the rate of change of speed over time, or in other words

• 𝑎𝑎 = 𝑣𝑣𝑣 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

• We can then write Newtons second law as an ODE:

• 𝐹𝐹 = 𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Ordinary Differential Equations (ODEs)

• From Newton's second law, we can derive a
simple ODE for the trajectory of a projectile

• Acceleration due to gravity:
• �⃗�𝑎 = [0, 0, 9.81]

• Velocity as a function of time
• �⃗�𝑣 𝑡𝑡 = 𝑣𝑣𝑜𝑜 + 𝑡𝑡 � �⃗�𝑎

• Change in position, p, over time is a function of the velocity

• 𝑑𝑑�⃗�𝑝
𝑑𝑑𝑑𝑑

= �⃗�𝑣(𝑡𝑡)

• We can solve this ODE analytically with pen and paper, but for more complex ODEs, that becomes infeasible

• The term "computer" used to be the profession for those who (amongst other things) calculated advanced projectile
trajectories (air friction etc.).

Trajectory of a projectile

• To solve the ODE numerically on a computer, we discretize it

• To discretize an ODE is to replace the continuous derivatives
with discrete derivatives, and to impose a discrete grid.

• In our ODE, we discretize in time, so that

𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡 = �⃗�𝑣(𝑡𝑡)

becomes

�⃗�𝑝𝑛𝑛+1 − �⃗�𝑝𝑛𝑛

Δ𝑡𝑡 = �⃗�𝑣 𝑛𝑛 � Δ𝑡𝑡

Here, Δ𝑡𝑡 is the grid spacing in time, and superscript n denotes the time step

Solving a simple ODE numerically

• Recall our discretization
�⃗�𝑝𝑛𝑛+1 − �⃗�𝑝𝑛𝑛

Δ𝑡𝑡
= �⃗�𝑣 𝑛𝑛 � Δ𝑡𝑡

Rewriting so that n+1 is on the left hand side, we get an explicit formula

�⃗�𝑝𝑛𝑛+1 = �⃗�𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣 𝑛𝑛 ⋅ Δ𝑡𝑡

• Given initial conditions, that is the initial position, 𝑝𝑝0, and the initial velocity, 𝑣𝑣0,
we can now simulate!

• Example:

Initial conditions

t p v

0 0.0 0.0

0.1 p0 + dt*v0 = 0.0 v0 - t*9.81 = -0.981

0.2 p1 - dt*v1 = -0.0981 v0 - t*9.81 = -1.962

0.2 … …

Particle projectory in Matlab

• When writing simulator code it is essential to check for correctness.

• The analytical solution to our problem is

p 𝑡𝑡 =
1
2
�⃗�𝑎𝑡𝑡2 + 𝑡𝑡 ⋅ 𝑣𝑣0 + 𝑝𝑝0

• Let us compare the solutions

Particle trajectory results

dt=1 dt=0.5 dt=0.25

• We have used a very simple integration rule (or
approximation to the derivative)
• Our rule is known as forward Euler

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣

• We can get much higher accuracy with more
advanced techniques such as Runge-Kutta 2

𝑝𝑝∗ = 𝑝𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣(𝑛𝑛 ⋅ Δ𝑡𝑡)
𝑝𝑝∗∗ = 𝑝𝑝∗ + Δ𝑡𝑡 ⋅ �⃗�𝑣 𝑛𝑛 + 1 ⋅ Δ𝑡𝑡

𝑝𝑝𝑛𝑛+1 =
1
2 𝑝𝑝𝑛𝑛 + 𝑝𝑝∗∗

• In summary, we need to think about how we
discretize our problem!

More accuracy

dt=1

Particle projectory in Matlab

• Many natural phenomena can (partly) be described mathematically as conservation laws
• Magneto-hydrodynamics
• Traffic jams
• Shallow water
• Groundwater flow
• Tsunamis
• Sound waves
• Heat propagation
• Pressure waves
• …

Partial Differential Equations (PDEs)

"Magnificent CME Erupts on the Sun - August 31" by NASA Goddard Space
Flight Center - Flickr: Magnificent CME Erupts on the Sun - August 31.

Licensed under CC BY 2.0 via Wikimedia Commons

• Partial differential equations (PDEs) are much like
ordinary differential equations (ODEs)

• They consist of derivatives, but in this case
partial derivatives.

• Partial derivatives are derivatives with respect
to one variable
• Example:

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 ⋅ 𝑦𝑦2

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥 = 𝑦𝑦2

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦 = 2 ⋅ 𝑥𝑥 ⋅ 𝑦𝑦

• These are often impossible to solve analytically, and we must discretize them and solve on a computer.

Partial Differential Equations (PDEs)

• The heat equation is a prototypical PDE
(partial differential equation)

• u is the temperature, kappa is the diffusion
coefficient, t is time, and x is space.

• It states that the rate of change in temperature over time
is equal the second derivative of the temperature with
respect to space multiplied by the heat diffusion coefficient

The Heat Equation

Discretizing the heat equation

The 1D heat equation in Matlab

The linear wave equation in 1D

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1) =

𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛)

Soundwave photo from http://www.pngmart.com/image/34039

The 1D wave equation in Matlab

The 2D wave equation

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1)

=
𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛)

Soundwave photo from http://www.pngmart.com/image/34039

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1)

=
𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛) +

𝑐𝑐
Δ𝑦𝑦2 (𝑢𝑢𝑖𝑖,𝑗𝑗−1𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1𝑛𝑛)

Høy C, ©Bård Breivik/BONO. Foto: Terje Heiestad. UiO

The 2D wave equation in Matlab

Using conservation laws in real life

Th

Problem statement

Solution strategy

Image from Opendrift, Norwegian Meteorological Institute, Knut-Frode Dagestad.

2-layer non-linear scheme

• 1 layer model extendible to more layers
• Ocean can be modeled as a stratisfied medium with

multiple homogeneous layers

• Multiple layers enables baroclinic
response from model

1 layer scheme, non-linear FD

eta1

H1 h1
u1

eta2

H2 h2 u2

Oppsummering

Oppsummering

• Matte er gøy :D!

• Ting virker ofte mye vanskeligere enn de er: konseptene er ofte enkle

• Har man forstått konseptene så kommer detaljene på plass

• Sterk kunnskap i både matte og data er viktig for effektiv problemløsing

Oppgaver

• Ta utgangspunkt i utlevert kildekode (ikke løsningsforslag!)

• Implementer i følgende rekkefølge
• ParabolicMotionEuler.m

• ParabolicMotionRK2.m

• HeatEquation1D.m

• WaveEquation1D.m

• WaveEquation2D.m

• Hvis du blir ferdig:
• Hvordan kan du gjøre disse operasjonene mer effektive?

• Implementer HeatEquation2D.m (uten skjellettkode)

Hjelp til oppgaver

Parabolic motion (Euler)

𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡

= �⃗�𝑣(𝑡𝑡)

�⃗�𝑝𝑛𝑛+1 − �⃗�𝑝𝑛𝑛

Δ𝑡𝑡 = �⃗�𝑣 𝑛𝑛 � Δ𝑡𝑡

�⃗�𝑝𝑛𝑛+1 = �⃗�𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣 𝑛𝑛 ⋅ Δ𝑡𝑡

Particle projectory in Matlab

• We have used a very simple integration rule (or
approximation to the derivative)
• Our rule is known as forward Euler

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣

• We can get much higher accuracy with more
advanced techniques such as Runge-Kutta 2

𝑝𝑝∗ = 𝑝𝑝𝑛𝑛 + Δ𝑡𝑡 ⋅ �⃗�𝑣(𝑛𝑛 ⋅ Δ𝑡𝑡)
𝑝𝑝∗∗ = 𝑝𝑝∗ + Δ𝑡𝑡 ⋅ �⃗�𝑣 𝑛𝑛 + 1 ⋅ Δ𝑡𝑡

𝑝𝑝𝑛𝑛+1 =
1
2 𝑝𝑝𝑛𝑛 + 𝑝𝑝∗∗

• In summary, we need to think about how we
discretize our problem!

More accuracy

dt=1

Discretizing the heat equation

The 1D heat equation in Matlab

The linear wave equation in 1D

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1) =

𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛)

Soundwave photo from http://www.pngmart.com/image/34039

The 2D wave equation

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1)

=
𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛)

Soundwave photo from http://www.pngmart.com/image/34039

1
Δ𝑡𝑡2 (𝑢𝑢𝑖𝑖,𝑗𝑗

𝑛𝑛+1
− 2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛−1)

=
𝑐𝑐
Δ𝑥𝑥2 (𝑢𝑢𝑖𝑖−1,𝑗𝑗

𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗
𝑛𝑛) +

𝑐𝑐
Δ𝑦𝑦2 (𝑢𝑢𝑖𝑖,𝑗𝑗−1𝑛𝑛 −2𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1𝑛𝑛)

Høy C, ©Bård Breivik/BONO. Foto: Terje Heiestad. UiO

	Matte og konserveringslover
	Hvem er jeg?
	Slide Number 3
	Dagens (popvit) forelesning
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Når matte og data ikke spiller på lag
	Matte er helt gresk for meg
	Slide Number 13
	Slide Number 14
	Konserveringslover
	Konserveringslover - bevaringslover
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Using conservation laws in real life
	Problem statement
	Solution strategy
	2-layer non-linear scheme
	Oppsummering
	Oppsummering
	Oppgaver
	Hjelp til oppgaver
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

