Dielectronic recombination in the time domain

Nordita, Stockholm

OSLO AND AKERSHUS UNIVERSITY COLLEGE OF APPLIED SCIENCES

Sølve Selstø, Oslo and Akershus University College of Applied Sciences

Recombination

Dielectronic recombination:

- Time reverse of auto ionization (Auger decay)
- May increase the capture probability by orders of magnitude
- · Dictated by the structure of the system

Recombination

D Nicolić et al, Phys. Rev. A 70, 062723 (2004)

Possible realization: Quantum dot embedded in a quantum wire

From the website of Dr. Bert Lorenz', Ludwig-Maximilians-Universität München

Interaction: Regularized **Coulomb interaction** with transversial degrees of freedom integrated out; _____1

$$\overline{W}(x_{12}) = \frac{1}{\sqrt{x_{12}^2 + (l\delta)^2}}$$
Confining potential (quantum dot): Gaussian
$$\widetilde{V}(x) = -D_V \exp\left(-\frac{x^2}{\sigma_V^2}\right)$$

Units

$$m^* = e = \hbar = \frac{1}{4\pi\varepsilon_r\varepsilon_0} = 1$$

For GaAs:

Length unit: $\sim 10 \text{ nm}$ Energy unit: $\sim 11 \text{ meV}$ Time unit: $\sim 60 \text{ fs}$ **Resolve the dynamics by solving the relevant** *dynamical* equations

Resolve the dynamics by solving the relevant dynamical equations

Why explicit time dependence?

- \cdot This *is* a dynamical process; this is in fact the proper framework
- \cdot Examine the buildup and decay of the population of resonant states
- \cdot No need for scattering states
- \cdot It's fun

Finite probability for «knockout»/«lonization»

S. S., J. Phys. Cond. Matt. 25 315802 (2013)

Final probabilities

S. S., J. Phys. Cond. Matt. 25 315802 (2013)

The resonance peak in the reflection coefficient

S. S., J. Phys. Cond. Matt. 25 315802 (2013)

Identify doubly excited states by complex rotation,

 $x \rightarrow x e^{i\theta}, \ 0 < \theta < 45^{\circ}$

Identify doubly excited states by complex rotation,

 $x \rightarrow x e^{i\theta}, \ 0 < \theta < 45^{\circ}$

Photon Capture

Guess what: The resonance dominates

Photon Capture

Guess what: The resonance dominates

Why?

Photon Capture

Guess what: The resonance dominates

Why? 12 10 8 6 $\int_{-\infty}^{\infty} \int_{-2\sigma}^{2\sigma} \int_{-2\sigma}^{2\sigma} |\Psi_2(x_1, x_2; t)|^2 dx_1 dx_2 dt$ 4 2 0└ -2.5 -2 -1.5

Exponential decay?

Exponential decay?

Capture rate according to Fermi's golden rule:

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{b} \approx 2\pi \sum_{\vec{k}} \left| \left\langle \Phi_{b}, 1_{\vec{k}} \right| H_{I} \left| \Psi_{\mathrm{init}}, 0 \right\rangle \right|^{2} \delta \left(E_{\mathrm{init}} - \left(\varepsilon_{b} + \omega(k) \right) \right)$$

Capture rate according to Fermi's golden rule:

$$\frac{\mathrm{d}}{\mathrm{d}t}P_b \approx 2\pi \sum_{\vec{k}} \left| \left\langle \Phi_b, \mathbf{1}_{\vec{k}} \right| H_I \left| \Psi_{\mathrm{init}}, \mathbf{0} \right\rangle \right|^2 \delta \left(E_{\mathrm{init}} - \left(\varepsilon_b + \omega(k) \right) \right)$$

Slightly modified:

$$\frac{\mathrm{d}}{\mathrm{d}t} P_b(t) \approx 2\pi \sum_{\vec{k}} \left| \left\langle \Phi_b, \mathbf{1}_{\vec{k}} \right| H_I \left| \Psi(t), \mathbf{0} \right\rangle \right|^2 \delta\left(\left\langle E \right\rangle - \left(\varepsilon_b + \omega(k) \right) \right)$$

Probability:

$$P_{\text{capture}} = \sum_{b} \int_{0}^{\infty} \dot{P}_{b}(t) \, \mathrm{d}t$$

Capture rate according to Fermi's golden rule:

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{b} \approx 2\pi \sum_{\vec{k}} \left| \left\langle \Phi_{b}, \mathbf{1}_{\vec{k}} \right| H_{I} \left| \Psi_{\mathrm{init}}, \mathbf{0} \right\rangle \right|^{2} \delta\left(E_{\mathrm{init}} - (\varepsilon_{b} + \omega(k)) \right)$$
Slightly modified:

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{b}(t) \approx 2\pi \sum_{\vec{k}} \left| \left\langle \Phi_{b}, \mathbf{1}_{\vec{k}} \right| H_{I} \left| \Psi(t), \mathbf{0} \right\rangle \right|^{2} \delta\left(\left\langle E \right\rangle - (\varepsilon_{b} + \omega(k)) \right)$$
Probability:

$$P_{\mathrm{capture}} = \sum_{b} \int_{0}^{\infty} \dot{P}_{b}(t) \, \mathrm{d}t$$
Bound states:
Imaginary time; $t \to -it$

Photons or phonons?

$$H_{I}^{\text{photon}} = i\vec{r} \cdot \sum_{\vec{k}} \sqrt{\frac{2\pi}{\omega(k)V}} \left(\vec{u}_{\vec{k}} \hat{a}_{\vec{k}} e^{\vec{k}\cdot\vec{r}} - \vec{u}_{\vec{k}} \hat{a}_{\vec{k}}^{\dagger} e^{-\vec{k}\cdot\vec{r}} \right)$$
$$H_{I}^{\text{phonon}} \propto \sum_{\vec{k}} \frac{k}{\sqrt{\omega(k)}} \left(\hat{a}_{\vec{k}} e^{i\vec{k}\cdot\vec{r}} + \hat{a}_{\vec{k}}^{\dagger} e^{-i\vec{k}\cdot\vec{r}} \right)$$

Dispersion relations

Complex absorbing potential? $V(x) \rightarrow V(x) - i\Gamma(x)$

Complex absorbing potential? $V(x) \rightarrow V(x) - i\Gamma(x)$

Eventually: $\Psi_2(x_1, x_2; t) \equiv 0$

Complex absorbing potential? $V(x) \rightarrow V(x) - i\Gamma(x)$

Eventually: $\Psi_2(x_1, x_2; t) \equiv 0$

Feed a 1-particle Schrödinger equation?

Complex absorbing potential? $V(x) \rightarrow V(x) - i\Gamma(x)$

Eventually: $\Psi_2(x_1, x_2; t) \equiv 0$

Feed a 1-particle Schrödinger equation? NO

Solution: The Lindblad equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\rho = [H,\rho] - \sum_{k,l}\gamma_{k,l}\left(\left\{a_k^{\dagger}a_l,\rho\right\} - 2a_l\rho a_k^{\dagger}\right)$$

Markovian Preserve trace and positivity manifestly

G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

V. Gorini, A. Kossakowski, E. Sudarshan, J. Math. Phys. 17, 821 (1976)

Solution: The Lindblad equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\rho = [H,\rho] - \sum_{k,l}\gamma_{k,l}\left(\left\{a_k^{\dagger}a_l,\rho\right\} - 2a_l\rho a_k^{\dagger}\right) = H_{\mathrm{eff}}\rho - \rho H_{\mathrm{eff}}^{\dagger} + 2\sum_{k,l}\gamma_{k,l}a_l\rho a_k^{\dagger}\right)$$

$$H_{\text{eff}} = H - i\hat{\Gamma}$$
$$\hat{\Gamma} = \sum_{k,l} \Gamma(x_k) c_k^{\dagger} c_k = \sum_{k,l} \gamma_{k,l} a_k^{\dagger} a_l$$
$$\gamma_{k,l} = \Gamma(x_k) \delta_{k,l}$$

 $a_k = c_k$

S. S., S. Kvaal, J. Phys. B 43, 065004 (2010)

Source term $\mathcal{S}[\rho_N] \equiv 2i \sum_k \Gamma(x_k) c_k \rho_N c_k^{\dagger}$

Solution: The Lindblad equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\rho = [H,\rho] - \sum_{k,l}\gamma_{k,l}\left(\left\{a_k^{\dagger}a_l,\rho\right\} - 2a_l\rho a_k^{\dagger}\right) = H_{\mathrm{eff}}\rho - \rho H_{\mathrm{eff}}^{\dagger} + 2\sum_{k,l}\gamma_{k,l}a_l\rho a_k^{\dagger}$$

How many particles are there on the grid?

How many particles are there on the grid?

Another application of the same formalism:

Expected classically:

The Lindblad equation gives

$$i\dot{\Psi}_{N} = H_{\text{eff}}\Psi_{N}$$

$$i\dot{\rho}_{N-1} = [H_{\text{eff}}, \rho_{N-1}] + 2\sum_{k}\Gamma(x_{k})c_{k}|\Psi_{2}\rangle\langle\Psi_{2}|c_{k}^{\dagger}$$

which, in turn, gives

$$\frac{\mathrm{d}}{\mathrm{d}t} P_{\mathrm{res}} = -\Gamma_{\mathrm{res}} P_{\mathrm{res}}$$
$$\frac{\mathrm{d}}{\mathrm{d}t} P_b = \Gamma_b P_{\mathrm{res}}$$

provided that

$$P_{\text{res}} = |\langle \Psi_{\text{res}} | \Psi_N(t) \rangle|^2$$

$$P_b = \langle \Phi_b | \rho_{N-1} | \Phi_b \rangle$$

$$\Gamma_b = \sum_k \Gamma(x_k) |\langle \Phi_b | c_k | \Psi_{\text{res}} \rangle|^2$$

S. S., Phys. Rev. A 85, 062518 (2012)

The Lindblad equation gives

$$i\dot{\Psi}_{N} = H_{\text{eff}}\Psi_{N}$$

$$i\dot{\rho}_{N-1} = [H_{\text{eff}}, \rho_{N-1}] + 2\sum_{k}\Gamma(x_{k})c_{k}|\Psi_{2}\rangle\langle\Psi_{2}|c_{k}^{\dagger}$$

which, in turn, gives

$$\frac{d}{dt}P_{\rm res} = -\Gamma_{\rm res}P_{\rm res}$$

$$\frac{d}{dt}P_b = \Gamma_b P_{\rm res}$$
provided that
$$\Psi_N(t) = e^{-i(E_{\rm res} - i\Gamma_{\rm res}/2)t}\Psi_{\rm res}, \quad |\Psi_N(t)|^2 = e^{-\Gamma_{\rm res}t}$$

$$P_{\rm res} = |\langle \Psi_{\rm res} | \Psi_N(t) \rangle|^2$$

$$P_b = \langle \Phi_b | \rho_{N-1} | \Phi_b \rangle$$

$$\Gamma_b = \sum_k \Gamma(x_k) |\langle \Phi_b | c_k | \Psi_{\rm res} \rangle|^2$$

S. S., Phys. Rev. A 85, 062518 (2012)

The Lindblad equation gives

$$i\dot{\Psi}_{N} = H_{\text{eff}}\Psi_{N}$$

$$i\dot{\rho}_{N-1} = [H_{\text{eff}}, \rho_{N-1}] + 2\sum_{k}\Gamma(x_{k})c_{k}|\Psi_{2}\rangle\langle\Psi_{2}|c_{k}^{\dagger}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{\mathrm{res}} = -\Gamma_{\mathrm{res}}P_{\mathrm{res}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{b} = \Gamma_{b}P_{\mathrm{res}}$$
provided that
$$\Psi_{N}(t) = e^{-i(E_{\mathrm{res}} - i\Gamma_{\mathrm{res}}/2)t}\Psi_{\mathrm{res}}, \quad |\Psi_{N}(t)|^{2} = e^{-\Gamma_{\mathrm{res}}t}$$

$$P_{\mathrm{res}} = |\langle\Psi_{\mathrm{res}}|\Psi_{N}(t)\rangle|^{2}$$

$$P_{b} = \langle\Phi_{b}|\rho_{N-1}|\Phi_{b}\rangle$$

$$\Gamma_{b} = \sum_{k}\Gamma(x_{k}) |\langle\Phi_{b}|c_{k}|\Psi_{\mathrm{res}}\rangle|^{2} \rightarrow \int \Gamma(\xi) \left|\langle\Phi_{b}|\hat{\psi}(\xi)|\Psi_{\mathrm{res}}\rangle\right|^{2} d\xi$$

S. S., Phys. Rev. A 85, 062518 (2012)

Trace conservation => $\sum_{b} \Gamma_{b} = \Gamma_{res}$

-Can use CAP-s in order to identify resonances

-Can use CAP-s in order to identify resonances

U. V. Riss, H.-D. Meyer, J. Phys. B 26, 4503 (1993)
R Santra, *Phys. Rev. A* 74, 034701 (2012)

Better(?): Exterior complex scaling

$$r \to R(r) = \begin{cases} r, & r \le R_0 \\ R_0 + (r - R_0)e^{i\theta}, & r > R_0 \end{cases}$$

$$h_{k,l}^{\mathrm{I}} = \int_{r>R_0} d^3 \mathbf{r} \left(\chi_k(\mathbf{r})\right)^* \left[-\sin(2\theta)\frac{\hbar^2}{2m}\nabla^2 + \operatorname{Im} V_1(R(\mathbf{r}))\right] \chi_l(\mathbf{r}) \quad \text{and}$$

$$V_{pq,rs}^{\mathrm{I}} = \int_{r>R_0} \int_{r'>R_0} d^3 \mathbf{r} \, d^3 \mathbf{r}' \left(\chi_p(\mathbf{r})\right)^* \left(\chi_q(\mathbf{r}')\right)^* \left[\operatorname{Im} V_2(R(\mathbf{r}), R(\mathbf{r}'))\right] \chi_r(\mathbf{r}) \chi_s(\mathbf{r}')$$

$$H^{\rm ah} = \sum_{kl} h^{\rm I}_{k,l} c^{\dagger}_k c_l + \frac{1}{2} \sum_{pqrs} V^{\rm I}_{pq,rs} c^{\dagger}_p c^{\dagger}_q c_s c_r$$

-Can use CAP-s in order to identify resonances

U. V. Riss, H.-D. Meyer, J. Phys. B **26**, 4503 (1993) R Santra, *Phys. Rev. A* **74**, 034701 (2012)

Better(?): Exterior complex scaling

$$r \to R(r) = \begin{cases} r, & r \le R_0 \\ R_0 + (r - R_0)e^{i\theta}, & r > R_0 \end{cases}$$

$$h_{k,l}^{\rm I} = \int_{r>R_0} d^3 \mathbf{r} \, (\chi_k(\mathbf{r}))^* \left[-\sin(2\theta) \frac{\hbar^2}{2m} \nabla^2 + \operatorname{Im} V_1(R(\mathbf{r})) \right] \chi_l(\mathbf{r}) \quad \text{and}$$

$$V_{pq,rs}^{\rm I} = \int_{r>R_0} \int_{r'>R_0} d^3 \mathbf{r} \, d^3 \mathbf{r}' \, (\chi_p(\mathbf{r}))^* \left(\chi_q(\mathbf{r}') \right)^* \, \left[\operatorname{Im} V_2(R(\mathbf{r}), R(\mathbf{r}')) \right] \, \chi_r(\mathbf{r}) \chi_s(\mathbf{r}')$$

$$\Gamma_b = 2\sum_{k,l} h_{k,l}^{\mathrm{I}} \left\langle \Phi_b^{(N-1)} \middle| c_l \middle| \Psi_{\mathrm{res}}^{(N)} \right\rangle \left\langle \Psi_{\mathrm{res}}^{(N)} \middle| c_k^{\dagger} \middle| \Phi_b^{(N-1)} \right\rangle$$

Brief summery

- Resonances do indeed play a crucial role both in scattering and capture in a quantum dot
- Facilitates putting electrons into quantum dots?
- However: For phonon capture this dependence tends to be washed out by strong energy dependence in the interaction.
- Methodwise: Absorbing boundaries -> the Lindblad equation
- Application of the same formalism: Compact expressions for partial widths

