Electrons towards the speed of light: Photoionization in the strong field region (Solving the Dirac equation)

LPHYS'18, Nottingham, July 17th 2018

Describe photoionization with laser fields strong enough to accelerate electrons towards the speed of light

XUV-region

Describe photoionization with laser fields strong enough to accelerate electrons towards the speed of light XUV-region

In other words:

We want so solve the time-dependent Dirac equation:

$$i\hbar \frac{d}{dt}\Psi = H\Psi$$

$$H = c \boldsymbol{\alpha} \cdot (\mathbf{p} + e\mathbf{A}) + V \mathbb{1}_4 + \beta \boldsymbol{n}$$

Describe photoionization with laser fields strong enough to accelerate electrons towards the speed of light XUV-region

In other words:

We want so solve the time-dependent Dirac equation:

 $i\hbar \overset{d}{\longrightarrow} \Psi \in \mathbb{C}^4$

$$H = c \boldsymbol{\alpha} \cdot (\mathbf{p} + e\mathbf{A}) + V \mathbb{1}_{4} + \beta mc^{2}$$

$$\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2} \end{pmatrix}$$

Describe photoionization with laser fields strong enough to accelerate electrons towards the speed of light XUV-region

In other words:

We want so solve the time-dependent Dirac equation:

 $i\hbar \frac{d}{d}\Psi = H\Psi$ $\Psi \in \mathbb{C}^4$

The Team

Stockholm University

Prof. Eva Lindroth

Prof. Morten Førre

Prof. Sølve Selstø

Results

Kjellsson, Selstø, Lindroth, Phys. Rev. A 95, 043403 (2017)

Results

Kjellsson, Selstø, Lindroth, Phys. Rev. A 95, 043403 (2017)

Results

Kjellsson, Selstø, Lindroth, Phys. Rev. A 95, 043403 (2017)

Approach:

$$i\hbar \frac{d}{dt}\Psi = [H_0 + H'(t)]\Psi$$

1) Construct spectral basis by solving the time independent Dirac equation

$$H_0\varphi_n = \varepsilon_n\varphi_n, \quad H_0 = c\boldsymbol{\alpha}\cdot\mathbf{p} + V + mc^2\beta$$

2) Express interaction in terms of this basis:

 $H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$

3) Solve the resulting ordinary differential equation (ODE):

$$i\hbar \frac{d}{dt}\mathbf{c} = [\text{Diag}(\varepsilon_1, \varepsilon_2, ...) + H']\mathbf{c}, \quad \Psi = \sum_n c_n \varphi_n$$

Approach:

$$i\hbar \frac{d}{dt}\Psi = [H_0 + H'(t)]\Psi$$

1) Construct spectral basis by solving the time independent Dirac equation

$$H_0\varphi_n = \varepsilon_n\varphi_n, \quad H_0 = c\boldsymbol{\alpha}\cdot\mathbf{p} + V + mc^2\beta$$

2) Express interaction in terms of this basis: $H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$ How hard can it be?

3) Solve the resulting ordinary differential equation (ODE):

$$i\hbar \frac{d}{dt}\mathbf{c} = [\operatorname{Diag}(\varepsilon_1, \varepsilon_2, ...) + H']\mathbf{c}, \quad \Psi = \sum_n c_n \varphi_n$$

Approach:

$$i\hbar \frac{d}{dt}\Psi = [H_0 + H'(t)]\Psi$$

1) Construct spectral basis by solving the time independent Dirac equation

$$H_0\varphi_n = \varepsilon_n\varphi_n, \quad H_0 = c\boldsymbol{\alpha}\cdot\mathbf{p} + V + mc^2\beta$$

2) Express interaction in terms of this basis: $H'_{kl} = \langle \varphi_k | c \alpha \cdot e \mathbf{A} | \varphi_l \rangle$ How hard can it be? Actually, there are a number of problems

3) Solve the resulting ordinary differential equation (ODE):

$$i\hbar \frac{d}{dt}\mathbf{c} = [\operatorname{Diag}(\varepsilon_1, \varepsilon_2, ...) + H']\mathbf{c}, \quad \Psi = \sum_n c_n \varphi_n$$

Problem 1: Stiffness

$$\Psi(t + \Delta t) = U(t + \Delta t, t)\Psi(t) + \mathcal{O}(\Psi^{(n)}(t)\Delta t^n)$$

```
\Psi^{(n)}\Delta t^n \sim H^n\Psi(t)\Delta t^n
\beta mc^2
```

Problem 1: Stiffness

$$\Delta t \ll \frac{1}{2mc^2} \quad (\sim 10^{-5} \text{ a.u.})$$

Selstø, Lindroth, Bengtsson, Phys. Rev. A **79**, 043418 (2009) Vanne, Saenz, Phys. Rev. A **85**, 033411 (2012)

Problem 1: Stiffness

$$\Psi(t + \Delta t) = U(t + \Delta t, t)\Psi(t) + \mathcal{O}(\Psi^{(n)}(t)\Delta t^n)$$

$$\begin{split} \Psi^{(n)} \Delta t^n &\sim H^n \Psi(t) \Delta t^n \\ \Delta t \ll \frac{1}{2mc^2} \quad (\sim 10^{-5} \text{ a.u.}) \end{split}$$

Solution: Magnus propagator

$$U(t + \Delta t, t) = e^{-i\bar{H}\Delta t}$$

Hochbruck, Lubich, SIAM J. Numer. Anal. **41**, 945 (2003)

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A = \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases}$$

$$\eta = \omega t - kx, \quad k = \omega/c$$

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A = \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases}$$

$$\eta = \omega t - kx, \quad k = \omega/c$$

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Calculate couplings at each time step?

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Calculate couplings at each time step?

-Too time consuming

Has been implemented, though: Ivanov, Phys. Rev. A **91**, 043410 (2015)

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Simply disregard the spatial dependence? $k \approx 0, \quad \eta \approx \omega t, \quad \mathbf{B} = \nabla \times \mathbf{A} = \mathbf{0}$

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$
$$A = \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \\ 0 & & \text{otherw} \end{cases}$$

$$\eta = \omega t - kx, \quad k = \omega/c$$

Simply disregard the spatial dependence? $k \approx 0, \quad \eta \approx \omega t, \quad \mathbf{B} = \nabla \times \mathbf{A} = \mathbf{0}$

-Dipole approximation. Not valid.

Reiss, Phys. Rev. A 63, 013409 (2000).

$$\begin{split} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{split}$$

Separate time and space somehow

$$A(t,x) = \sum_{n} a_{n} T_{n}(t) X_{n}(x)$$
$$\langle \varphi_{k} | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_{l} \rangle = \sum_{n} a_{n} T_{n}(t) \langle \varphi_{k} | X_{n}(x) | \varphi_{l} \rangle$$

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Separate time and space somehow

$$A(t,x) = \sum_{n} a_n T_n(t) X_n(x)$$

Fourier:

$$A(t,x) = \sum_{n} a_n e^{i\frac{2\pi}{P}\eta} = \sum_{n} a_n e^{i\frac{2\pi}{P}\omega t} \cdot e^{-i\frac{2\pi}{P}kx}$$

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A = \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta\right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & \text{otherwise} \end{cases}$$

$$\eta = \omega t - kx, \quad k = \omega/c$$
Period *T*: 6 terms
Separate time and space somehow
$$A(t, x) = \sum_{n} a_n T_n(t) X_n(x)$$
Fourier:
$$A(t, x) = \sum_{n} a_n e^{i\frac{2\pi}{P}\eta} = \sum_{n} a_n e^{i\frac{2\pi}{P}\omega t} \cdot e^{-i\frac{2\pi}{P}kx}$$

$$\begin{split} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) , \quad \text{everywhere/always} \\ \eta &= \omega t - kx, \quad k = \omega/c \\ \mathbf{Separate time and space somehow} \\ A(t, x) &= \sum_n a_n T_n(t) X_n(x) \\ \mathbf{Fourier:} \\ A(t, x) &= \sum_n a_n e^{i\frac{2\pi}{P}\eta} = \sum_n a_n e^{i\frac{2\pi}{P}\omega t} \cdot e^{-i\frac{2\pi}{P}kx} \end{split}$$

t

$$\begin{split} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &\approx \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{T} t \right) \sin(\eta + \varphi) &, & 0 \leq t \leq T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, \quad k = \omega/c \quad \text{Neglect } x \text{ in envelope} \end{split}$$

Separate time and space somehow

$$A(t,x) = \sum_{n} a_n T_n(t) X_n(x)$$

Fourier:

$$A(t,x) = \sum_{n} a_n e^{i\frac{2\pi}{P}\eta} = \sum_{n} a_n e^{i\frac{2\pi}{P}\omega t} \cdot e^{-i\frac{2\pi}{P}kx}$$

600				
400				
200				
× 0				
-200				
-400				
-600				
	-10)	0 t	10

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A \approx \begin{cases} \frac{E_0}{\omega} \sin^2\left(\frac{\pi}{T}t\right) \sin(\eta + \varphi) &, & 0 \le t \le T \\ 0 & & \text{otherwise} \end{cases}$$
$$\eta = \omega t - kx, \quad k = \omega/c \quad \text{Neglect } x \text{ in envelope}$$

Separate time and space somehow

$$A(t,x) = \sum a_n T_n(t) X_n(x)$$

n

Fourier:

$$A(t,x) = \sum_{n} a_n e^{i\frac{2\pi}{P}\eta} = \sum_{n} a_n e^{i\frac{2\pi}{P}\omega t} \cdot e^{-i\frac{2\pi}{P}kx}$$

Actually, it's the contrary

$$\begin{split} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &\approx \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\omega t + \varphi) &, & 0 \leq \eta \leq \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{split}$$
 The envelope approximation

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A \approx \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta\right) \sin(\omega t + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases}$$
Population in *m*≠0-states within and without the envelope approximation
$$Population = m \neq 0 \text{-states}$$

$$Population = m$$

Simonsen, Kjellsson, Førre, Lindroth, Selstø, Phys. Rev. A 93, 053411 (2016)

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Separate time and space somehow

$$A(t,x) = \sum_{n} a_n T_n(t) X_n(x)$$

Taylor:
$$A(\eta) = \sum_{n} \frac{1}{n!} A^{(n)}(\eta) \Big|_{x=0} x^n$$

$$\begin{aligned} H'_{kl} &= \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle \\ A &= \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta \right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & & \text{otherwise} \end{cases} \\ \eta &= \omega t - kx, & k = \omega/c \end{aligned}$$

Separate time and space somehow

$$\begin{split} A(t,x) &= \sum_n a_n T_n(t) X_n(x) \\ \text{Taylor:} & n \\ A &\approx A(t) - A'(t) x/c \end{split}$$

Vázquez de Aldana, Kylstra, Roso, Knight, Patel, Worthington, Phys. Rev. A **64**, 013411 (2001)⁶⁰⁰ Førre, Simonsen, Phys. Rev. A **90**, 053411 (2014)

First order

-10

10

Vázquez de Aldana, Kylstra, Roso, Knight, Patel, Worthington, Phys. Rev. A **64**, 013411 (2001)⁶⁰⁰ Førre, Simonsen, Phys. Rev. A **90**, 053411 (2014)

$$H'_{kl} = \langle \varphi_k | c \boldsymbol{\alpha} \cdot e \mathbf{A} | \varphi_l \rangle$$

$$A = \begin{cases} \frac{E_0}{\omega} \sin^2 \left(\frac{\pi}{\omega T} \eta\right) \sin(\eta + \varphi) &, & 0 \le \eta \le \omega T \\ 0 & \text{otherwise} \end{cases}$$

$$\eta = \omega t - kx, \quad k = \omega/c$$
Separate time and space somehow
$$A(t, x) = \sum_{n} a_n T_n(t) X_n \begin{bmatrix} \text{Sufficient for the Schrödinger equation} \\ \text{Completely wrong for the Dirac equation} \end{bmatrix}$$

$$A \approx A(t) - A'(t) x/c$$

-10

10

Vázquez de Aldana, Kylstra, Roso, Knight, Patel, Worthington, Phys. Rev. A 64, 013411 (2001)⁶⁰⁰ Førre, Simonsen, Phys. Rev. A 90, 053411 (2014)

Large component

$$i\hbar\frac{d}{dt}\begin{pmatrix}\Phi\\X\end{pmatrix} = \begin{pmatrix}V+mc^2 & c\boldsymbol{\sigma}\cdot(\mathbf{p}+e\mathbf{A})\\c\boldsymbol{\sigma}\cdot(\mathbf{p}+e\mathbf{A}) & V-mc^2\end{pmatrix}\begin{pmatrix}\Phi\\X\end{pmatrix}$$

Small component

$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ X \end{pmatrix} = \begin{pmatrix} V + mc^2 & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & V - mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$
$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ X \end{pmatrix} = \begin{pmatrix} V & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & V - 2mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$

$$i\hbar\frac{d}{dt}\begin{pmatrix}\Phi\\X\end{pmatrix} = \begin{pmatrix}V & c\boldsymbol{\sigma}\cdot(\mathbf{p}+e\mathbf{A})\\c\boldsymbol{\sigma}\cdot(\mathbf{p}+e\mathbf{A}) & V-2mc^2\end{pmatrix}\begin{pmatrix}\Phi\\X\end{pmatrix}$$

$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ X \end{pmatrix} = \begin{pmatrix} V & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & V - 2mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$
$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ 0 \end{pmatrix} \approx \begin{pmatrix} V & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & -2mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$

$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ 0 \end{pmatrix} \approx \begin{pmatrix} V & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & -2mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$

Why?

$$i\hbar \frac{d}{dt} \begin{pmatrix} \Phi \\ 0 \end{pmatrix} \approx \begin{pmatrix} V & c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) \\ c\boldsymbol{\sigma} \cdot (\mathbf{p} + e\mathbf{A}) & -2mc^2 \end{pmatrix} \begin{pmatrix} \Phi \\ X \end{pmatrix}$$

 $i\hbar \frac{d}{dt}\Phi \approx V\Phi + \frac{1}{2mc^2}\left(c\boldsymbol{\sigma}\cdot(\mathbf{p}+e\mathbf{A})\right)^2\Phi$

$$i\hbar\frac{d}{dt}\Phi = \left(\frac{p^2}{2m} + V + \frac{e}{m}\mathbf{A}\cdot\mathbf{p} + \frac{e^2}{2m}A^2 + \frac{e\hbar}{2m}\boldsymbol{\sigma}\cdot\mathbf{B}\right)\Phi$$

 \mathbf{v}

$$A^{2} \approx (A(t) + A'(t) x/c)^{2} = A^{2} + 2AA' x/c + (A')^{2} x^{2}/c^{2}$$
$$+ \frac{e\hbar}{2m} \boldsymbol{\sigma} \cdot \mathbf{B} \Big) \Phi$$

. 9

. 1

(1) 9

9, 9

$$A^{2} \approx (A(t) + A'(t) x/c)^{2} = A^{2} + 2AA' x/c + (A')^{2} x^{2}/c^{2}$$
$$A^{2} \approx A(t) + 2AA' x/c + \frac{1}{2} 2((A')^{2} + AA'') x^{2}/c^{2}$$

$$A^{2} \approx (A(t) + A'(t) x/c)^{2} = A^{2} + 2AA' x/c + (A')^{2} x^{2}/c^{2}$$
$$A^{2} \approx A(t) + 2AA' x/c + \frac{1}{2} 2((A')^{2} + AA'') x^{2}/c^{2}$$
$$+ \frac{e\hbar}{2m} \boldsymbol{\sigma} \cdot \mathbf{B} \Big) \Phi$$

«Solution»: Add xⁿ-terms in A in the Dirac equation until it works

For convergence: I_{max} = 30 (# partial waves)

Spectral basis: 500 positive and 500 negative energies per spin-angular symmetry (filter out the highest ones)

In total: ~ 2 million states With up to x^5 : ~ 4 · 10¹¹ non-zero matrix elements (3 TB)

Subproblem 3a: How can we exponentiate such a huge matrix?

Subproblem 3b: How can we fit such a huge matrix in the memory?

Subproblem 3a: How can we exponentiate such a huge matrix?

$$\Psi(t + \Delta t) \approx e^{-i\bar{H}\Delta t}\Psi(t)$$

Subproblem 3a: How can we exponentiate such a huge matrix?

$$\Psi(t + \Delta t) \approx e^{-i\bar{H}\Delta t}\Psi(t)$$

Solution: Krylov subspaces

$$\mathcal{K}_n(t) = \operatorname{Span}\{\Psi, \bar{H}\Psi, \bar{H}^2\Psi, ..., \bar{H}^n\Psi\}$$

-We exponentiate within this space, and then transform back

Aleksej Krylov

Arnoldi-method

Subproblem 3b: How can we fit such a huge matrix in the memory?

Subproblem 3b: How can fit such a huge matrix in the memory?

Solution: The Wigner-Eckhart theorem

Keep only radial part in memory, calculate spin-angular part of the coupling on the fly using the Wigner-Eckhart theorem.

Subproblem 3b: How can fit such a huge matrix in the memory?

Solution: The Wigner-Eckhart theorem

Keep only radial part in memory, calculate spin-angular part of the coupling on the fly using the Wigner-Eckhart theorem.

Subproblem 3b: How can fit such a huge matrix in the memory?

Solution: The Wigner-Eckhart theorem

Keep only radial part in memory, calculate spin-angular part of the coupling on the fly using the Wigner-Eckhart theorem.

Problem 4: Weak convergence in *x*ⁿ

Problem 4: Weak convergence in xⁿ

Problem 4: Weak convergence in *x*ⁿ

The propagation gauge

Minimal coupling:

 $\mathbf{p} \rightarrow \mathbf{p} + e\mathbf{A}$

Alternatively:

$$\mathbf{p} \to \mathbf{p} + e\mathbf{A} + \frac{e^2}{2mc}A^2\hat{\mathbf{k}}$$

Vázquez de Aldana et al., Phys. Rev. A **64**, 013411 (2001) ⁻ Førre, Simonsen, Phys. Rev. A **93**, 013423 (2016) Simonsen, Førre, Phys. Rev. A **93**, 063425 (2016)

Schrödinger equation

Schrödinger Hamiltonian:

$$H = \frac{p^2}{2m} + V + \frac{e}{m} \mathbf{A} \cdot \mathbf{p} + \frac{c}{2} \left\{ 1 - \sqrt{1 - \left(\frac{eA}{mc}\right)^2}, \hat{\mathbf{k}} \cdot \mathbf{p} \right\}$$

Førre, Simonsen, Phys. Rev. A 93, 013423 (2016)

Dirac Hamiltonian:

$$H = c\boldsymbol{\alpha} \cdot \left(\mathbf{p} + e\mathbf{A} + \frac{e^2 A^2}{2mc}\hat{\mathbf{k}}\right) + V\mathbb{1}_4 + \beta mc^2 - \frac{e^2 A^2}{2m}\mathbb{1}_4$$

Schrödinger Hamiltonian:

$$H = \frac{p^2}{2m} + V + \frac{e}{m}\mathbf{A}\cdot\mathbf{p} + \frac{c}{2}$$

Førre, Simonsen, Phys. Rev. A 93, 013423 (2016)

Push in propagation direction, induced by the magnetic field

 $\left\{1 - \sqrt{1 - \left(\frac{eA}{mc}\right)^2}, \hat{\mathbf{k}} \cdot \mathbf{p}\right\}$

Dirac Hamiltonian:

$$H = c\boldsymbol{\alpha} \cdot \left(\mathbf{p} + e\mathbf{A} + \frac{e^2 A^2}{2mc} \hat{\mathbf{k}} \right) + V \mathbb{1}_4 + \beta mc^2 - \frac{e^2 A^2}{2m} \mathbb{1}_4$$

1

Cancels the *A*²-term in the non-relativistic limit

Dirac Hamiltonian:

$$H = c\boldsymbol{\alpha} \cdot \left(\mathbf{p} + e\mathbf{A} + \frac{e^2 A^2}{2mc}\hat{\mathbf{k}}\right) + V\mathbb{1}_4 + \beta mc^2 - \frac{e^2 A^2}{2m}\mathbb{1}_4$$

Now:

Makes sense to truncate at zeroth order and let A be purely time-dependent

-Far less restrictive than the dipole approximation

Cancels the A²-term in the non-relativistic limit

Dirac Hamiltonian:

$$H = c\boldsymbol{\alpha} \cdot \left(\mathbf{p} + e\mathbf{A} + \frac{e^2 A^2}{2mc} \hat{\mathbf{k}} \right) + V \mathbb{1}_4 + \beta mc^2 - \frac{e^2 A^2}{2m} \mathbb{1}_4$$

Now:

Makes sense to truncate at zeroth order and let *A* be purely time-dependent

-Far less restrictive than the dipole approximation

Dirac Hamiltonian:

$$H = c\boldsymbol{\alpha} \cdot \left(\mathbf{p} + e\mathbf{A} + \frac{e^2 A^2}{2mc}\hat{\mathbf{k}}\right) + V\mathbb{1}_4 + \beta mc^2 - \frac{e^2 A^2}{2m}\mathbb{1}_4$$

Remaining questions we would like to try and answer

- Can we push the numerics deeper into the relativistic region?
- What is the range of validity for using a homogeneous **A** (within the *propagation gauge*)?
- How about circular polarization?
- Can we see any relativistic corrections in high harmonic generation or in the spin dynamics?
- How strong are the relativistic corrections in the x-ray and the optical regions?
- Other things we should think about?

Remaining questions we would like to try and answer

- Can we push the numerics deeper into the relativistic region?
- What is the range of validity for using a homogeneous **A** (within the *propagation gauge*)?
- How about circular polarization?
- Can we see any relativistic corrections in high harmonic generation or in the spin dynamics?
- How strong are the relativistic corrections in the x-ray and the optical regions?
- Other things we should think about? Suggestions?

