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Non-Hermitian Hamiltonians and absorbing boundaries

Complex scaling

Uniform:

Exterior:

Anti-Hermitian «potentials»

Phenomenological spontaneous decay:

Complex absorbing (local) potential:

Masking function:



  

Non-unitary evolution

May be useful – but also problematic...

Typically:

Thus, N2 decreases in time

Evolution:

Norm:



  

The problem...

One particle

Two particles
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Formulation with variable number of particles

Fock space:

Field operators for identical fermions:

creates a particle in position x

removes a particle in position x
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Formulation with variable number of particles

Foch space:

Field operators for identical fermions:

creates a particle in position x

removes a particle in position x

One-particle operators:

Two-particle operators:

Point:
H independent 
of the number of 
particles



  

The absorber

is zero for x in a certain (interaction) region, and positive outside of this region

Typcal choices:

Power form,

Manolopoulos from, J. Chem. Phys. 117, 9952 (2002)



  

Why the Lindblad equation?

Markovian:
There is no memory of any absorbed particle

Positive:
Probabilites should remain positive at all times

Trace conserving:
The probability of having N, N-1, ..., 1 or zeros particles should always be unity



  

Why the Lindblad equation?

Markovian:
There is no memory of any absorbed particle

Positive:
Probabilites should remain positive at all times

Trace conserving:
The probability of having N, N-1, ..., 1 or zeros particles should always be unity

-V. Gorini, A. Kossakowski and E. Sudarshan, J. Math. Phys. 17, 821–5 (1976)
-G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

The evolution of any such quantum mechanical process is goverened by an equation of form



  

Von Neumann equation (equivalent to the Schrödinger equation):

Von Neumann equation with absorbing potential:

Lindblad equation with Lindbladian on diagonal form:
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«Normal» dynamics
Absorption

Transition to system with fewer particles



  

«Normal» dynamics
Absorption

Transition to system with less paticles

Structure of the denstity matrix:



  

«Normal» dynamics
Absorption

Transition to system with less paticles

Structure of the denstity matrix:



  

Finally:

Special cases:

Pure initial state

Vacuum (no particles)

-S. S. and S. Kvaal, J. Phys. B 43, 065004 (2010)



  

Schematically (two particles):

Absorber



  

Example: Collision in a Gaussian well



  

Example: Collision in a Gaussian well



  

Example: Collision in a Gaussian well

Purity:



  

Application: Non-sequential two-photon double 
ionization of helium



  

Application: Non-sequential two-photon double 
ionization of helium



  

Results still debated

?
DI: Direct ionization
DC: Double continuum
UC: Uncorrelated
UB: Unbound



  

Ionization probabilities via the Lindblad equation

Absorber, (x): Manolopoulos-type, 
D. E. Manolopoulos, J. Chem. Phys. 117, 9552 (2002)



  

Ionization probabilities via the Lindblad equation

Two particles

One particle

No particles



  

Ionization probabilities via the Lindblad equation



  

Ionization probabilities via the Lindblad equation

?

Pulse duration:   30 cycles
                          (118 a.u.)

Intensity: 2.2 × 1013 W/cm2

Photon energy:     43.5 eV



  

Ionization probabilities via the Lindblad equation

?

Analyze source-term on the fly



  

Convergence in «box size»

Absorber «turned on» at distances less than 20% of the box size from the edges

Pulse duration:   16 cycles

Intensity: 2.2 × 1013 W/cm2

Photon energy:     46.2 eV



  

Does it work?



  

Partial widths?



  

Partial widths?

Maybe...

Resonance N-particle wave function(?):

Solves the N-particle equation,



  

Partial widths?

Assume asymptotic form:

Bound (remaining) part

Electron travelling outwards

Gives N-1 system of form:

may then provide the partial width corresponding to channel c



  

Partial widths?

Particularely: 
Analyze what is left instead of what is leaving

p
c
(t) found as eigenvalues to ρ

Ν−1
 or, if it the decay products are know, as:



  

Summary

-Applying absorbing boundry conditions to the time dependent Schrödinger equation 
may be problematic in an many-body context.

-The proper generalization of the concept of complex absorbing potentials is 
achieved through the Lindblad equation.

-The remaining system after absorbption is subject to loss of coherence 
(i.e. it is not a pure state),

-Within this formalism it is possible to describe the dynamics of remaining 
particles while others have been absorbed.

-The formalism facilitates the distinction between single, double etc. ionization.

-Suggest a method for distinguishing decay into varous channels?



  

What about complex rotation?



  



  

Rquirement:  Γ (γ-tensors) must be positive semi-definite

Interaction: E(t) · x eiθ   or   A(t) · p e-iθ

Γ  no longer positive semi-definite

Consequently: The flow does no longer have a well-
defined direction
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