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Abstract

The purpose of this paper is to study maximal irreducible families of Gorenstein quo-
tients of a polynomial ring R. Let GradAlgH(R) be the scheme parametrizing graded
quotients of R with Hilbert function H. We prove there is a close relationship between
the irreducible components of GradAlgH(R) whose general member is a Gorenstein
codimension (c + 1) quotient, and the irreducible components of GradAlgH′

(R) whose
general member B is a codimension c Cohen-Macaulay algebra of Hilbert function H ′

related to H. If the Castelnuovo-Mumford regularity of the Gorenstein quotient is
large compared to the Castelnuovo-Mumford regularity of B, this relationship actually
determines a well-de�ned injective mapping from such �Cohen-Macaulay� components
of GradAlgH′

(R) to �Gorenstein� components of GradAlgH(R), in which generically
smooth components correspond. Moreover the dimension of the �Gorenstein� compo-
nents is computed in terms of the dimension of the corresponding �Cohen-Macaulay�
component and a sum of two invariants of B. Using linkage by a complete intersection
we show how to compute these invariants. Linkage also turns out to be quite e�ective
in verifying the assumptions which appear in a generalization of the main Theorem.
AMS Subject Classi�cation. 14C05, 13D10, 13D03, 13D07, 13C40.
Keywords. Parametrization, Gorenstein algebra, Artinian algebra, liaison, licci, Cohen-
Macaulay, canonical module, normal module, Hilbert scheme.

1 Introduction

The main goal of this paper is to contribute to the classi�cation of graded Gorenstein
quotients of a polynomial ring R of dimension n + c over an algebraically closed �eld k.
Let GradAlgH(R) be the scheme parametrizing graded quotients A of R of depthA ≥
min(1, dimA) and with Hilbert function H. We let CMH

c (R) (resp. GorH
c (R)) be the open

subscheme parametrizing Cohen-Macaulay (resp. Gorenstein) quotients of codimension c in
R. In the Artinian case GorH

c (R) and the scheme PGor(H) de�ned by certain catalecticant
minors ([21]) are essentially the same (see Theorem 11). We call an irreducible compo-
nent of GradAlgH(R) which has non-empty intersection with CMH

c (R) (resp. GorH
c (R)) a

�Cohen-Macaulay (resp. �Gorenstein) codimension c� component. The main Theorem of
this paper establishes a strong connection between �Gorenstein codimension (c+ 1)� compo-
nents of GradAlgH(R) and �Cohen-Macaulay codimension c� components of GradAlgH′

(R)
for someH ′. Indeed the connection between these components allows us to deduce the generic
smoothness and the dimension of the �Gorenstein codimension (c+ 1)� component from the
corresponding property and number for the �Cohen-Macaulay codimension c� component,
and vica versa. If the socle degree of an Artinian reduction of the Gorenstein quotient is
large enough (about twice the Castelnuovo-Mumford regularity, reg(B), of B), we then prove



that this connection actually determines a well-de�ned injective mapping between the set
of �Cohen-Macaulay codimension c components of GradAlgH′

(R) and the set of �Gorenstein
codimension (c+ 1)� components of GradAlgH(R) whose general members satisfy the Weak
Lefschetz property (Theorem 24).

We all know the nice description of CMH
2 (R), given by the Hilbert-Burch theorem, and

of GorH
3 (R), proved by Buchsbaum and Eisenbud, in terms of the maximal minors (resp. the

Pfa�ans) of a suitable matrix. In this case the schemes CMH
2 (R) and GorH

3 (R) are smooth
and irreducible. There is, in our opinion, little hope of �nding such a single nice description
of GorH

4 (R) in codimension 4 because this scheme has several irreducible components ([3]
and [22]). We think a more promising strategy should consist of classifying the irreducible
components of GorH

4 (R) together with describing the members of each family concretely. In
this context the main theorems show that the corresponding classi�cation of CMH′

3 (R) is
central for the classi�cation of GorH

4 (R), and they provide a method for answering Iarrobino
and Srinivasan's question ([22]) about whether the non-irreducibility of GorH

4 (R) is a rare
phenomenon, or not. In fact we give several classes of examples of reducible schemes GorH

4 (R)
whose general members are one dimensional Gorenstein quotients of R (Example 26 and
Remark 27).

More precisely let the graded algebra A be a codimension one quotient of B, well de�ned
by a twist of the canonical module KB, by which we mean that there is a graded exact
sequence

0 → KB(−s) → B → A→ 0, (1)

where B is assumed generically Gorenstein (see the beginning of Section 2). Let K∗
B be the

B-dual of the canonical module of B = R/IB, let vExti
B(−,−), i ≥ 0, be the graded piece of

Exti
B(−,−) of degree v and let vexti

B(−,−) be its dimension as a k-vectorspace. Then we
show (cf. Theorem 16)

Theorem 1. Let B = R/IB be a graded Cohen-Macaulay quotient of a polynomial ring R,
and let A be a graded codimension one quotient of B, well de�ned by a twist of the canonical
module KB.

A) If B is licci, then A is unobstructed as a graded R-algebra, A is Gorenstein and,

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)s − 1− δ(B)−s

where δ(B)−s = −s homB(IB/I
2
B, KB)− −s ext1

B(IB/I
2
B, KB). Moreover if char(k) = 0, then

the codimension of the HB-stratum of A at (B → A) is −s ext1
B(IB/I

2
B, KB).

B) If Proj(B) is locally licci and s >> 0, then A is HB-generic and Gorenstein, and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)s − 1.

Moreover A is unobstructed as a graded R-algebra if and only if B is unobstructed as a graded
R-algebra.

If we assume KB(−s)v = 0 for v less or equal the largest degree of a minimal generator of
IB, then the codimension of the HB-stratum of A at (B → A), mentioned in Theorem 1A, is
just the codimension at (A) of the stratum of GradAlgHA(R) of quotients R→ A′ for which
there exists some factorization B′ → A′ such that B′ has Hilbert function HB. Near (A) this
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stratum turns out to be the stratum of quotients A′ given by (1), with A′, B′ replacing A,B
in (1) (Lemma 7 and Proposition 13A). A is HB-generic if there is an open subset U 3 (A)
of GradAlgHA(R) contained in this stratum.

Note that if B = R/I and R/J are geometrically linked by a complete intersection, then
A = R/(I + J) is given by (1). In this case the unobstructedness of A is known if B is
licci ([39]). It is standard to use sums of geometrically linked ideals to construct Gorenstein
algebras (e.g. [8], [9], [10], [15]). By the corresponding more general construction of using
geometric Gorenstein linkage, we also get Gorenstein algebras (e.g. [34], see also [35], Ex.
10.2). Since both constructions are given by (1) (e.g. [34], [30], p. 785), Theorem 1 applies
in both cases.

In Theorem 1A, A is in fact shown to be unobstructed in the sense H2(R,A,A) = 0, a
formula which holds also when A is non-graded (Theorem 30). Moreover we prove a more
general result that implies Theorem 1 (Proposition 13). To use Proposition 13 we need to
verify the vanishing of certain Ext-groups. These vanishings always hold in the licci case. We
also prove that the scheme ZGor(H) consisting of not necessarily graded Artinian Gorenstein
quotients of R is smooth at a graded quotient (A) given by (1) provided B is licci, and we
give a formula for its dimension (Proposition 29). In the �nal Section 3 we show how we
can use linkage to compute the mentioned Ext-groups as well as to �nd the other dimension
invariants of Theorem 1 (Proposition 33 and Corollary 37, see Example 2 below).

In Theorem 1B, we may make �s >> 0� quite explicit. For instance if Proj(B) is a zero
dimensional scheme of length d, it may be replaced by �s ≥ 2 reg(IB)� (Remark 22; cf. (7)). In
this case dim(K∗

B)s = d and the h-vector of A contains a consecutive subsequence of the form
(d, d, d). It is precisely in such ranges of s that Theorem 24 applies, telling that there is a well-
de�ned injective application π from the set of irreducible components of GradAlgHB(R) whose
general members satisfy the assumptions of Theorem 1B, to the set of irreducible �Gorenstein
components� of GradAlgHA(R) whose general members satisfy the Weak Lefschetz property.
This implies in particular that the h-vector of A is an SI-sequence ([15]). In this range of s
one knows that any codimension one Gorenstein quotient is given by (1) ([4]). Theorem 24 is
a consequence of a thoroughly studied correspondence (Proposition 23). If the codimension
of B is c = 2, then Theorem 1B, the application π and the mentioned correspondence are well
understood by Iarrobino-Kanev's results on �annihilating schemes�, in which they construct
the algebra B from a given A ([21], Ch. 5). Their approach applies also to c ≥ 3 and
leads e.g. to reducible GorH

c+1(R) for c ≥ 4 ([21], Ch. 6) and to a dimension formula of
GorH

c+1(R) provided the ��rst half� of H coincides with the Hilbert function of a complete
intersection ([21], Thm. 4.17). The application π is surjective for c = 2, while Boij points out
that such a surjectivity is not always true in higher codimensions ([3]). Also, results on the
codimension of the Betti-strata can be related to the codimension statement in Theorem 1A
(see [21], Sect. 5.3.5 and Remark 25(b)). Note that it is known that not every codimension
3 quotient is obtained by (1) ([36], [10]), i.e. that maximal families of quotients given by (1)
may correspond to proper strata. This �ts nicely with Theorem 1A in which the number

−sext1
B(IB/I

2
B, KB)) essentially measures the codimension of such strata.

In order to prove our results we study in full generality deformations of a quotient A of R
which themselves are quotients of some deformation of B. First we recall and further develop
some partially known results on the unobstructedness and the �family-dimension� of such a
quotient A of R with �xed Hilbert function HA (Theorem 5). Here we neither assume B
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to be Cohen-Macaulay, nor A to be Gorenstein. In this generality the deformation theory
developed by Laudal is central ([31]). The Theorem 5 is important for the main application
of this paper because it treats simultaneously the two cases of interest: when the general
member of an irreducible family R → A factors via some deformation of B → A (i.e. A is
HB-generic), and when it does not.

To illustrate some of our results we consider the following example. Here the Hilbert
function, HB(v) := dimk Bv, of B is written as a vector (HB(0), HB(1), HB(2), ...). If A is
Artinian, we call (HA(0), HA(1), ..., HA(s)) the h-vector of A, where s, the socle degree of A,
is by de�nition the smallest number such that HA(v) = 0 for v > s.

Example 2. Let B = R/IB be a one dimensional almost complete intersection obtained by
linking a complete intersection (c.i.) B′ of three hypersurfaces of degree 2,2,2 to B via a c.i.
D of three hypersurfaces of degree 3,3,3. A standard mapping cone construction yields

0 → R(−7)3 → R(−6)3 ⊕R(−5)3 → R(−3)4 → IB → 0.

Hence the Castelnuovo-Mumford regularity reg(IB) = 5 and it is easy to see that the Hilbert
functions of B and B′ are (1, 4, 10, 16, 19, 19, 19, ...) and (1, 4, 7, 8, 8, 8, ...) respectively. Now
B is obviously licci and Theorem 1 applies to any quotient A given by (1). Using (1) and
duality one shows HA(v) = HB(v) + HB(s − v) − 19. It follows that s is the socle degree
of A and that the h-vector of A is the (s + 1)-tuple (1, 4, 7, 7, 4, 1), (1, 4, 10, 13, 10, 4, 1),
(1, 4, 10, 16, 16, 10, 4, 1), (1, 4, 10, 16, 19, 16, 10, 4, 1) and (1, 4, 10, 16, 19..., 19, 16, 10, 4, 1) for
s = 5, 6, 7, 8, and ≥ 9 respectively. It is known ([27], Proposition 1.7 or Proposition 33 of
this paper) how to compute dim(NB)0, the dimension of the tangent space of GradAlgHB(R)
at (B), from dim(NB′)0. Indeed

dim(NB)0 = dim(NB′)0 + 3HB(3)− 3HB′(3).

Since NB′ ' B′(2)⊕3 we get dim(NB)0 = 45. Moreover, due to Remark 22, we have δ(B)−s =
0 for s ≥ 2 reg(IB) = 10 and dim(K∗

B)s = 19 for s ≥ 2 reg(IB) − 3 = 7. Hence, for
s ≥ 10 we get that A is unobstructed and HB-generic and that dim(A) GradAlgHA(R) =
dim(A) PGor(HA) = 63. Note that the conclusions so far only use Theorem 1B because we
may replace the assumption s >> 0 of Theorem 1B by s ≥ 2 reg(IB).

However, to deal with s < 10 we need Theorem 1A and that B is licci (or that the explicitly
mentioned Ext-groups of Proposition 13A vanish). We also have to compute the numbers
dim(K∗

B)s and δ(B)−s. To do so, we have a nice connection between these invariants using
liaison. Indeed by Proposition 33

dim(K∗
B)v = dimBv−5 + 3 dim(IB/D)v−2 − δ(B′)v−10

and symmetrically, δ(B)v−10 = dimB′
v−5 + 3 dim(IB′/D)v−2 − dim(K∗

B′)v for any v. Since
B′ is a c.i., we easily compute δ(B′)v and (K∗

B′)v. Indeed KB′ ' B′(2) and δ(B′)v =

v homB′(IB′/I2
B′ , KB′) = dim(KB′)⊕3

v+2. We get that dim(K∗
B)v = HB(v − 5) + 3HB′(v −

5) − 3HB′(v − 6), i.e. dim(K∗
B)s = 4, 13, 19, 19, ... for s = 5, 6, 7, 8... respectively. Cor-

respondingly, δ(B)−s = 20, 2,−4,−1, 0, 0... for s = 5, 6, 7, 8, 9, 10, ... respectively. Hence
dim(A) PGor(HA) =

dim(A) GradAlgHA(R) = 28, 55, 67, 64, 63, 63, ... for s = 5, 6, 7, 8, 9, 10, ... respectively.
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If s ≥ 7 we see from the resolution of IB that −s homB(IB/I
2
B, KB) = 0, and hence that

−s ext1
B(IB/I

2
B, KB) = −δ(B)−s = 4, 1, 0 for s = 7, 8, 9 respectively. By Theorem 1A the

numbers 4,1,0 represent the codimensions of the strata of quotients R→ A′, HA′ = HA, given
by (1). It follows that these strata form a 63 dimensional irreducible family at (A) for all s ≥
7, while the dimension of the corresponding irreducible component is 63+−sext

1
B(IB/I

2
B, KB).

That the conclusion of Theorem 1A holds for s = 7, 8, shows the existence of a quotient A
with Hilbert function HA which is not given by (1) for some B with Hilbert function HB! For
a complete such analysis on any codimension 3 almost c.i. B, see Example 40.

In this work the author was inspired by joint work with Chris Peterson where we con-
structed Gorenstein quotients of R in various ways. We showed for instance that if M is
a maximal Cohen-Macaulay B-module of rank r and ∧rM̃ ' K̃B(s) as sheaves (in a large

enough open set U of Proj(B)), then any regular section of M̃∗(s) de�nes a Gorenstein quo-

tient R � A of codimension r + c provided H0
∗(U,∧iM̃) for 2 ≤ i ≤ r/2 are maximally

Cohen-Macaulay (cf. [30] for details). The idea of this paper is to look at the construction
and to use deformation theory to vary every object and morphism in the construction as
much as possible, in order to see how large the corresponding stratum in GradAlgH(R) will
be. This paper looks at the r = 1 case because so far it is only when r = 1 that the author
is also able to show his results for Artinian Gorenstein rings. In a forthcoming paper the
author generalizes the results of this paper considerably by considering deformations of regu-
lar sections of a maximal Cohen-Macaulay module M of any rank, but, unfortunately, there
we must partially restrict to positively dimensional Gorenstein algebras. We thank Olav A.
Laudal, Roy Skjelnes and Johannes Kleppe for clarifying discussions. The author heartily
thanks the referee for many valuable comments and questions.

For the convenience of the reader we include a section of preliminaries where we give some
space to the theory of deformations. Indeed it is not always easy to �nd a nice reference for
the results we use because treatments in the literature are often either too general and concern
general cohomology groups of algebras, or too special, assuming certain groups are zero or
very manageable.

1.1 Preliminaries

Let B be an n-dimensional graded quotient of a polynomial k-algebra R (k is algebraically
closed) in n + c variables (of degree 1), and let M and N be �nitely generated graded B-
modules. Let depthJ M denote the length of a maximal M -sequence in a homogeneous ideal
J and let depthM = depthmM where m is the irrelevant maximal ideal. Let Hi

J(−) be the
right derived functor of the functor, ΓJ(−), of sections with support in Spec(B/J). Recall
that depthJ M = inf{depthM℘ | ℘ ⊇ J, ℘ graded} and that depthJ M ≥ r i� Hi

J(M) = 0
for i < r, cf. [12] or [16].

If Y = Proj(B) and Z is closed in Y and U = Y −Z, we let H0
∗(U, M̃) = ⊕v H0(U, M̃(v)).

Then we have an exact sequence

0 → H0
I(Z)(M) →M → H0

∗(U, M̃) → H1
I(Z)(M) → 0 (2)

and isomorphisms Hi
I(Z)(M) ' Hi−1

∗ (U, M̃) for i ≥ 2. In the case depthI(Z)N ≥ 2 the graded

Ext1
B(M,N) injects into the corresponding global Ext1

OU
-group of sheaves. Indeed we have
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in this case an exact sequence in degree zero ([12], exp. VI)

0Ext1B(M,N) ↪→ Ext1OU
(M̃ |U , Ñ |U ) → 0HomB(M,H2

I(Z)(N)) → 0Ext2B(M,N) → Ext2OU
(M̃ |U , Ñ |U )

(3)

where the form of the middle term comes from a spectral sequence also treated in [12].
A Cohen-Macaulay (resp. maximal Cohen-Macaulay) B-module satis�es depthM =

dimM (resp. depthM = dimB) by de�nition, or equivalently, Hi
m(M) = 0 for i < dimM

(resp. i < dimB). If B is Cohen-Macaulay and KB = Extc
R(B,R(−n− c)) is the canonical

module of B, we know by Gorenstein duality that v-graded piece of Hi
m(M) satis�es

vH
i
m(M) ' −vExtn−i

B (M,KB)∨ .

Recall that two graded quotients, R/J and R/J ′, are said to be linked by a complete
intersection if there exists a homogeneous complete intersection ideal L such that J = L : J ′

and J ′ = L : J (with L ⊆ J ∩ J ′). The relationship of being linked generates the equivalence
relation, �linkage�. B = R/IB is said to be licci (and hence Cohen-Macaulay) if it is in the
linkage class of a complete intersection (cf. [34] for a survey). We de�ne licci for a quotient
of a regular local ring correspondingly. Moreover Proj(B) is said to be locally licci if each
of its local rings are licci.

Even though we in this paper try to avoid the algebraic (co)homology groups H2(R,B,B)
and H2(R,B,B) and use instead the corresponding Tor- or Ext-groups, we will occasionally
need them. We recall that the former group is given by an exact sequence

0 → H2(R,B,B) → H1 → G1 ⊗R B → IB/I
2
B → 0. (4)

in which G1 is R-free, G1 � IB is surjective and minimal, and H1 = H1(IB) is the degree-one
Koszul homology of IB [38]. An ideal IB of R is called syzygetic if H2(R,R/IB, R/IB) = 0.
If IB is syzygetic, then (IB)℘ is syzygetic for any prime ideal ℘ of R. IB is called generically
syzygetic if (IB)℘ is syzygetic for any graded prime ℘ of Ass(B). We de�ne genericity of other
properties similarly. Using (4) one shows that if R→ B is generically a complete intersection
and B is licci, then H2(R,B,B) = 0 because H1 is a maximal Cohen-Macaulay module in
the licci case [20]. Thus, generically complete intersection licci ideals are syzygetic. For the
graded group H2(R,B,B) we remark that there is an exact sequence

0 → 0Ext1
B(IB/I

2
B, N) → 0H

2(R,B,N) → 0HomB(H2(R,B,B), N) → (5)

This comes from the spectral sequence Extp
B(Hq(R,B,B), N), which converges to Hp+q(R,B,N),

and IB/I
2
B ' H1(R,B,B), cf. [1], Prop. 16.1 or [31].

A Cohen-Macaulay quotient B = R/IB of codimension c = dimR − dimB in R has a
minimal R-free resolution of the following form (cf. [7])

0 → Gc → ...→ G1 → R→ B → 0 , Gj = ⊕rj

i=1R(−nj,i) (6)

In this case the Castelnuovo-Mumford regularity of IB is given by (cf. [34], p. 8)

reg(IB) = max
j,i

{nj,i − j + 1} = max
i
{nc,i} − c+ 1 . (7)
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Let G∗i be the R-dual of Gi. Since KB = Extc
R(B,R(−n − c)), the R-dual complex of (6)

yields a minimal R-free resolution of the twisted canonical module KB(n+ c). In particular
if c = 2, it induces a complex

0 → NB → G∗1 ⊗R B → G∗2 ⊗R B → KB(n+ c) → 0 (8)

which is exact by e.g. [30], p. 795.
Let Hilbp(P) be Grothendieck's Hilbert scheme parametrizing closed subschemes Y of P =

ProjR with Hilbert polynomial p ∈ Q[t], cf. [11]. A k-point of Hilbp(P) which corresponds
to the subscheme Y is usually denoted by (Y ⊂ P) or just (Y ). A closed subscheme Y of P
is called unobstructed if Hilbp(P) is smooth at (Y ⊂ P).

Let GradAlgH := GradAlgH(R) be the stratum of Hilbp(P) given by deforming Y ⊂ P
with constant Hilbert function HY = H (i.e. its functor deforms both Y ⊂ P and its homo-
geneous coordinate ring, B, �atly), cf. [27]. GradAlgH(R) allows a natural scheme structure
whose tangent (resp. �obstruction�) space at (Y ⊂ P) is 0HomB(IB/I

2
B, B) ' 0HomR(IB, B)

(resp. 0H
2(R,B,B)), i.e. it is given by deforming B as a graded R-algebra [24]. In the case

H(v) does not vanish for large v (i.e. B is non-Artinian), we may look upon GradAlgH(R) as
parametrizing graded R-quotients, R → B, satisfying depthmB ≥ 1 and with Hilbert func-
tion HB = H. If B is Artinian, GradAlgH(R) still represents a functor parametrizing graded
R-quotients with Hilbert function HB = H (see Proposition 9), and its open subscheme of
Gorenstein quotients coincides, at least topologically and in�nitesimally, with PGor(H) (the
corresponding scheme of forms with �catalecticant structure�, see Theorem 11 below and the
material before it). B is called unobstructed as a graded R-algebra i� GradAlgHB(R) is
smooth at (R → B). This de�nition of unobstructedness coincides with the one given in
Remark 3 below by [31] or [37], p. 151. By [24], Remark 3.7,

GradAlgH(R) ' Hilbp(P) at (Y ⊂ P) (9)

provided 0HomR(IB,H
1
m(B)) = 0. This happens for quotients B of depthmB ≥ 2.

Similarly we let GradAlg(HB, HA) be the representing object of the functor deforming
�ags (surjections) B → A of graded quotients of R of positive depth (for non-Artinian
quotients) and with Hilbert functions HB and HA of B and A respectively. The tangent
space 0A

1
B→A of GradAlg(HB, HA) at (B → A) and the tangent maps Tp and Tq of the second

projection p : GradAlg(HB, HA) → GradAlgHA(R) (essentially given by p((B′ → A′)) = (A′))
and the �rst projection q : GradAlg(HB, HA) → GradAlgHB(R) are given by the cartesian
square in the following diagram of exact sequences

0HomR(IB, IA/B)
↓

0A
1
B→A

Tq→ 0HomR(IB, B)
↓ � ↓

0 → 0HomR(IA/B, A) → 0HomR(IA, A) → 0HomR(IB, A)

(10)

Here B → A ' R/IA is a surjection of graded R-algebras with kernel IA/B. Since the
lower sequence in the diagram above may be continued by 0H

2(B,A,A) to make a long
exact sequence of algebra cohomology groups, and since 0H

2(B,A,A) injects in general into
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0Ext1
B(IA/B, A) ([14], exp. VI), it follows that 0HomR(IA, A) → 0HomR(IB, A) is surjective

provided 0Ext1
B(IA/B, A) = 0. One may also prove this surjectivity in a more elementary

manner by dualizing the exact sequence 0 → IB ⊗R A ' IB/IAIB → IA ⊗R B → IA/B → 0.

Remark 3. Let R → B be a graded quotient. Let (T,mT ) → (S,mS) be a small Artinian
surjection (i.e. of local Artinian k-algebras with residue �elds k whose kernel a satis�es
a·mT = 0). A graded deformation BS of B to S is a graded S-�at quotient of R⊗kS satisfying
BS ⊗S k ' B. A graded deformation BT of BS to T is T -�at and satis�es BT ⊗T S ' BS.

A �ag (i.e. a surjection) of graded quotients of R, B → A, is said to be unobstructed
if for every small Artinian surjection T � S and for every graded deformation BS → AS

of B → A to S, there exists a graded deformation BT → AT (of T-�at quotients) reducing
to BS → AS via (−) ⊗T S. Similarly a quotient B of R is unobstructed if every graded
deformation BS deforms further to T

The obstruction, o0(BS), to deforming BS to T sits in 0H
2(R,B,B)⊗ka and 0H

1(R,B,B)⊗k

a corresponds to the set of graded deformations (hence 0HomR(IB, B) ' 0H
1(R,B,B) is

the tangent space of GradAlgHB(R)). More precisely if we �x a graded deformation BT of
BS to T , then BT de�nes a bijection from 0H

1(R,B,B) ⊗k a onto the set of graded defor-
mations of BS to T , allowing us to interpret BT + λ as another graded deformation of BS

to T for every non-trivial λ ∈ 0H
1(R,B,B) ⊗k a, cf. [31], Thm. 2.2.5 or [24], Thm. 1.5.

Similarly the obstruction to deforming BS → AS to a given graded deformation BT of BS

sits in 0H
2(B,A,A) ⊗k a and 0H

1(B,A,A) ⊗k a ' 0HomB(IA/B, A) ⊗k a corresponds to
the set of such deformations. Note that, by de�nition, the vanishing of the obstruction is
equivalent to the existence of the corresponding desired deformation. Hence the vanishing of
the obstruction groups (�spaces�) leads to the unobstructedness of the corresponding objects.

Finally let φS : BS → AS be a graded deformation of φ : B → A to S, and let BT and AT

be given graded deformations of BS and AS respectively to T . By [31], Thm. 2.3.3 or [24],
Thm. 1.6 there is an obstruction o0(φS;BT , AT ) ∈ 0H

1(R,B,A) ⊗k a which vanishes if and
only if there exists a graded morphism φT : BT → AT such that φT ⊗T idS = φS. Looking
closer to Laudal's proof of [31], Thm. 2.3.3, one may see

o0(φS;B′
T , AT )− o0(φS;BT , AT ) = (φ∗ ⊗ ida)(λ)

where BT + λ = B′
T and φ∗ is the morphism 0H

1(R,B,B) → 0H
1(R,B,A) induced by φ.

One may consider non-graded deformations of e.g. a quotient B of R in which case the
whole algebra cohomology group HomR(IB, B) ' H1(R,B,B) (resp. H2(R,B,B)) serves as
tangent (resp. �obstruction�) space of the deformations of B as an R-algebra. For graded
deformations it is the degree zero piece of the cohomology groups which counts. For a
generically complete intersection, R � B, (or more generally, for a quotient B which satis�es

0HomB(H2(R,B,B), B) = 0) its obstructions sit in 0Ext1
B(IB/I

2
B, B)⊗ a by (5).

The following Proposition is a main result of the author's unpublished thesis. It (as well
as the contents of (10)) is just an application, with a few new ideas, of the general deep
results of Laudal ([31] and [32], Sect. 2) on deformations of categories as brie�y explained in
[25], Sect. 2 and its appendix (see also [26], Sect. 1). Since the proofs of [25] or [26] are not
in the generality we need in this paper, we include a proof.
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Proposition 4. Let B be a graded quotient of R and let φ : B → A be a graded surjection,
inducing morphisms 0HomR(IB, B) → 0HomR(IB, A) and 0H

2(R,B,B) → 0H
2(R,B,A).

(i) If 0Ext1
B(IA/B, A) = 0 (or if 0H

2(B,A,A) = 0), then the �rst projection q :
GradAlg(HB, HA) → GradAlgHB(R) is smooth with �ber dimension 0homB(IA/B, A) at
(B → A).

(ii) If 0HomR(IB, B) → 0HomR(IB, A) is surjective and 0H
2(R,B,B) → 0H

2(R,B,A)
is injective, then the second projection p : GradAlg(HB, HA) → GradAlgHA(R) is smooth
with �ber dimension 0homR(IB, IA/B) at (B → A).

(iii) If 0HomR(IB, B) → 0HomR(IB, A) is surjective and B is unobstructed as a graded
R-algebra, then p is again smooth with �ber dimension 0homR(IB, IA/B) at (B → A).

(iv) If both 0HomR(IB, B) → 0HomR(IB, A) and the connecting homomorphism

0HomR(IB, A) → 0H
2(B,A,A) (cf. (10)) are surjective and if B is unobstructed as a graded

R-algebra, then A is unobstructed as a graded R-algebra.

Proof. Using the de�nition of smoothness of a morphism (e.g. [24], p.212) and the results
of Remark 3, it is straightforward to get Proposition 4(i) from 0H

2(B,A,A) = 0 and the
injection 0H

2(B,A,A) ↪→ 0Ext1
B(IA/B, A).

To see (ii) and (iii) let φS : BS → AS be any graded deformation of φ to S, and let
AT be a graded deformations of AS to T . By the de�nition of smoothness, it su�ces to
prove the existence of a graded deformation BT of BS to T such that o0(φS;BT , AT ) = 0. In
(iii) the existence of some deformation B′

T of BS follows by assumption. In (ii) we utilize
that the two morphisms 0H

2(R,B,B) ⊗k a → 0H
2(R,B,A) ⊗k a and 0H

2(R,A,A) ⊗k a →
0H

2(R,B,A)⊗ka induced by φmap the obstructions o0(BS) and o0(AS) onto the same element
in 0H

2(R,B,A)⊗k a by [31], proof of Thm. 4.1.14. Since o0(AS) = 0 and the �rst morphism
is injective by assumption, we get o0(BS) = 0 and hence the existence of some deformation
B′

T in this case as well. Now since o0(φS;B′
T , AT ) ∈ 0H

1(R,B,A) ⊗k a ' HomR(IB, A) ⊗k a

and since φ∗ is surjective, there is an element such that (φ∗ ⊗ ida)(λ) = o0(φS;B′
T , AT ). We

get the smoothness of p by the displayed formula of Remark 3. Since smooth morphisms
have smooth �bers, the �ber dimension is as claimed by [24], Thm. 1.6.

Finally (iv) follows from (iii), Remark 3 and the fact that 0H
2(B,A,A)⊗ka → 0H

2(R,A,A)⊗k

a maps obstructions to obstructions (by [31], Cor. 4.1.15). We leave the details as an exercise
since we don't fully need (iv) in this paper.

Let φ : B → A be a graded surjection. Using Proposition 4, we get the following Theorem
which, at least in the geometric case and with various assumptions on Proj(B), is not new
([25], Sect.2, [26], Sect.1, [29], Ch.9, e.g. Thm. 9.4 and Prop. 9.14). Note that part B
of the Theorem has as a consequence that the generic member of an irreducible family of
quotients R � A comes from a member of a family of quotients R � B � A. Since it is in
general not true that a general member factors via a deformation of B even though a special
member does, in part A of the Theorem below we determine the codimension of the stratum
of quotients which factors. To be precise, let U ⊂ GradAlgHA(R) be a su�ciently small open
subset containing (A). The k-points of the subset p(p−1(U)) of U correspond to quotients
R→ A′ with Hilbert function HA for which there exists some factorization B′ → A′ such that
B′ has Hilbert function HB. We will call p(p−1(U)) a stratum of HB-factorizations around
(A), and dimU − dim p(p−1(U)) the codimension of the HB-stratum of A. At least if U is
smooth, it is the ordinary codimension of p(p−1(U)) in U . A is called HB-generic if there
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is an open subset UA of GradAlgHA(R) such that (A) ∈ UA ⊂ p(p−1(U)). The codimension
of the HB-stratum of A at (B → A) is de�ned to be dimU − dim p(U ′) where U ′ ⊂ p−1(U)
is the intersection of the irreducible components of p−1(U) which contains (B → A). Using
small letters for the k-dimension of 0Hom(−,−) and 0Ext1

B(−,−) we have

Theorem 5. Let R be a graded polynomial k-algebra and let B ' R/IB � A ' B/IA/B be
a graded morphism of quotients of R such that 0Ext1

B(IA/B, A) = 0.
A) If 0Ext1

B(IB/I
2
B, A) = 0 and (IB)℘ is syzygetic for any graded prime ℘ of Ass(A),

then A is unobstructed as a graded R-algebra. Moreover, if depthmA ≥ min(1, dimA), then
dim(A) GradAlgHA(R) =

0homR(IB, B)+ 0homB(IA/B, A)− 0homR(IB, IA/B)+ 0ext1
B(IB/I

2
B, IA/B)− 0ext1

B(IB/I
2
B, B).

Furthermore let B be unobstructed as a graded R-algebra and let k be of characteristic zero.
Then the codimension of the HB-stratum of A at (B → A) is

0ext1
B(IB/I

2
B, IA/B)− 0ext1

B(IB/I
2
B, B).

B) If 0Ext1
B(IB/I

2
B, IA/B) = 0 and (IB)℘ is syzygetic for any graded prime ℘ of Ass(IA/B),

then A is HB-generic. Moreover A is unobstructed as a graded R-algebra if and only if B is
unobstructed as a graded R-algebra. Indeed if depthmA ≥ min(1, dimA) and depthmB ≥
min(1, dimB), then

0homR(IA, A)− dim(A) GradAlgHA(R) = 0homR(IB, B)− dim(B) GradAlgHB(R), and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + 0homB(IA/B, A)− 0homR(IB, IA/B) .

Proof. A) By the de�nition of a syzygetic ideal we have H2(R,B,B)℘ = 0 for any ℘ of
Ass(A). It follows that 0HomB(H2(R,B,B), A) = 0 and hence that 0H

2(R,B,A) = 0 by (5).
Since we have in general an injection 0H

2(B,A,A) ↪→ 0Ext1
B(IA/B, A) ([14], exp. VI), we get

0H
2(B,A,A) = 0 by the general assumption of Theorem 5. It follows that 0H

2(R,A,A) = 0
by the long exact sequence of algebra cohomology (e.g. [31], Thm. 3.3.4)

→ 0H
2(B,A,A) → 0H

2(R,A,A) → 0H
2(R,B,A) → (11)

This proves the unobstructedness of A and dim(A) GradAlgHA(R) = 0homR(IA, A). Now,
looking to (10), we see that the vanishing of 0Ext1

B(IA/B, A) translates to a certain surjectivity
in the cartesian square of (10). Since the vertical sequence of Hom-maps in (10) may be
continued by

→ 0Ext1
B(IB/I

2
B, IA/B) → 0Ext1

B(IB/I
2
B, B) → 0Ext1

B(IB/I
2
B, A) → (12)

it is straightforward to get the dimension formula from the vanishing assumption of A).
To see that 0 ext1

B(IB/I
2
B, IA/B)− 0 ext1

B(IB/I
2
B, B) measures the codimension, we observe

that B � A is unobstructed and hence that dim(B→A) GradAlg(HA, HB) = dim 0A
1
B→A by

Proposition 4(i). It follows that p : GradAlg(HB, HA) → GradAlgHA(R) is a morphism
between smooth schemes (i.e. smooth at (B → A) and (A) respectively) and with �ber
dimension 0homB(IB/I

2
B, IA/B), from which we may conclude by using the Theorem of generic
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smoothness to p at (B → A), cf. [29], �rst part of the proof of Prop. 9.14 for more details
from a similar proof.

B) Since H2(R,B,B)℘ = 0 for any ℘ ∈ Ass(IA/B) by assumption, we get 0H
2(R,B, IA/B) =

0 from (5). By the long exact sequence of algebra cohomology associated to 0 → IA/B →
B → A → 0, we get precisely that the assumptions of Proposition 4(ii) are satis�ed. By
Proposition 4(i) and (ii), both projection morphisms p and q are smooth, and we deduce the
HB-genericity of A and the equivalence of the unobstructedness of A and B. Looking to (10)
and the statement about the �ber dimensions of p and q in Proposition 4(i) and (ii), we get
the dimension formulas of Theorem 5A as well.

Remark 6. a) Note that the proof of Theorem 5A leads to 0H
2(R,A,A) = 0 (and in fact to

vH
2(R,A,A) = 0 by twisting the two Ext1

B vanishing assumptions by v).
b) It is possible to weaken the assumption 0Ext1

B(IA/B, A) = 0 in Theorem 5 to � 0H
2(B,A,A) =

0� and still conclude as in Theorem 5A and 5B. One may also weaken �(IB)℘ is syzygetic
for any ℘ of Ass(A)� in part A to �0HomB(H2(R,B,B), A) = 0� and still conclude as in
Theorem 5A. Similarly we may in part B replace �(IB)℘ is syzygetic for any ℘ of Ass(IA/B)�
by �0HomB(H2(R,B,B), IA/B) = 0� or the entire assumption “0Ext1

B(IB/I
2
B, IA/B) = 0

and (IB)℘ is syzygetic for any graded prime ℘ of Ass(IA/B)� by “0Ext1
B(IB/I

2
B, IA/B) →

0Ext1
B(IB/I

2
B, B) is injective and B is unobstructed as a graded R-algebra� and still get the

conclusion of Theorem 5B. There is no real change in the proofs, except when B is un-
obstructed in which case we need to use Proposition 4(iii) in the proof instead of Proposi-
tion 4(ii). These variations turn out to have an application notably to the case A is Artinian.

c) Continuing (12), we see that the condition 0Ext1
B(IB/I

2
B, A) = 0 of part A is satis�ed

provided 0Ext1
B(IB/I

2
B, B) = 0 and 0Ext2

B(IB/I
2
B, IA/B) ↪→ 0Ext2

B(IB/I
2
B, B) is injective.

In applying Theorem 5A the codimension of the HB-stratum of A at (B → A) is often
just the codimension of the HB-stratum of A, due to

Lemma 7. Let B ' R/IB � A ' B/IA/B be a graded morphism of quotients of R and let
m(B) be the largest degree of the minimal generators of IB.

a) If (IA/B)v = 0 for all v ≤ m(B), then 0HomR(IB, IA/B) = 0 and p−1((A)) consists of
a single k-point. (i.e. if B′ → A is a quotient such that HB′ = HB, then B

′ = B.)
b) If 0Ext1

B(IA/B, A) = 0 (or if 0H
2(B,A,A) = 0) and (IA/B)v = 0 for all v ≤ m(B),

then there is an open subset U of GradAlg(HB, HA) containing (B → A) such that the
restriction of the �rst projection q : GradAlg(HB, HA) → GradAlgHB(R) to U is smooth,
and the restriction of the second projection p to U is unrami�ed and injective. Moreover
U = p−1(p(U)). In particular if B → A satis�es the assumptions of Theorem 5A (except for
char(k) = 0), then the codimension of the HB-stratum of A is

0ext1
B(IB/I

2
B, IA/B)− 0ext1

B(IB/I
2
B, B).

Proof. a) Clearly 0HomR(IB, IA/B) = 0 and (IB)v = (IA)v for all v ≤ m(B) by assumption.
Since (IB′)v ⊂ (IA)v, we get (IB)v = (IB′)v for v ≤ m(B) because HB = HB′ . Hence IB′

contains all minimal generators of IB, i.e. IB ⊂ IB′ , and we get equality by using HB = HB′ .
b) By Proposition 4(i) there is an open subset U of GradAlg(HB, HA) such that the

restriction of q to U is smooth. By possibly shrinking U , we get m(B′) ≤ m(B) for any
k-point (B′) ∈ q(U) by semicontinuity. Hence for any (B′ → A′) ∈ U we get (IA′/B′)v = 0
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for all v ≤ m(B′) because HB = HB′ and HA = HA′ , and we see by (i) that p is unrami�ed
on U and injective on the k-points of p−1(U). Now we do not need to use the Theorem of
generic smoothness because the codimension of the stratum must be dim(A) GradAlgHA −
dim(B→A) GradAlg(HA, HB), and we conclude by (10) and (12) and the unobstructedness of
A and B → A.

We will in the next section need to combine (9) with the following result which in fact is
a corollary ([29], Cor. 9.10) of a geometric variation ([29], Thm. 9.4) of Theorem 5B. Below
s(C/F ) is the minimal degree of the generators of the homogeneous ideal IC/F .

Proposition 8. Let C0 ⊂ Pc+1 be an arithmetically Cohen-Macaulay curve of degree d0 and
arithmetic genus g0, sitting on a smooth rational surface F ⊂ Pc+1 of degree f. Let K be the
canonical divisor of F . If t is an integer such that t ≥ 5− s(C0/F ) and t > (C0 ·K)/d0, then
any member C = Proj(B) of the linear system |C0 + tH| is unobstructed and

dim(C) Hilbp(Pc+1) = h0(NF ) + g0 − C0 ·K + t(d0 + c+ 1− f/2) + t2f/2− 1

Moreover, if F is nondegenerate, then h0(NF ) = c2 + 4c+ 13− 2K2.

We �nish this section by looking more closely at deformations of an Artinian algebra
A. Firstly we recall the representability of the functor (the sheaf) GRADALGH(−), locally
given by letting GRADALGH(Spec(S)) (S a noetherian k-algebra) be the set of graded S-�at
quotients RS → AS such that HAs = H and depthmAs ≥ min(1, dimAs) for any s ∈ Spec(S).
Here RS = R⊗k S and As is the ��ber� of Spec(AS) → Spec(S) at s ∈ Spec(S). To simplify
and clarify [27] (being more careful with the topologies involved), we sketch proofs. Note
that the representability below ([27], Thm. 1.1) has later been generalized by Haiman and
Sturmfels ([19]).

Proposition 9. The functor GRADALGH(−) is representable. Its representing object,
GradAlgH(R), is a k-scheme of �nite type.

Proof. Here we sketch a proof which is slightly di�erent from that in [27] in the Artinian case
(i.e. when H(v) = 0 for v >> 0). Indeed the �attening strati�cation described in [37] and
Grothendieck's representability Theorems of the Hilbert functor are the results we need to
conclude. In the non-Artinian case, H(v) is a polynomial p(v) for v >> 0 and GradAlgH(R)
is the stratum of Hilbp(Pn+c−1) of constant postulation (cf. [27], Thm. 1.1 for details). If
H(v) = 0 for v >> 0 and t =

∑
v H(v), then there exists a scheme Hilb := Hilbt(An+c)

of �nite type which parametrizes quotients R → A of length t. The restriction (pullback)
RS → AS of the universal quotient to Spec(S) → Hilb de�nes the subscheme GradAlgH(R)
of Hilb by requiring ker((RS)v → AS) to be �at over S, of rank dimRv − H(v) for every
0 ≤ v ≤ t at each �ber of Spec(S). Since such a subscheme GradAlgH(R) of �nite type exists
by [37], Lect. 8 or [33], VI, Prop. 1.1, we are done.

Remark 10. We may in the case H(v) = 0 for v >> 0 use �attening strati�cation to show
the existence of the scheme Z(H) of not necessarily graded Artinian quotients A of R with
Hilbert function H (by requiring gr(AS) to be S-�at, of Hilbert function H at each �ber
of Spec(S)), to get Z(H) as a locally closed subscheme (stratum) of Hilbt(An+c). Its local
deformation functor at a quotient A ' R/IA (with

√
IA = m) of R, de�ned on the category of
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local Artinian k-algebras with residue �eld k, consists of quotients AS of RS = S[X1...., Xn+c]
(or equivalently, of S[[X1...., Xn+c]]) such that AS and gr(AS) are deformations of A and
gr(A) respectively. If R → A is graded and satis�es vH

2(R,A,A) = 0 for v ≥ 0, then
[27], Thm. 1.10 and Rem. 1.11 shows that Z(H) is smooth at (R → A) and dim(A) Z(H) =∑

v≥0 vhomR(IA, A).

Inside GradAlgH(R) there is an open set (and hence a scheme GorH
c (R) with induced

scheme structure) consisting of graded Gorenstein quotients R → A with Hilbert function
H. GorH

c (R) is empty unless the di�erence ∆dim AH, i.e. the h-vector of A, is a symmetric
Gorenstein sequence. In the Artinian case there is another known scheme parametrizing
graded Gorenstein quotients with suitable Hilbert function H, namely the determinantal loci
PGor(H) parametrizing forms F of degree s in PN , N =

(
s+n+c−1
n+c−1

)
− 1, given by requiring

the �catalecticant matrices� of F to have ranks given by the Hilbert function (see Iarrobino-
Kanev's book [21], Sect. 1.1). We denote the restriction of the generic s-form of PN to
PGor(H) by FPGor(H) ([21], Def. 1.3). Then the underlying sets of closed points of GorH

c (R)
and PGor(H) are the same by apolarity (the Macaulay correspondence), and one may see
from the proof of our next result that they are in fact isomorphic as topological spaces.
Moreover since Iarrobino and Kanev have proved that the tangent space of PGor(H) at A is
isomorphic to 0HomA(IA/I

2
A, A) ([21], Thm. 3.9) and it is well known that the tangent space

of GradAlgH(R) is the same group [24], we get

Theorem 11. Let R→ A be a graded Artinian Gorenstein quotient with Hilbert function H.
Then dim(A) GradAlgH(R) = dim(A) PGor(H). Hence PGor(H) is smooth at (R→ A) if and
only if GradAlgH(R) is smooth at (R → A). In particular PGor(H) is smooth at (R → A)
provided 0H

2(R,A,A) = 0, i.e. provided the natural surjection (S2IA)s → (IA
2)s from the

second symmetric power to the second power of IA is an isomorphism in the socle degree s of
A.

Proof. By duality, 0H
2(R,A,A) = 0 is equivalent to sH2(R,A,A) = 0 which again is equiva-

lent to (S2IA)s ' (IA
2)s by (28) below. Hence we only need to prove dim(A) GradAlgH(R) =

dim(A) PGor(H), because we know their tangent spaces are isomorphic. Let V ⊂ PGor(H)
be a closed irreducible subset (e.g. of the form V = Spec(T )), and let V have the reduced
scheme structure. By the de�nition of PGor(H), the restriction FV of the �universal� s-form
FPGor(H) to V de�nes via apolarity a family of graded Artinian Gorenstein quotients over V
(e.g. the family AT ' RT ◦ FV over V = Spec(T ) where RT is interpreted as the T -algebra
of contractions, �partial derivations without coe�cients�) with constant Hilbert function H.
Since V is integral, it follows that the family (e.g. the morphism Spec(AT ) → Spec(T )) is
�at ([37], Lect. 6). Hence we have a morphism π : V → GradAlgH(R) by the universal
property of GradAlgH(R). π(V ) is irreducible and closed in GorH

c (R) (it is closed because
an �inverse� (GorH

c (R))red → PGor(H) on closed points exists by [21], Ch. 8). So chains of
closed irreducible subsets in PGor(H) and GorH

c (R) correspond, and we are done.

Problem 12. It would be interesting to prove that PGor(H) and GorH
c (R) are isomorphic

as schemes, cf. [27], Rem. 1.9. The arguments in the proof above, which easily lead to an
isomorphism of PGor(H) and GorH

c (R) as topological spaces, are mainly contained in [27],
Rem. 1.9. In that Remark we also claimed that these arguments showed the existence of a
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natural morphism Π : PGor(H) → GorH
c (R). Unfortunately an index �red� is missing in

Rem. 1.9, i.e. we can from the arguments only be sure of the existence of a natural morphism
π : (PGor(H))red → GorH

c (R), and the existence of Π above remains to be proved.

2 Families of codimension one Gorenstein quotients of

Cohen-Macaulay algebras

The main purpose of this paper is to study families of graded Gorenstein quotients A obtained
by taking a regular section σ of the anticanonical system (K∗

B)s, i.e. quotients A given by

0 → KB(−s) σ∗→ B → A→ 0 (13)

for some integer s. Our main results apply to Artinian Gorenstein algebras as well as to
Gorenstein quotients of higher dimension. In what follows B is Cohen-Macaulay. In order to
make the description of A in (13) meaningful, we must suppose that B = R/IB is generically
Gorenstein (cf. [29], Lemma 5.2 and 5.4). Then we say �A is a codimension one quotient
of B, well-de�ned by a twist of the canonical module�. If A is such a quotient of B, then a
stratum of quotients given by (13) around (A) is just a maximal (�at) family consisting of
quotients (A′) of GradAlgHA(R) for which there exists a factorization B′ → A′ as in (13)
where (B′) (resp. the sections) belong to some open neighbourhood of (B) in GradAlgHB(R)

(resp. of σ in the linear system (K∗
B′)s ⊂ H0(Proj(B′), K̃B′

∗
(s))), making each A′ well-de�ned

in the sense above. Looking to the proof of Proposition 13, one may see that such a stratum
is just the image p(U) of some open U of GradAlg(HB, HA) containing (B → A) via the
second projection p, provided sExt1

B(S2(KB), KB) = 0.
The following result determines dim(A) GradAlgHA(R) in terms of invariants of B, such

as NB := HomB(IB/I
2
B, B) and K∗

B := HomB(KB, B) ' HomB(S2(KB), KB) (here S2(KB)
is the second symmetric power of KB), and leads to the main theorems of this section. Since
Proposition 13 is a variation of Theorem 5 with IA/B = KB(−s), Remark 6 (except the �rst
sentence of Remark 6(b)) will apply as a remark to Proposition 13 as well.

Proposition 13. Let B be a generically Gorenstein, graded Cohen-Macaulay quotient of a
polynomial ring R, let A be a codimension one quotient of B, de�ned by (13) for some s,
and let sExt1

B(S2(KB), KB) = 0.
A) If 0Ext1

B(IB/I
2
B, A) = 0 and (IB)℘ is syzygetic for any graded prime ℘ of Ass(A),

then A is unobstructed as a graded R-algebra, A is Gorenstein and

dim(A) GradAlgHA(R) = dim(NB)0 + dim(K∗
B)s − 1− δ(B)−s − 0ext1

B(IB/I
2
B, B)

where δ(B)−s = −shomR(IB, KB)− −sext1
B(IB/I

2
B, KB). Moreover if B is unobstructed as a

graded R-algebra and char(k) = 0, then the codimension of the HB-stratum of A at (B → A)
is

−sext1
B(IB/I

2
B, KB)− 0ext1

B(IB/I
2
B, B).

This number also equals the codimension of the stratum of quotients given by (13) at (A).
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B) If −sExt1
B(IB/I

2
B, KB) = 0 and IB is generically syzygetic,

then A is Gorenstein and HB-generic. Moreover A is unobstructed as a graded R-algebra if
and only if B is unobstructed as a graded R-algebra. Indeed

0homR(IA, A)− dim(A) GradAlgHA(R) = 0homR(IB, B)− dim(B) GradAlgHB(R), and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)s − 1− −shomR(IB, KB) .

Remark 14. (a) With the notations, 0 → ⊕iR(−nc,i) → ... → ⊕iR(−n1,i) → IB → 0, of
(6), recalling dimR = n+ c and dimB = n, we claim that

δ(B)−s = 0 provided s > 2 reg(IB)− n

By (7) it su�ces to prove −sExti
B(IB/I

2
B, KB) = 0 for i = 0 and 1 provided s > maxnc,i +

maxn2,i − n − c. Indeed dualizing (6) we get a surjection ⊕iR(nc,i) � KB(n + c), and it
follows that (KB)−v = 0 for v > maxnc,i − n − c. We conclude by applying 0HomB(−, KB)
to the right-exact sequence ⊕iB(−n2,i) → ⊕iB(−n1,i) → IB/I

2
B → 0 and the de�niton of

Exti
B(IB/I

2
B, KB).

(b) If dimB = 1, we have Exti
B(−, KB) = 0 for i ≥ 2 by Gorenstein duality. In this

case 0Ext1
B(IB/I

2
B, B) = 0 implies 0Ext1

B(IB/I
2
B, A) = 0 by Remark 6(c). Moreover looking

to Remark 6(b) and using that A ' KA(−s) and Gorenstein duality, we may weaken �IB is
syzygetic for any graded prime ℘ of Ass(A)� to �(H2(R,B,B) ⊗B A)s = 0�. Hence if we
suppose

0 Ext1
B(IB/I

2
B, B) = (H2(R,B,B)⊗B A)s = 0,

we still have the conclusion concerning the unobstructedness of A and the formula for
dim(A) GradAlgHA(R) of Proposition 13A. Furthermore if IB is generically syzygetic (this is
always true if c ≤ 3 since B is generically Gorenstein, cf. the proof of Theorem 16), then B
is unobstructed as a graded algebra and the codimension formula of Proposition 13A holds as
well (in the characteristic zero case).

(c) Slightly reformulating Proposition 13A (by replacing the vanishing of the two 0Ext1
B

groups by the corresponding vanishing of Ext1
B) one may use the proof below to show that

A is unobstructed as an R-algebra in the sense H2(R,A,A) = 0, cf. Remark 6. A further
slight reformulation (replacing Proj by Spec and skipping the twists) allows us to prove a
corresponding result for non-graded objects as well. If B is licci then the three ExtB groups,
Ext1

B(S2(KB), KB), Ext1
B(IB/I

2
B, B) and Ext2

B(IB/I
2
B, KB), vanish ([5], [20], [38] Thm. 4.2.6,

or Corollary 37 of this paper), and we get the unobstructedness of the Gorenstein quotient A by
Remark 6(c). Indeed S2(KB) is Cohen-Macaulay if B is licci. In the interesting codimension
c = 3 case, the Cohen-Macaulayness of S2(KB) and of the Koszul homology group, H1 =
H1(IB), are equivalent [38], Thm. 4.2.9. This Cohen-Macaulayness holds in particular if the
Cohen-Macaulay type of B is 2 [38], Cor. 4.2.11.

(d) If IB is generically syzygetic, then HomB(H2(R,B,B), KB) = 0. Hence applying
HomB(−, KB) to (4), we see that −sExt2

B(IB/I
2
B, KB) ↪→−s Ext1

B(H1, KB) is injective and
that

δ(B)−s = dim(G∗1 ⊗R KB)−s − −shomB(H1, KB)

allowing us to restate the dimension formula in terms of H1 and G1. If B is licci, then

−sHomB(H1, KB) ' (Hr−1)−t−s by [30], Prop. 18, where r and t are given by ∧rH̃1|U '
K̃B(t)|U .
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Proof. Note that we can show A ' KA(−s) and hence that A is Gorenstein by applying
the mapping cone construction to (13), (or see [29], Lemma 5.2 and 5.4). We claim that
Proposition 13 above follows from Theorem 5 and Remark 6 by letting IA/B = KB(−s) and
by paying some extra attention to the codimension of the strata. Indeed it is straightforward
to obtain the assumptions of Theorem 5 from the assumptions of Proposition 13, except
possibly the assumption 0Ext1

B(IA/B, A) = 0 of Theorem 5. Suppose temporarily that B is
Gorenstein in codimension ≤ 1. Then 0Ext1

B(KB(−s), B) ' 0Ext1
B(KB ⊗ KB(−s), KB) '

0Ext1
B(S2(KB)(−s), KB) = 0 by a well known spectral sequence ([18], Satz 1.2). Moreover,

since KB is a maximal Cohen-Macaulay B-module, one knows 0Exti
B(KB, KB) = 0 for i >

0 and we get 0Ext1
B(KB(−s), A) = 0 by applying 0Hom(KB(−s),−) to (13), i.e. we get

the claim. In the general case where B is generically Gorenstein we get the conclusion of
Theorem 5 by combining Lemma 15 and Remark 6(b), recallingKB(−s) ' IA/B. Furthermore
to get the dimension formulas we note that 0Hom(KB(−s), KB(−s)) is one-dimensional.
Hence by again applying 0Hom(KB(−s),−) to (13), we get the dimension formulas from the
corresponding formulas of Theorem 5.

It remains to see that the codimension may also be computed from the stratum of quo-
tients given by (13). Now looking to the de�nition of the codimension of the HB-stratum of
A at (B → A) before Theorem 5, it su�ces to show that any (B′ → A′) in a small enough
open neighbourhood of t := (B → A) in G := GradAlg(HB, HA) is given by (13). Let
(S,mS) be the local ring of G at t and let Si = S/mi

S. Since G is a scheme of �nite type
which represents a certain functor of graded �at quotients, there exists a universal quotient
whose pullback to Spec(S) is denoted by BS → AS. Its kernel IAS/BS

is a �at deformation of
the B-module IA/B ' KB(−s) to S. By the theory of deformations of the module IA/B its
tangent and obstruction spaces are given by 0Exti

B(KB(−s), KB(−s)) for i = 1 and 2 respec-
tively. Since both these Ext-groups vanish, there is a unique deformation of IA/B to BSi

, i.e.
we get isomorphisms li : IAS/BS

⊗S Si ' KBS
(−s) ⊗S Si which commute with li−1 because

KBS
:= Extc

RS
(BS, RS(−n− c)) where RS := R⊗k S, is S-�at. (cf. [23], Prop.A1). It su�ces

to show that there exists a morphism l : IAS/BS
→ KBS

(−s) which reduces to li mod mi
S

because l must then be an isomorphism which extends to an isomorphism in an open neigh-
bourhood of t in G. To show the existence of l, we claim that K∗

BS
(s) → K∗

B(s) is surjective.
By the proof of [26], Prop. 2.4, it su�ces to show that ηi : K∗

BSi
(s) → K∗

BSi−1
(s) is surjective.

If 0Ext1
B(KB(−s), B) = 0 (e.g. B is Gorenstein in codimension ≤ 1, cf. the �rst part of the

proof), this follows by applying 0Hom(KBSi
(−s),−) onto 0 → B ⊗k a → BSi

→ BSi−1
→ 0

where a := mi−1
S /mi

S. In the general case, replacing every B by A in the latter sequence
and applying 0Hom(KBSi

(−s),−) ' 0Hom(IASi
/BSi

⊗BSi
ASi

,−) to that sequence, we get

the surjectivity of ηi from 0Ext1
A(IA/B/I

2
A/B, A) = 0 and 0Ext1

B(KB(−s), KB(−s)) = 0. Note

that we have the last mentioned vanishings by (5), Lemma 15 and sExt1(S2(KB), KB) = 0,
and the claim is proved. Now using the proven claim we get a morphism KBS

(−s) → BS

whose cokernel is an S-�at deformation of A. By the universal property of G, there is a
morphism Spec(S) → Spec(S) whose pullback induces the desired map IAS/BS

→ KBS
(−s)

and the proof is complete.

Lemma 15. Let B be a graded Cohen-Macaulay quotient of R and let A ' B/IA/B be a
graded Gorenstein quotient such that A ' KA(−s) and dimB − dimA = r. If r > 0 then

0H
2(B,A,A) and −sExtr

B(S2(IA/B), KB) vanish simultaneously.
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Proof. Using (5) we see that the vanishing of 0H
2(B,A,A) is equivalent to 0Ext1

A(IA/B/I
2
A/B, A) =

0 and the injectivity of the natural map 0HomA(H2(B,A,A), A) ↪→ 0Ext2
A(IA/B/I

2
A/B, A).

Moreover since A ' KA(−s) we have by Gorenstein duality (applied to both A and B) that

0Exti
A(IA/B/I

2
A/B, A) ' sH

dim A−i
m (IA/B/I

2
A/B)∨ ' −sExti+r−1

B (I2
A/B, KB)

for i ≥ 1 because the middle term is isomorphic to sH
dim A+1−i
m (I2

A/B) by the long exact se-

quence of local cohomology applied to 0 → I2
A/B → IA/B → IA/B/I

2
A/B → 0. Correspondingly

0HomA(H2(B,A,A), A) ' −sExtr
B(H2(B,A,A), KB). Hence 0H

2(B,A,A) = 0 is equivalent
to −sExtr

B(I2
A/B, KB) = 0 and the injectivity of of the natural map −sExtr

B(H2(B,A,A), KB) ↪→
−sExtr+1

B (I2
A/B, KB). Recalling the exact sequence

0 → H2(B,A,A) → S2(IA/B) → I2
A/B → 0 (14)

(cf. [1], p.106 or [38], Sect. 2.1) and that −sExtr−1
B (H2(B,A,A), KB) = 0 since H2(B,A,A)

is supported at the codimension r quotient A of B, we get the conclusion of Lemma 15 by
the long exact sequence of −sExti

B(−, KB) applied to (14).

Theorem 16. Let B = R/IB be a graded Cohen-Macaulay quotient of a polynomial ring R,
and let A be a graded codimension one quotient of B, well-de�ned by a twist of the canonical
module KB.

A) If B is licci, then A is unobstructed as a graded R-algebra, A is Gorenstein and,

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)s − 1− δ(B)−s

where δ(B)−s = −s homB(IB/I
2
B, KB)− −s ext1

B(IB/I
2
B, KB). Moreover if char(k) = 0, then

the codimension of the HB-stratum of A at (B → A) is −s ext1
B(IB/I

2
B, KB). This number

also equals the codimension of the stratum of quotients given by (13) around (A).

B) If s >> 0 and the sheaf Ext1OProj(B)
(S̃2(KB), K̃B) = 0, then A is HB-generic and

Gorenstein, and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)s − 1.

Moreover A is unobstructed as a graded R-algebra if and only if B is unobstructed as a graded
R-algebra.

Note that if Y = Proj(B) is locally licci, then the sheaf S̃2(KB) is maximally Cohen-

Macaulay by Remark 14(c), i.e. Ext1OY
(S̃2(KB), K̃B) = 0, and we get Theorem 1. The sheaf

also vanishes if Y is (locally) Gorenstein, e.g. if dimY = 0.

Proof. A) Since B is licci and generically Gorenstein, IB is generically syzygetic by [29], Prop.
6.17 which implies H2(R,B,B)℘ = 0 provided dimB℘ = 0. This in turn is equivalent to
H2(R,B,B)℘ = 0 by Gorenstein duality and the spectral sequence relating algebra-homology
to algebra-cohomology, i.e. IB is generically syzygetic. Then IB is in fact syzygetic by (4)
because H1 is a maximal Cohen-Macaulay module in the licci case. Since all Ext1

B groups of
Proposition 13A vanish by Remark 14(c) and Remark 6(c), we conclude by Proposition 13.
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B) If Ext1OY
(S̃2(KB), K̃B) = 0, we see that sExt1

B(S2(KB), KB) vanishes for large s
because of the exact sequence

→ sHomB(S2(KB),H1
m(KB)) → sExt1

B(S2(KB), KB) → H1(Y,HomB(S̃2(KB), K̃B)(s))

(which is analogous to (3)). Since the vanishing of −sHomB(H2(R,B,B), KB) = 0 and

−sExti
B(IB/I

2
B, KB), i = 0, 1, are obviously true for s >> 0, we conclude by Proposition 13B

and Remark 6(b).

To apply Proposition 13 and Theorem 16, we need to compute dim(K∗
B)s and verify its

assumptions. In several cases it is easy to compute dim(K∗
B)s at least for large s. For instance

if B is 2-dimensional and C = Proj(B) is smooth, then K̃∗
B is just the tangent sheaf (sheaf

of derivations), θC , of C, and we can get the information we need from the vanishing of
cohomology and the Riemann-Roch theorem. In this case the most di�cult assumption to
verify is perhaps the unobstructedness of B (or 0Ext1

B(IB/I
2
B, B) = 0), for which we point

out a couple of important cases where the unobstructedness is known;

1. 0Ext1
B(IB/I

2
B, B) = 0 provided C is linked (in possibly several steps) to a generically

Gorenstein curve C ′ = Proj(B′) satisfying 0Ext1
B′(IB′/I2

B′ , B′) = 0 (cf. next section).

2. B is unobstructed if C = Proj(B) sits on a smooth rational surface in P4 and the degree
of C is ≥ 24 ( [29], Prop. 9.13; the statement follows also from Proposition 8).

By 1) we get 0Ext1
B(IB/I

2
B, B) = 0 if B is licci (e.g. if C ′ above is a complete intersection),

or if C ′ is a local complete intersection curve and H1(NC′) = 0 (because 0Ext1
B′(IB′/I2

B′ , B′) ↪→
H1(NC′) is injective by (3)). Indeed for a local complete intersection curve C = Proj(B) we

have H1(NC(v)) ' Ext1
OC

(ĨB/I2
B, B̃(v)) and by (3) an exact sequence

vExt1
B(IB/I

2
B, B) ↪→ H1(NC(v)) → vHomB(IB/I

2
B,H

2
m(B)) → vExt2

B(IB/I
2
B, B) → 0 (15)

We illustrate Theorem 16 by taking a relatively simple example, remarking that far more
complex examples can be given by the same methods, by increasing s.

Example 17. Let B be the homogeneous coordinate ring of a smooth rational arithmetically
Cohen-Macaulay curve C of degree d = 4 in P4 = Proj(R), with minimal resolution

0 → R(−4)3 → R(−3)8 → R(−2)6 → R→ B → 0, (16)

and let A be de�ned by a regular section of (K∗
B)s for s ≥ 0. Then C is the determinantal curve

given by the maximal minors of a 2 by 4 matrix with linear entries, and it is straightforward
to see that the Hilbert function HA of A is given by dimAv = 4v + 1 for 0 ≤ v ≤ s and
dimAv = 4s + 2 for v > s. Applying HomR(−, R(−5)) onto (16) we get the minimal
resolution of KB which combined with (13) and the mapping cone construction yields the
resolution

0 → R(−s−5) → R(−s−3)6⊕R(−4)3 → R(−s−2)8⊕R(−3)8 → R(−s−1)3⊕R(−2)6 → IA → 0.

Even though B is not licci, Theorem 16 applies for s >> 0. Indeed, looking to Proposition 13
and Remark 14(a), we claim that the conclusions of Theorem 16B hold for s ≥ 3 (and those
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of Theorem 16A for s ≥ 0, see Example 35 in the next section). Indeed we need only to verify

its assumptions. Since C is smooth and θC := K̃∗
B is of degree deg θC = − deg K̃B = 2 − 2g

(g = the genus of C), we get H1(θC(v)) = 0 and h0(θC(v)) = dv + 3− 3g = 4v + 3 for v ≥ 0
([37], Lect. 11). Since we have an exact sequence

0 → θC → θP|C → NC → 0

where θP|C = coker(OC → OC(1)⊕5) is the tangent sheaf of P = P4 restricted to C, we
get 0Ext1

B(IB/I
2
B, B) = 0 from H1(NC) = 0 and (15). Moreover vExt1

B(S2(KB), KB)∨ '
−vH

1
m(S2(KB)) and since H0

∗(C, S̃2(KB)) → H1
m(S2(KB)) is surjective and H0(C, S̃2(KB)(−v))∨ '

H1(θC(v)) we get

vExt1
B(S2(KB), KB) = 0 for v ≥ 0.

By Remark 14(a), we know −sExt1
B(IB/I

2
B, KB) = 0 for s > 2 and the claim is proved for

s ≥ 3. In conclusion the quotient A is an unobstructed Gorenstein algebra for s ≥ 3 and

dim(A) GradAlgHA(R) = h0(NC) + h0(θC(s))− 1 = 5d+ 1− g + ds+ 3− 3g − 1 = 4s+ 23

Remark 18. This example shows that if Proj(B) is a smooth curve of degree d and genus g,
and if we let v be such that 2−2g+ vd > 2g−2, i.e. v > (4g−4)/d, then H1(θC(v)) = 0 and
we get both vExt1

B(S2(KB), KB) = 0 and dim(K∗
B)v = h0(θC(v)) = dv+3−3g. In particular

if s > max{2 reg(IB) − 2, (4g − 4)/d} and B is unobstructed, then A is unobstructed and
HB-generic by Proposition 13B and Remark 14(a) and

dim(A) GradAlgHA(R) = dim(NB)0 + ds+ 2− 3g.

Hence we may replace �s >> 0� in Theorem 1 and Theorem 16 by �s > max{2 reg(IB) −
2, (4g − 4)/d}� in this case.

Now we consider Artinian Gorenstein quotients. In particular we will concentrate on
Artinian reductions obtained from algebras A similar to those in Example 17, through
modding out by a general linear form L (cf. Example 21 below). More generally let
B ' R/IB be an n-dimensional Cohen-Macaulay algebra, let A ' B/KB(−s), and let
RL := R/(L) → BL = B/(L) → AL = A/(L) be their quotients modulo (L). The Hilbert
functions of AL and BL are given by the �rst di�erences of the Hilbert functions of A and
B respectively, e.g. HBL

(v) = HB(v)−HB(v − 1) = ∆HB(v). Moreover an RL-free minimal
resolution of BL has the same graded Betti numbers as the R-free minimal resolution of B
([34], p.28), i.e. their numbers nj,i given in (6) coincide. Dualizing (6) we see that the min-
imal resolutions of KB(n + c) and KBL

(n + c − 1) also coincide, i.e. KB ⊗ BL ' KBL
(−1).

Looking to (13) it follows that AL is given by

0 → KBL
(−s− 1) → BL → AL → 0, (17)

(note −s − 1 instead of −s !) and AL is an Gorenstein quotient, well de�ned by a twist of
the canonical module. Hence we may apply Proposition 13 and Theorem 16. To compute
dim(K∗

BL
)s+1 and verify its assumptions, we see, thanks to the arguments of Remark 14(a),

that δ(BL)−s−1 = 0 and −s−1Ext1
BL

(IBL
/I2

BL
, KBL

) = 0 (where IBL
= ker(RL → BL)),

provided s+1 > maxnc,i +maxn2,i− (n−1)− c which is equivalent to the inequality of that
Remark, used to show δ(B)−s = 0. To check the other assumptions, we claim that
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Lemma 19. (i) If v−1Ext1
B(S2(KB), KB) = 0, then dim(K∗

BL
)v+1 = dim(K∗

B)v−dim(K∗
B)v−1.

(ii) If vExt1
B(S2(KB), KB) = v−1Ext2

B(S2(KB), KB) = 0, then

v+1Ext1
BL

(S2(KBL
), KBL

) = 0.

(iii) If B is an unobstructed graded R-algebra and the map −1Ext1
B(IB/I

2
B, B) ↪→

0Ext1
B(IB/I

2
B, B) induced by L is injective, then BL is an unobstructed graded RL-algebra and

dim(NBL
)0 = dim(NB)0 − dim(NB)−1.

(iv) If 0Ext1
B(IB/I

2
B, B) = −1Ext2

B(IB/I
2
B, B) = 0, then 0Ext1

BL
(IBL

/I2
BL
, BL) = 0.

Proof. (i) and (ii). Apply HomB(S2(KB),−) to the exact sequence 0 → KB → KB(1) →
KBL

→ 0 and use that S2(KB)⊗BL ' S2(KBL
)(−2) and that K∗

B = HomB(S2(KB), KB).
(iii) The unobstructedness is just a very particular case of Theorem 5B and Remark 6(b)

letting IA/B ' B(−1). To compute NBL
, just apply 0HomB(IB/I

2
B,−) to 0 → B(−1) →

B → BL → 0. Continuing this sequence into a long exact sequence of Ext-groups, we prove
(iv) as well because 0Ext1

BL
(IBL

/I2
BL
, BL) ' 0Ext1

B(IB/I
2
B, BL).

Remark 20. (a) In the case that Proj(B) is a curve (n = 2), we have by duality

vExt2
B(S2(KB), KB)∨ ' −vH

0
m(S2(KB)) ↪→ S2(KB)−v. By Remark 14(a) there is a

surjection S2(⊗R(nc,i)) � S2(KB(n+c)). Hence S2(KB)−v vanishes if v > 2 maxnc,i−
2(n+ c), i.e.

vExt2
B(S2(KB), KB) = 0 provided v > 2 reg(IB)− 2n− 2 = 2 reg(IB)− 6

(b) If the curve C = Proj(B) is a local complete intersection, then (15) shows that

−1Ext2
B(IB/I

2
B, B) = 0 provided H1(OC(n1,i − 1)) ' H0(K̃B(−n1,i + 1))∨ = 0, i.e.

−1Ext2
B(IB/I

2
B, B) = 0 provided minn1,i > reg(IB)− n = reg(IB)− 2.

Example 21. We consider the Artinian reduction AL of the Gorenstein algebra of Exam-
ple 17. Since B is 2-dimensional we get the vanishing of 0Ext1

BL
(IBL

/I2
BL
, BL), and hence the

unobstructedness of BL, from Lemma 19(iii) and Remark 20(b). Moreover since we have seen
that Remark 14(a) also applies to the Artinian reduction, we get −s−1Ext1

BL
(IBL

/I2
BL
, KBL

) =

0 for s > 2. Finally Lemma 19(ii) and Remark 20(a) shows that v+1Ext1
BL

(S2(KBL
), KBL

) =
0 for v ≥ 0. By Remark 14(b) all assumptions of Proposition 13B concerning BL are satis�ed.
It follows that AL is an unobstructed Artinian Gorenstein algebra for s ≥ 3, i.e. PGor(HL)
is smooth at (AL) by Theorem 11 and

dim(AL) PGor(HL) = dim(NBL
)0 + dim(K∗

BL
)s+1 − 1 = 3d+ d− 1 = 15

Note that the Hilbert function of BL is given by (1, 4, 4, 4, ..). Since the h-vector of AL is the
(s+ 2)-tuple (1, 4, 4, ..., 4, 1), we get that the value of dim(AL) PGor(HL) above coincides with
the dimension given in [21], Thm. 2.6 and Thm. 4.10A.

Finally we claim that this conclusion about AL holds for any Artinian Gorenstein quotient
A (well-de�ned by a twist of the canonical module of B) with the same graded Betti numbers
as AL. Indeed to use Remark 14(a) we only need the graded Betti numbers of the minimal
resolution. Since we may prove Remark 20 for a one-dimensional B by replacing Ext2

B(−,−)
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by the corresponding Ext1
B(−,−) (in (b) we use 0Ext1

B(IB/I
2
B, B) ' 0Ext1

B(IB⊗RKB, KB) '
0H

0
m(IB ⊗R KB)∨ in order to see that this group vanishes for minn1,i > reg(IB)− 1), we get

the claim.

Remark 22. Pushing the arguments of this example a little further, we get that if Y =
Proj(B) is a zero-scheme of degree d and if v ≥ 2 reg(IB)− 3, then vExt1

B(S2(KB), KB) = 0
and dim(K∗

B)v = d. Indeed with v as above we have S2(KB)−v = 0 and −vH
0
m(S2(KB)) = 0

(cf. Remark 20(a)) and it follows that vExt1
B(S2(KB), KB) = 0 by Gorenstein duality. Hence

it su�ces to show (K∗
B)v ' H0(Y, K̃∗

B(v)), i.e. to show vH
1
m(K∗

B) = 0. By Gorenstein duality
this group is dual to −vHomB(K∗

B, KB) = −vHomB(HomB(S2(KB), KB), KB) ' S2(KB)−v =
0. In this case note that (K∗

B)v contains a regular section. In particular if s ≥ 2 reg(IB) and
B is unobstructed, we have by Proposition 13B and Remark 14(a) that A is unobstructed and
HB-generic and that

dim(A) PGor(HA) = dim(A) GradAlgHA(R) = dim(NB)0 + d− 1

cf. Theorem 11. Hence we may replace �s >> 0� in Theorem 1 (and in Theorem 16 provided
B is generically syzygetic) by �s ≥ 2 reg(IB)�.

Now we will study the case s >> 0 of Theorem 16 to see that (13) actually determines
a well-de�ned injective application from the set of irreducible components of GradAlgHB(R)
containing locally licci, Cohen-Macaulay codimension c quotients of R (not necessarily un-
obstructed !), to the set of irreducible components of GradAlgHA(R) containing Gorenstein
codimension c + 1 quotients of R. To be precise let Us ⊂ GradAlgH′

(R) be an open (e.g.
the largest open) subscheme whose corresponding k-points (R → B) are such that B is
Cohen-Macaulay and generically Gorenstein, Proj(B) is locally licci and satis�es HB = H ′,

sExt1
B(S2(KB), KB) = 0 and (K∗

B)s contains a regular section. When we apply our results
we usually take Us to be the open set in which �B is generically Gorenstein and Proj(B)
is locally licci� is replaced by �Proj(B) is locally a complete intersection� or � Proj(B) is
smooth� or � Proj(B) is locally Gorenstein and the codimension of B is c = 3�, and with s
so large such that every such Cohen-Macaulay quotient B satis�es sExt1

B(S2(KB), KB) = 0
and (K∗

B)s contains a regular section (cf. Remark 18 and 22). If we take a point (R→ B) of
Us and two particular quotients B → A1 and B → A2 (corresponding to two regular sections
σi of (K∗

B)s), we have IA1/B ' IA2/B as graded B-modules. Recalling that the 0H
2(B,A,A)-

group of Lemma 7 is given by sExt1
B(S2(KB), KB) (Lemma 15), we can take the open set U

of Lemma 7 to contain (B → A2) provided it contains (B → A1). Hence we can let U be
q−1(Us) intersected by the space of those quotients (B → A) which correspond to the regular
sections of (K∗

B)s where q : GradAlg(HB, HA) → GradAlgHB is the �rst projection. Calling
this intersection q−1(Us)reg, we have an incidence correspondence (cf. the text before (10))

q−1(Us)reg
qres−→ Us ⊂ GradAlgHB(R)

↓pres (18)

GradAlgHA(R)

of restricted projection morphisms in which qres and pres have nice properties. Note that
v = n − reg(IB), n = dimB, is the largest integer such that (KB)v = 0 by Remark 14(a).
Letting nj,i be the number appearing in the minimal resolution (6) of B, we get
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Proposition 23. With notations as above, we have
i) The morphism qres in (18) is smooth and its �bers are geometrically connected, of �ber

dimension dim(K∗
B)s − 1.

ii) If Un1i
is the open subset of Us whose corresponding k-points (B) satisfy maxn1,i ≤

n− reg(IB)+ s, then p−1(pres(q
−1
res(Un1i

))) = q−1
res(Un1i

) and pres is unrami�ed and injective on
q−1
res(Un1i

). Moreover if s ≥ 2 reg(IB)− n, then Un1i
= Us.

iii) If Un2i
is the open subset of Us whose k-points (B) satisfy maxn2,i ≤ n− reg(IB)+ s,

then p−1(pres(q
−1
res(Un2i

))) = q−1
res(Un2i

) and the restriction of pres to q−1
res(Un2i

) is an isomor-
phism onto an open subscheme of GradAlgHA(R). In particular if s ≥ 2 reg(IB) − n + 1,
then Un2i

= Us and the morphism pres in (18) is an isomorphism onto an open subscheme of
GradAlgHA(R).

Proof. i) To see the smoothness of qres, we combine Proposition 4(i) and Lemma 15 (see also
the proof of Proposition 13). To show that the �bers of qres are (geometrically) connected, it
su�ces to see that two quotients B → A1 and B → A2, given as in (13) by two regular sections
σi of (K∗

B)s, correspond to two k-points of a �at irreducible family U ′ ⊂ A1(k) = Spec(k[t])
contained in the �ber q−1

res((B)). This is, however, quite trivial because we can easily show
that tσ1 + (1 − t)σ2 is a regular section of (K∗

B[t])s for any t in some open set of A1(k) con-
taining t = 0 and t = 1.
ii) It is straightforward to get ii) from Lemma 7(b) because KB(−s)max n1,i

= 0 by assump-
tion.
iii) Note that p is universally injective (�radiciel�) on the set U of Lemma 7 because the
proof of the injectivity of p|U in Lemma 7(b) extends to F -valued points where F is any
�eld extension of k. Hence by [13], Thm. 17.9.1, it su�ces to prove that pres is etale on
q−1
res(Un2i

). By (ii) above, it su�ces to prove smoothness. Looking to Remark 14(a), we
see that −sExt1

B(IB/I
2
B, KB) = 0 by assumption. The �rst sentence of the proof of The-

orem 16 shows that IB is generically syzygetic. Hence we get the smoothness of pres by
Proposition 4(ii) and the proof of Theorem 5B.

Recall that a quotient A of R has the Weak Lefschetz property if there is a linear form l
and an Artinian reduction AL := A/(L) of A such that the multiplication l : (AL)v → (AL)v+1

is either injective or surjective for every v (cf. the text before (17)). Letting �general member
or k-point� mean any member or k-point in a suitable open dense subset, we get

Theorem 24. Let s ≥ 2 reg(IB) − n + 1. Then the correspondence (18) determines a well-
de�ned injective application π from the set of irreducible componentsW of Us (whose members
B are codimension c Cohen-Macaulay quotients of R satisfying the de�ning conditions of Us

above), to the set of irreducible components V of GradAlgHA(R) whose general members are
Gorenstein codimension c + 1 quotients A of R satisfying the Weak Lefschetz property. In
this application the generically smooth components correspond. Indeed if mW (resp. mV ) is
the maximal ideal of the local ring of a general k-point of W (resp. of V = π(W )), then
dimmV /m

2
V − dimV = dimmW/m

2
W − dimW , and we have

dimV = dimW + dim(K∗
B)s − 1.

Proof. By Proposition 23(i) and [17], Prop. 1.8, q−1
res(W ) is an irreducible component of

q−1(Us)reg. The application is therefore well-de�ned, and it is injective by Proposition 23(iii).
Since qres is smooth and pres is an open embedding, we easily get the dimension formulas.
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It remains to see that A has the Weak Lefschetz property. Indeed we claim that any A′

which corresponds to a point in the image pres(q
−1(Us)reg) has the Weak Lefschetz property.

First suppose dimB′ = 1, with (B′ → A′) ∈ q−1(Us)reg. Since reg(IB′ = σ(B′) where σ(B′)
is de�ned by min{i|∆HB′(i) = 0} (e.g. [35], Sect. 2), it follows that the multiplication by
a regular element of B′ of degree one induces a bijection (B′)t−1 → (B′)t for t ≥ reg(IB′ ,
hence (A′)t−1 → (A′)t is surjective for t ≥ reg(IB′ . Let t < reg(IB′ . Since the assumption
s ≥ 2 reg(IB) − n + 1 leads to KB′(−s)v = 0 for v ≤ reg(IB′ + 1, we get (B′)v ' (A′)v for
v ≤ reg(IB′ + 1 and certainly for v < reg(IB′ . The latter is precisely what we need to get the
injectivity of (A′)t−1 → (A′)t from the injectivity of (B′)t−1 → (B′)t. Hence A

′ has the Weak
Lefschetz property. Moreover if n = dimB′ > 1 we know that the graded Betti numbers
of B′ and of KB′(−n) are unchanged by modding out by a (n − 1)-dimensional space L′ of
general linear forms (cf. the explanation to (17)). Hence we may apply the argument above
to the one dimensional quotient B′/(L′), and we are done.

Remark 25. (a) Let dimB = 1, i.e. let Proj(B) be a zero-scheme of degree d and let
s ≥ 2 reg(IB). Then we automatically get the vanishing of the Ext1-group appearing in
the de�nition of Us by Remark 22. Since the quotients of Us satisfy KB(−s)reg(IB)+1 = 0,
we get dimBreg(IB)+1 = dimAreg(IB)+1. Hence we see that the Hilbert function of each A
in Theorem 24 is an unimodal SI-sequence with at least three consecutive peaks, that is,
HA ⊃ (d, d, d) (because A has the Weak Lefschetz property, see e.g. [35]). Moreover

dimV = dimW + d− 1.

Indeed we really have by Proposition 23(iii) much more, namely a smooth morphism qres◦p−1
res

of schemes de�ned on pres(q
−1(Us)reg) with values in GradAlgHB(R), allowing us to com-

pare properties of GradAlgHB(R) at (B) with the corresponding properties of GradAlgHA(R)
at (A) beyond that done in Theorem 24. Note that this correspondence is well studiet
by Iarrobino-Kanev if the codimension of B is c = 2 ([21], Sect. 5.3.2), in which case
they get a topological �bration de�ned on the whole parameter space PGor(HA). In that
case they also get the dimension formula above ([21], Cor. 5.50). Since the points of
pres(q

−1(Us)reg) ⊂ PGor(HA) satisfy the Weak Lefschetz property, we can not in general
extend the morphism qres ◦ p−1

res to the whole of PGor(HA) (cf.[3])!
(b) Let dimB = 1 and suppose s ≥ 2 reg(IB) − 1. Using the arguments of (a) it follows

that the h-vector of A is an SI-sequence with at least two peaks. By Proposition 23(ii) the
correspondence (18) applies provided the points (B) of Us (or of Un1i

if we only assume
maxn1,i ≤ 1− reg(IB) + s)) satisfy the assumptions of Proposition 13A. These assumptions
are satis�ed if B is licci (Remark 14(c)), or if IB is generically syzygetic (e.g. if c ≤ 3) and
satis�es

(H2(R,B,B)⊗B A)s = 0 and 0H
0
m(IB ⊗R KB) = 0

(Remark 14(b)) because the latter vanishing is equivalent to 0Ext1
B(IB/I

2
B, B) = 0 by Goren-

stein duality. Hence we get by Proposition 13A and Theorem 11 that to each irreducible
component W of say Us whose general member is licci or as above, then (18) determines
an irreducible closed subset V of codimension −sext1

B(IB/I
2
B, KB) in PGor(HA) such that

PGor(HA) is generically smooth along V , and dimV = dimW + d− 1. If c = 2 this result
is known ([21], Sect. 5.3.3 and Cor. 5.50).
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Example 26. Here we will use Theorem 24 and Proposition 8 to give classes of examples in
which the scheme GradAlgH(R) has several irreducible components. To simplify the analysis,
we will use the classi�cation of ACM (arithmetically Cohen-Macaulay) curves on a general
rational ACM surface appearing in [29]. So our examples will yield irreducible components of
GradAlgH(R) of Gorenstein codimension 4 quotients of dimension one. It is not obvious that
the corresponding Artinian reductions lead to irreducible components of PGor(H) of Artinian
Gorenstein codimension 4 quotients.

First we explicitly describe three irreducible components of Hilbp(P4) with the same Hilbert
function (in fact their graded Betti numbers are the same, and are the minimum possible
consistent with the Hilbert function). Recalling that a general Castelnuovo surface F ⊂ P4 is
obtained by blowing up 8 general points in P2, thus that Pic(F ) ' Z9, we write the hyperplane
section and the canonical divisor as H = (4; 2, 17) and K = (−3;−18) respectively. Consider
the three families of curves, C ∈|C0 + tH|, of [29], p.73 given by

(4t+ 1; 2t, t7), (4t+ 2; 2t, t+ 14, t3), (4t+ 3; 2t, t+ 2, t+ 16)

having C0 ·K = (−3,−2,−1) respectively. We always have (d0, g0) := (deg(C0), gen(C0)) =
(4, 0) and H2 = 5. By Proposition 8 any such C is unobstructed provided t ≥ 3 and

dim(C) Hilbp(P4) = 31− C0 ·K + (11t+ 5t2)/2 ,

where p is the Hilbert polynomial of C. Since the three families have di�erent C0 · K, they
must correspond to three di�erent components of Hilbp(P4).

We claim that all curves C = Proj(B) of the three families have the same Hilbert function,
and hence that their quotients B belong to the same GradAlgH(R). Indeed looking to the
sequence

0 → JC/F ' OF (−C) → OF → OC → 0,

and the corresponding one for C0, we get h
1(OC(v)) = h1(OC0(v−t)) = 0 for v ≥ t. It is well

known that the homogeneous ideal of F has three minimal generators of degrees 2, 3, 3 and
two relations of degrees 4, 4. Combining h0(JC/F (v)) = h0(JC0/F (v − t)) and s(C0/F ) = 2
with h1(OC(t)) = 0, we see that the additional minimal generators of IB sit all in degree t+2.
Hence we get that all C of the three families have the same Hilbert function and the same
regularity, reg(IB) = t + 2, i.e. we get the claim. Indeed the members of the three families
satisfy HB(v) = h0(OC(v)) = dv+ 1− g for v ≥ t and HB(v) = h0(OF (v)) for v < t, and we
easily �nd the minimal resolution to be

0 → R(−t− 4)5 → R(−t− 3)10 ⊕R(−4)2 → R(−t− 2)5 ⊕R(−3)2 ⊕R(−2) → IB → 0.

Now, thanks to (9), the corresponding Cohen-Macaulay algebras B are unobstructed as graded
algebras and dim(B) GradAlgH(R) = dimC Hilbp(P4). The three families must therefore cor-
respond to three generically smooth irreducible components of GradAlgHB(R) of di�erent
dimensions whose general members B are two-dimensional Cohen-Macaulay codimension 3
quotients of R.

By Theorem 24, we get three generically smooth irreducible components V of GradAlgHA(R)
whose general members are one-dimensional Gorenstein codimension 4 quotients A of R.
Indeed Theorem 24 applies for s > 2 reg(IB) − dimB = 2t + 2 provided we can show
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sExt1
B(S2(KB), KB) = 0 for such s. Looking to the arguments of Remark 18 it su�ces

to prove s > (4g − 4)/d which is straightforward since (d0, g0) = (4, 0), d = d0 + 5t and
2g = 2g0 + 2td0 + 5t2 − 3t by the adjunction formula 2g − 2 = C · (C +K). Now, inserting
these values for d and g into the expression dim(K∗

B)s = ds + 3 − 3g of Remark 18, we get,
for every t ≥ 3 and every s > 2t + 2, three irreducible components V of GradAlgHA(R)
satisfying

dimV = dimC Hilbp(P4) + dim(K∗
B)s − 1 = 33− 2t− 5t2 − C0 ·K + s(4 + 5t).

It is not di�cult to compute the Hilbert function HA from the Hilbert function HB. Indeed
the h-vector of A, i.e. the h-vector of an Artinian reduction of A, is just

(1, 4, 9, 14, 19, ..., 4 + 5t, 4 + 5t, 4 + 5t, ..., 19, 14, 9, 4, 1).

The simplest case t = 3 and s = 9 yields the h-vector (1, 4, 9, 14, 19, 19, 19, 14, 9, 4, 1).

Remark 27. We can use the classi�cation of ACM curves on a general rational ACM surface
in P4 in [29] to get many more reducible schemes GradAlgHA(R) whose general members
are Gorenstein codimension 4 algebras. For instance on a Castelnuovo surface, look to the
linear systems, C ∈ |C0 + tH|, of [29], p.73 where C0 is a minimal curve and t ≥ 0. For
both (d0, g0) = (5, 1) and (6, 2) there are at least two linear systems with di�erent C0 · K.
Here s(C0/F ) = 2 and Proposition 8 applies for t ≥ 3. Since H1(OC0(1)) = 0 one may see
that reg(IB) = t + 3 (C = Proj(B)) and that Theorem 24 applies for every s > 2t + 4. The
h-vectors of the simplest case t = 3 and s = 11 of the two families are

(1, 4, 9, 14, 19, 20, 20, 20, 19, 14, 9, 4, 1) and (1, 4, 9, 14, 19, 21, 21, 21, 19, 14, 9, 4, 1).

For both (d0, g0) = (2, 0) and (3, 0) there are also two linear systems with di�erent C0 · K.
Now s(C0/F ) = 1 and H1(OC0) = 0 and Proposition 8 applies for t ≥ 4 and Theorem 24 for
s > 2 reg(IB)− 2 = 2t+ 2. The h-vectors of the simplest case t = 4 and s = 11 are

(1, 4, 9, 14, 19, 22, 22, 22, 19, 14, 9, 4, 1) and (1, 4, 9, 14, 19, 23, 23, 23, 19, 14, 9, 4, 1).

Putting the analysis on a Castelnuovo surface together we get that GradAlgHA(R) has at least
two generically smooth irreducible components whose general members are one-dimensional
Gorenstein codimension 4 quotients A of R in the following range of the h-vector;

(1, 4, 9, 14, ..., 5α− 1, β, β, ..., β, 5α− 1, 5α− 6, ..., 9, 4, 1)

where 5α−1 ≤ β ≤ 5α+4, α ≥ 3, β ≥ 19, and with at least three consecutive β′s (three peaks).

Of course the part (1, 4, 9, 14, ..., 5α − 1) of the h-vector comes from the Castelnuovo sur-
face. On a cubic surface there are two linear systems with (d0, g0) = (1, 0) and with di�erent
C0 ·K, giving rise to reducible GradAlgHA(R) for every t ≥ 4 and s > 2t. For (t, s) = (3, 7)
the h-vector is (1, 4, 7, 10, 10, 10, 7, 4, 1). Increasing t to 4 and s to 10 we get precisely the h-
vector of Boij's example [3], which is di�erent from ours because our algebras have the Weak
Lefschetz property (see also [22], Thm. 3.9). There are also quite a lot of linear systems on
a Bordiga surface with which we could make a similar analysis. All examples we get in this
case have a symmetric h-vector starting with (1, 4, 10, 16, 22, ...).
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We end this section by using Theorem 16 to essentially reprove the smoothness and give
a formula for the dimension of GradAlgH(R) for (e.g. Artinian) Gorenstein codimension 3
quotients equivalent to those in [27], [28] or [6].

Example 28. Recall that if A ' R/IA is Gorenstein of codimension 3 with minimal resolu-
tion

0 → R(−f) ' F3 → F2 → F1 → IA → 0. (19)

one knows that A is unobstructed and that NA ' ∧2IA(f) (char(k) 6= 2). It follows that

dim(A) GradAlgHA(R) = dim(∧2F1)f − dim(F1 ⊗ F2)f + dim(S2(F2))f (20)

cf. [28], Thm. 2.6 and its Remark. In (20) it is not really necessary to suppose (19) to be
minimal because we easily see that (20) is invariant under adding a common free factor to
both F1 and F2.

If B ' R/IB is Cohen-Macaulay of codimension 2 (and hence licci), and A is given as in
Theorem 16, then we claim the dimension formula for dim(A) GradAlgHA(R) in Theorem 16
coincides with (20). Note that since every irreducible component of the Hilbert scheme of
Gorenstein codimension 3 quotients of R contains a quotient constructed via (13) by [10],
this example proves the generic smoothness of GradAlgH(R) and PGor(H), as well as (20).
The argument holds in the case char(k) = 2 as well.

First we compute dim(K∗
B)s. Indeed the dual of (8) (for c = 2) yields the exact sequence

0 → K∗
B(−n− c) → G2 ⊗B → G1 ⊗B → IB/I

2
B → 0 (21)

in which H1 is the kernel of G1 ⊗B → IB/I
2
B by (4). By [2] one knows that

0 → ∧i+1G2 → ∧i+1G1 → ∧iG2 → Hi → 0 (22)

is exact for any i. Let f = s+ n+ c. Using the last mentioned sequence for i = 1, (21) and
the R-free resolution of G2 ⊗B which we easily deduce from (6), we get

dim(K∗
B)s = dim(∧2G1)f − dim(G1 ⊗G2)f + dim(S2(G2))f . (23)

Next we will compute δ = δ(B)−s = dim(G∗1⊗RKB)−s− −shomB(H1, KB), cf. Remark 14(d).
If r = rank H1, we have by (22) a resolution of Hr−1 leading to

0 → G∗2 → (∧2G1)
∗ → (∧2G2)

∗ → Hr−1⊗(∧r+1G2)
∗ ' Hom(H1, KB(n+ c)) → 0 (24)

We have an R-free resolution of KB by dualizing (6) and hence a resolution of G∗1 ⊗ KB.
Combining with (24), we get

−δ = dim(G1 ⊗G2)
∗
−f − dim(S2(G1)

∗)−f − dim(∧2G2)
∗
−f + dim(G1)

∗
−f − dim(G2)

∗
−f . (25)

Note that dim(NB)0 is well known, e.g. one may easily deduce it from the exact sequence

0 → G∗1 ⊗G2 → ((G∗1 ⊗G1)⊕ (G∗2 ⊗G2))/k → G∗2 ⊗G1 → NB → 0 (26)

of [30], Remark 16 (k is a 1-dimensional subspace). Putting these formulas together, using
Theorem 16, we get exactly (20) because we �nd the following resolution of IA,

0 → R(−f) → G∗1(−f)⊕G2 → G∗2(−f)⊕G1 → IA → 0. (27)

by applying the mapping cone construction onto (13).
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Inside the scheme Z(H) of Remark 10 we have the open subscheme ZGor(H) consisting of
not necessarily graded Gorenstein quotients R → A with Hilbert function H. ZGor(H) has
been studied in di�erent contexts (see [21], p.126 for references). Since we by Remark 14(c)
easily see that vH

2(R,A,A) = 0 for v ≥ 0 provided B is licci, we can use Remark 10 to prove
the smoothness and �nd the dimension of the scheme ZGor(H) at (A). Indeed vhomR(IA, A)
is found using (10) as in the proof of Theorem 5. And if we apply vHom(KB(−s),−) to (13),
we get vhom(KB(−s), A) = dim(K∗

B)s+v − dimBv. Since Av = 0 for v > s, we have

Proposition 29. Let B ' R/IB be licci and generically Gorenstein, and let A be a graded
codimension one quotient of B, de�ned by (13) for some s. Then ZGor(H) is smooth at
(R→ A) and

dim(A) Z(H) =
s∑

v≥0

(dim(NB)v − δ(B)−s+v) +
s∑

v≥0

(dim(K∗
B)s+v − dimBv).

Invoking Remark 14(c), we take the opportunity to state the main result of this section
in the non graded case. The proof is omitted because it is the same as in the graded case.

Theorem 30. Let B ' R/IB be Cohen-Macaulay, generically Gorenstein and generically
syzygetic of dimension ≥ 1 and suppose B satis�es

Ext1
B(IB/I

2
B, B) = 0 , Ext1

B(S2(KB), KB) = 0 and Ext2
B(IB/I

2
B, KB) = 0.

Consider KB as an ideal of B and let A := B/KB. Then A is Gorenstein and strongly
unobstructed in the sense H2(R,A,A) = 0.

In particular let B ' R/IB be licci and generically Gorenstein. Then A is Gorenstein and
strongly unobstructed in the sense H2(R,A,A) = 0. Indeed licci and generically Gorenstein
imply Cohen-Macaulay and generically syzygetic as well as the vanishing of the three Ext-
groups above.

3 Computing the dimension via liaison

In this section we show how we can compute δ(B)−s = −shomR(IB, KB)− −sext1
B(IB/I

2
B, KB)

and dim(K∗
B)s. For instance it turns out that the di�erence dim(K∗

B)s−δ(B)−s (which appears
in Theorem 16) is quite easy to compute because, after adding a simple term to it, it becomes
a liaison invariant among syzygetic ideals IB. Moreover δ(B)−s is computable in terms of
dim(K∗

B′)s of the linked algebra B′. To allow any complete intersection linkage of Cohen-
Macaulay quotients and still get the liaison invariance described above, we need to de�ne
δ(B) also for Cohen-Macaulay quotients R → B which satisfy H2(R,B,B) 6= 0 generically.
To do this we consider the exact sequence ([38], Sect. 2.1)

0 → H2(R,B,B) → S2IB → IB → IB/IB
2 → 0. (28)

Let ψ : Hn
m(H2(R,B,B)) → Hn

m(S2IB), dimB = n, be the induced map.
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De�nition 31. Let B = R/IB be Cohen-Macaulay of dimension n, not necessarily generically
syzygetic. Then

δ∗(B)v = vhomR(IB, KB)− vext
1
B(IB/I

2
B, KB)− dim(imψ)−v

Remark 32. If B is generically syzygetic, then vHomB(H2(R,B,B), KB) = 0, and we get

−vH
n
m(H2(R,B,B)) = 0 by duality and hence δ∗(B)v = δ(B)v, i.e. the �old and the new�

de�nition of δ coincides.

Using (28) and vExti
B(IB/I

2
B, KB) ' −vH

n−i
m (IB/I

2
B)∨ and letting hj

m(−)v = dim(vH
j
m(−)),

one shows
δ∗(B)v = hn+1

m (S2IB)−v − hn
m(S2IB)−v − hn+1

m (IB)−v (29)

Indeed splitting (28) into two short exact sequences we see that hn−1
m (IB/I

2
B)−v = hn

m(I2
B)−v

and hn
m(IB/I

2
B)−v = hn+1

m (I2
B)−v − hn+1

m (IB)−v. Moreover hn+1
m (I2

B)−v = hn+1
m (S2IB)−v and

hn
m(I2

B)−v = hn
m(S2IB)−v − dim(imψ)−v; thus we get (29) from De�nition 31.

Proposition 33. Let R be a �nitely generated polynomial k-algebra with canonical module
R(e) (so e = −n − c), and let B and B′ be graded Cohen-Macaulay quotients, algebraically
linked by a complete intersection R � D of dimension n ≥ 1, and with minimal resolution

0 → R(−a) → ...→ ⊕c
i=1R(−ci) → ID → 0.

Let β(B,D)v := dimBv +
∑c

i=1 dim(IB/D)v+ci
. Then IB/D ' KB′(−e− a) and

(i) dim(NB)0 −
∑c

i=1 dimBci
= dim(NB′)0 −

∑c
i=1 dimB′

ci

(ii) If B and B′ are generically Gorenstein (resp. Gorenstein in codimension ≤ 1), then

vExti
B(IB/I

2
B, B) and vExti

B′(IB′/I2
B′ , B′) are isomorphic for i = 1 (resp. i = 2).

(iii) δ∗(B)v−2e−2a = β(B′, D)v−e−a − dim(K∗
B′)v for any v. Moreover if β(B′, D)v−e−a = 0

and IB is generically syzygetic, then v−2e−2aext
1
B(IB/I

2
B, KB) = dim(K∗

B′)v.

(iv) dim(K∗
B)v − δ∗(B)−v − β(B,D)v−e−a =

dim(K∗
B′)−v+2e+2a − δ∗(B′)v−2e−2a − β(B′, D)−v+e+a.

(v) If IB is generically syzygetic (resp. syzygetic in codimension ≤ 1), then

vExt2
B(IB/I

2
B, KB) ↪→ v+2e+2aExt1

B′(S2(KB′), KB′) is injective (resp. an isomorphism).

(vi) The conclusion of (ii) holds if B is linked to B′ in possibly several steps. Here the
algebras of the intermediate steps need not necessarily be generically Gorenstein.

Proof. (i) is proved in [27], Prop. 1.7. (ii) Also this part, i.e. the liaison invariance of
IB/I

2
B ⊗KB, is known ([5], or [29], Ch. 6). Here the Gorenstein assumption is required for

having vExti
B(IB/I

2
B, B) ' vExti

B(IB/I
2
B ⊗ KB, KB). Note that the liaison invariance of

IB/I
2
B ⊗KB takes care of (vi) as well.
To prove (iii), recall that KD ' D(e+a) and hence, IB/D ' HomD(B,D) ' KB′(−e−a),

i.e. we get exact sequences

0 → ID · IB → S2IB → S2(KB′)(−2e− 2a) → 0 (30)
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0 → ID · IB → ID → ID ⊗R R/IB ' ID/I
2
D ⊗D B ' ⊕c

i=1B(−ci) → 0, (31)

cf. [38], Lemma 4.2.7 to see (30). Since β(B′, D)v := dimB′
v +

∑c
i=1 dim(IB′/D)v+ci

and
IB′/D ' KB(−e − a), we get β(B′, D)v = hn

m(KB′)−v +
∑

i h
n
m(B)e−v+a−ci

by Gorenstein
duality. Using (29) and (30), we have dim(K∗

B′)v = hn
m(S2KB′)−v = −δ∗(B)−2e+v−2a −

hn+1
m (IB)2e−v+2a + hn+1

m (IDIB)2e−v+2a while (31) and hn
m(KB′)−v+e+a = hn+1

m (ID)2e−v+2a −
hn+1

m (IB)2e−v+2a show −hn+1
m (IB)2e−v+2a + hn+1

m (IDIB)2e−v+2a = β(B′, D)v−e−a. Hence we
have proved

dim(K∗
B′)v = −δ∗(B)−2e+v−2a + β(B′, D)v−e−a (32)

Moreover if β(B′, D)v−e−a = 0, then dimB′
v−e−a = 0, i.e. v − e − a < 0 and hence

Hn+1
m (ID)2e−v+2a = 0 by duality (e.g. if dimR > n+1, then hn+1

m (ID)2e−v+2a = hn
m(D)2e−v+2a =

hn
m(KD)−v+e+a = 0 by duality). Since hn

m(KB′)−v+e+a = 0, it follows that hn+1
m (IDIB)2e−v+2a =

β(B′, D)v−e−a = 0 which easily leads to the �nal conclusion of (iii).
Note that (32) also shows dim(K∗

B)v = −δ∗(B′)v−2e−2a + β(B,D)v−e−a. Moreover if we
replace v by −v + 2e+ 2a in (32), we get (iv) by combining these formulas.

To prove (v), we use Gorenstein duality. Indeed

vExt2
B(IB/I

2
B, KB) ' −vH

n−2
m (IB/I

2
B)∨ ' −vH

n−1
m (I2

B)∨ ↪→ −vH
n−1
m (S2IB)∨,

where the �nal injection follows from Gorenstein duality and vHomB(H2(R,B,B), KB) = 0
because IB is generically syzygetic. Note that the injection is an isomorphism if IB is syzygetic
in codimension ≤ 1. Now combining (30) and (31) we get

−vH
n−1
m (S2IB)∨ ' −vH

n−1
m (S2(KB′)(−2e− 2a))∨ ' v+2e+2aExt1

B′(S2(KB′), KB′) (33)

and we conclude easily.

Remark 34. With notations as in Proposition 33, allowing also n = dimB ≥ 0, we have

dim(NB)v −
c∑

i=1

dimBv+ci
= dim(NB′)v −

c∑
i=1

dimB′
v+ci

for every integer v .

This follows from [27], Prop. 1.7 for v = 0, and from [26], Cor. 2.12 and (2.19) or [29],
Prop. 9.20 for n ≥ 2 and every v. Since the arguments of the proof of [27], Prop. 1.7 hold
for the linkage appearing in the non-graded deformation functors, we may use the proof to
get the displayed dimension formula by showing that the isomorphism of their tangent spaces,
A1

D→B ' A1
D→B′ (whose degree zero parts are given by (10)), is graded. This isomorphism

is, however, concretely studied in [29], pp. 38-39, without using deformations. There, if
we take the diagrams (6.11) and (6.12) without shea��cation, we get a graded isomorphism
A1

D→B ' A1
D→B′ from which we get the displayed formula by e.g. the proof of [29], Prop.9.20.

Example 35. We now complete Example 17 for the remaining cases (0 ≤ s ≤ 2) by ver-
ifying the assumptions of Proposition 13A, using liaison. Since we in Example 17 proved

0Ext1
B(IB/I

2
B, B) = 0, it su�ces by Remark 6(c) to show 0Ext2

B(IB/I
2
B, KB(−s)) = 0. Now

if we link B to a B′ via a complete intersection of three hypersurfaces, all of degree 2, the
linked curve C ′ = Proj(B′) has degree d′ = 8 − 4 = 4 and genus g′ = 0, i.e. we see that
C and C ′ are essentially the same curve. Hence vExt1

B′(S2(KB′), KB′) = 0 for v ≥ 0
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since B satis�es this vanishing. By Proposition 33 it follows that −sExt2
B(IB/I

2
B, KB) ↪→

−s+2Ext1
B′(S2(KB′), KB′) = 0 for s ≤ 2, which precisely covers the cases of Example 17

which are not already analyzed. So, for 0 ≤ s ≤ 2, Proposition 13A applies! In Exam-
ple 17 we saw that dim(K∗

B)s = 4s + 3 for any s ≥ 0. It remains to compute δ(B)−s. Since
δ(B)v−2 = β(B′, D)v−1 − dim(K∗

B′)v and β(B′, D)v = dimB′
v + 3 dim(IB′/D)v+2 by Proposi-

tion 33, we get (δ(B)0, δ(B)−1, δ(B)−2) to be equal to (15, 3,−3), and as previously

dim(A) GradAlgH(R) = h0(NC) + h0(θC(s))− 1− δ(B)−s = 4s+ 23− δ(B)−s

Hence dim(A) GradAlgH(R) equals (8, 24, 34) for s = (0, 1, 2) respectively. Note that it is
easy, for s = 2, to see that (KB)0 = 0 and hence that −2Hom(IB/I

2
B, KB) = 0 and

−2ext
1
B(IB/I

2
B, KB) = −δ(B)−2 = 3 by looking to the minimal resolution of IB (or use Propo-

sition 33(iii)). By the interpretation of −sext
1
B(IB/I

2
B, KB) of Proposition 13A we get that

the codimension of the Gorenstein quotients given by (13) is 3.

Example 36. Now we consider the Artinian reduction AL of the Example 21 of socle degree
s + 1, to treat the remaining cases of interest (0 ≤ s ≤ 2). Since s ≤ 2 and IB has
no linear generator, s+1H2(RL, BL, BL) ↪→ (S2IBL

)s+1 = 0. Looking to Example 21 and
Remark 14(b) we see that all assumptions of Proposition 13A are satis�ed. Now examining
Hi(θC(v)) of Example 17 for v = −1 a little further and invoking (S2KB)1 = 0 we get

−1ext
1
B(S2(KB), KB) = 1 in addition to vExt1

B(S2(KB), KB) = 0 for v ≥ 0. By Lemma 19(i)
we get dim(K∗

BL
)v = 4 for v ≥ 1. Moreover if we apply HomB(IB/I

2
B,−) to the exact sequence

0 → KB → KB(1) → KBL
→ 0, we get

δ(BL)v−1 = δ(B)v − δ(B)v−1 + vext
2
B(IB/I

2
B, KB) − v−1ext

2
B(IB/I

2
B, KB).

Since −3ext
2
B(IB/I

2
B, KB) = −1ext

1
B′(S2(KB′), KB′) = 1 and −sExt2

B(IB/I
2
B, KB) = 0 for

s ≤ 2, we get that (δ(BL)−1, δ(BL)−2, δ(BL)−3) is equal to (12, 6,−4) from the values of
δ(B)v in Example 35. It follows that AL is an unobstructed Artinian Gorenstein algebra for
0 ≤ s ≤ 2, i.e. PGor(HL) is smooth at (AL) by Theorem 11 and

dim(AL) PGor(HL) = dim(NBL
)0 + dim(K∗

BL
)s+1 − 1− δ(BL)−s−1 = 15− δ(BL)−s−1 .

Moreover, for s = 2, we see that −δ(BL)−3 = −3ext
1
BL

(IBL
/I2

BL
, KBL

) = 4 is the codimension
of the stratum of Gorenstein quotients given by (13) around (AL).

Finally we remark that the conclusions (about AL) also hold for any Artinian Gorenstein
quotient A, well-de�ned by a twist of the canonical module of B, with the same graded Betti
numbers as AL. In this case we can compute the numbers δ(B)v of a one-dimensional B as
we did in Example 35 by essentially the same linkage argument.

Mainly using Proposition 33 twice (for (i) below, we utilize (33)), we get

Corollary 37. Let B and B′ be Cohen-Macaulay quotients of R, algebraically linked by
a complete intersection D of type (c1, c2, .., cc), let B

′ and B′′ be algebraically linked by a
complete intersection D′ of type (c′1, c

′
2, .., c

′
c), and let a =

∑
ci, a

′ =
∑
c′i and dimB > 0.

Then

(i) v+2a′Ext1
B′′(S2(KB′′), KB′′) ' v+2aExt1

B(S2(KB), KB) for any v.
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(ii) v−2a′Ext2
B′′(IB′′/I2

B′′ , KB′′) ' v−2aExt2
B(IB/I

2
B, KB)

provided IB and IB′′ are syzygetic in codimension ≤ 1.

(iii) δ∗(B′′)v−2e−2a′ = δ∗(B)v−2e−2a − β(B′, D)v−e−a + β(B′, D′)v−e−a′.

(iv) dim(K∗
B′′)v+2e+2a′ = dim(K∗

B)v+2e+2a−β(B′, D)v+e+a +β(B′′, D′)v+e+a′ or equivalently,
dim(K∗

B′′)v+2e+2a′ = dim(K∗
B)v+2e+2a+dimB′′

v+e+a′−dimBv+e+a+
∑c

i=1(dim(KB′)v+c′i
−

dim(KB′)v+ci
).

We include one example of biliaison starting with the smooth rational curve of Exam-
ple 17. Of course starting with a licci curve, it is immediate to verify the assumptions of
Proposition 13 (see Theorem 16). However, some part of the argument below is still needed
to �nd dim(K∗

B)s − δ∗(B)−s and to see how small we can let the number s in Theorem 16B
be.

Example 38. If we link the homogeneous coordinate ring B of the smooth rational quartic
curve of Example 17 having minimal resolution

0 → R(−4)3 → R(−3)8 → R(−2)6 → R→ B → 0,

to a B′ using a complete intersection of type (2, 2, 3) and further link B′ to a B′′ via a complete
intersection of type (2, 3, 4) (using the same hypersurface of degree 2 and 3 as in the �rst link)
one may, notably due to IB′/D ' KB(−2) and the mapping cone construction used twice, see
that the minimal resolution of B′′ is

0 → R(−7)⊕R(−6)3 → R(−5)10 → R(−4)5 ⊕R(−3)⊕R(−2) → R→ B′′ → 0.

If A is de�ned by a regular section of (K∗
B′′)s, we can easily �nd the minimal resolution of A

and its Hilbert function by using (13). For instance dimAv = 16v− 19 for 3 ≤ v ≤ s− 3 and
dimAv = 16s− 38 for v > s. The h-vector of A is in fact

(1, 4, 8, 8, 4, 1), (1, 4, 9, 14, 9, 4, 1), (1, 4, 9, 15, 15, 9, 4, 1), (1, 4, 9, 15, 16, 15, 9, 4, 1)

for s = 4, 5, 6, 7 and (1, 4, 9, 15, 16, ..., 16, 15, 9, 4, 1) for s ≥ 8 respectively. Let us suppose
s > 3 since otherwise Proj(A) is degenerate. To use Proposition 13, we may argue as in
Example 17 to see that δ(B′′)−s = 0 for s > 7 by Remark 14(a), and that H1(θC′′(v)) = 0
and hence dim(K∗

B′′)v = h0(θC′′(v)) = 16v − 57 for v ≥ 5 because C ′′ := Proj(B′′) is smooth
curve of degree d′′ = 16 and genus g′′ = 20. Corollary 37 leads, however, to more precise
information. Indeed it is rather straightforward to combine the Corollary and the compu-
tations of Example 17 and Example 35 to see that the conclusions of Theorem 16 hold for
s ≥ 4, that dim(K∗

B′′)4 = 8, and that (δ(B′′)−4, δ(B
′′)−5, δ(B

′′)−6) is equal to (7,−6,−6) and
δ(B′′)−s = 0 for s > 6. Finally patiently using Proposition 33(i) several times, one shows
dim(NB′′)0 = 62 (It is, however, faster to show 0Exti

B′′(IB′′/I2
B′′ , B′′) = 0 for i = 1 and 2 by

Proposition 33(ii), using the computations of Example 17 and (15), and then use (15) once
more to see h1(NC′′) = 1 and hence dim(NB′′)0 = 5d′′+1−g′′+h1(NC′′) = 62). Putting this
together we have by Proposition 13 that A is an unobstructed Gorenstein algebra for s ≥ 4
and

dim(A) GradAlgH(R) = dim(NB′′)0 + dim(K∗
B′′)s − 1− δ(B′′)−s = 16s+ 4 for s ≥ 7,

31



dim(A) GradAlgH(R) = 16s+ 10 for 5 ≤ s ≤ 6 and dim(A) GradAlgH(R) = 62 for s = 4. By
the interpretation of −sext

1
B′′(IB′′/I2

B′′ , KB′′) of Proposition 13, we get by Proposition 33(iii)
that the codimension of the stratum of Gorenstein quotients given by (13) is 6 for 5 ≤ s ≤ 6.

We may treat the Artinian reduction of A ' B′′/KB′′(−s) in Example 38 satisfactorily
by remarking that s+1H2(RL, B

′′
L, B

′′
L) = 0 for 4 ≤ s ≤ 6 (since one may show (S2IB′′

L
)s+1 '

(I2
B′′

L
)s+1 by using that the generators of IB′′

L
of degree 2 and 3 form a regular sequence),

and that B′′
L is unobstructed by Lemma 19(iii) for any s > 3. For the latter, we use the

liaison invariance of vExt1
B(IB/I

2
B, B) and the fact that H1(NC(v)) = 0 for v ≥ −1 for a

smooth rational curve C. Instead of working out these details, we will �nish this subsection
by considering two general classes of examples where B is licci. We concentrate on licci
codimension 3 quotients, leading to unobstructed Gorenstein codimension 4 quotients by
Theorem 16. In one of the cases the use of Proposition 33 is quite e�ective.

Example 39. Let B be a Gorenstein quotient of R of codimension 3 given by

0 → R(−f) ' F3 → F2 → F1 → IB → 0. (34)

(as A in Example 28). In this case e = −n − 3 and KB ' B(−f + n + 3) and since B is
licci ([38]) and therefore satis�es vExt1

B(IB/I
2
B, B) = 0 for any v by Proposition 33, we get

δ(B)−s = dim(NB)−(f+s−n−3). If A is de�ned by a section of (K∗
B)s as in Theorem 16, then

A is Gorenstein and unobstructed and

dim(A) GradAlgHA(R) = dim(NB)0 + dimBf+s−n−3 − 1− dim(NB)−f−s+n+3

where dim(NB)v is given by [28], Thm. 2.6, i.e. by modifying (20) to

dim(NB)v = dim(∧2F1)f+v − dim(F1 ⊗ F2)f+v + dim(S2(F2))f+v + dim(F1)v − dim(F2)v

Example 40. Let B be an almost complete intersection of R of codimension 3 with a minimal
resolution

0 → G3 → G2 → G1 = ⊕3
i=1R(−ci)⊕R(−h) → IB → 0 (35)

and let B′ be the Gorenstein quotient obtained by linking B to B′ via a complete intersection
whose minimal generators (of degree ci) corresponds to three of those of IB. A standard
mapping cone construction and duality yields

0 → R(h− a) → G∗2(−a) → G∗3(−a)⊕ (⊕3
i=1R(−ci)) → IB′ → 0 (36)

and we see that KB′ ' B′(a − h − n − 3) where a =
∑
ci. If A is de�ned by the zero lo-

cus of a section of (K∗
B)s as in Theorem 16, then A is Gorenstein and unobstructed and

invoking Proposition 33 and dim(K∗
B′)−s+2a−2n−6 − δ(B′)s−2a+2n+6 = dimB′

−s+h+a−n−3 −
dim(NB′)s−h−a+n+3 we get

dim(A) GradAlgHA(R) = dim(NB′)0 + dimB′
−s+h+a−n−3 − dim(NB′)s−h−a+n+3 − 1 + γ

where γ :=
∑3

i=1(dimBci
−dimB′

ci
+dim(IB/D)s−a+n+3+ci

−dim(IB′/D)−s+a−n−3+ci
)+dimBs−a+n+3−

dimB′
−s−n−3+a. Using IB/D ' KB′(n+ 3− a) ' B′(−h), we easily express γ in terms of the

Hilbert function of B′ (or of B) and D. Moreover dim(NB′)v is given by the �nal formula of
Example 39. See Example 2 for a more explicit example.

32



References

[1] M. André. Méthode Simpliciale en Algèbre Homologique et Algèbre Commutative. Lectures
Notes in Math., no 32, Springer-Verlag, New York, 1967.

[2] L. Avramov and J. Herzog. The Koszul algebra of a codimension 2 embedding. Math. Z. 175
(1980), 249�260.

[3] M. Boij. Components of the space parametrizing graded Gorenstein Artin algebras with a given
Hilbert function. Paci�c J. of Math. 187 no. 1 (1999), 1�11.

[4] M. Boij. Gorenstein Artin algebras and points in projective space. Bull. London Math. Soc. 31,
no. 1 (1999), 11�16.

[5] R. Buchweitz and B. Ulrich. Homological properties which are invariant under linkage. Preprint
1983.

[6] A. Conca and G. Valla. Hilbert function of powers of ideals of low codimension. Math. Z. 230
no. 4 (1999) 753�784.

[7] D. Eisenbud. Commutative algebra. With a view toward algebraic geometry. Graduate Texts

in Math., volume 150, Springer�Verlag, New York, 1995.

[8] A.V. Geramita; T. Harima and Y.S. Shin. Extremal Point Sets and Gorenstein Ideals. Adv.

Math. 152 (2000), 78�119.

[9] A.V. Geramita; H.J. Ko and Y.S. Shin. The Hilbert Function and the minimal Free Resolution
of some Gorenstein Ideals of Codimension 4, Communications in Algebra, 26 (1998), 4285�4307.

[10] A.V. Geramita and J. Migliore. Reduced Gorenstein Codimension Three Subschemes of Pro-
jective Space. Proc. Amer. Math. Soc. 125 (1997), 943�950.

[11] A. Grothendieck. Les schemas des Hilbert. Séminaire Bourbaki, exp. 221 (1960).

[12] A. Grothendieck. Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz
Locaux et Globaux. Augmenté d'un exposé par M. Raynaud. (SGA 2). Advanced Studies in

Pure Mathematics Vol. 2. North-Holland, Amsterdam (1968).

[13] A. Grothendieck. Eléments de la géométrie algebriques IV. Etude locale des schémas et des
morphismes de schémas Publ. Math. I.H.E.S. 32 (1967).

[14] A. Grothendieck. Groupes de Monodromie en Géométrie Algébrique (SGA 7). Lecture Notes

in Math. Vol. 288 (with M. Raynaud and D.S. Rim) (1972) and Vol. 340 (with P. Deligne and
N. Katz) (1973) Springer�Verlag, Heidelberg.

[15] T. Harima Characterization of Hilbert Functions of Gorenstein Artin algebras with the weak
Stanley property. Proc. Amer. Math. Soc. 123 (1995), 3631�3638.

[16] R. Hartshorne. Local Cohomology. Lectures Notes in Math. Vol. 41 Springer�Verlag, New York,
1967.

[17] R. Hartshorne. Connectedness of the Hilbert Scheme. Publ. Math. I.H.E.S. 29 (1966), 5�48.

[18] J. Herzog. Deformationen von Cohen-Macaulay Algebren. J. reine angew. Math. 318 (1980),
83�105.

[19] M. Haiman and B. Sturmfels. Multigraded Hilbert Schemes. arXiv:math. AG/0201271.

[20] C. Huneke. Linkage and the Koszul homology of ideals. Amer. J. Math. 104 no. 5 (1982),
1043-1062.

33



[21] A. Iarrobino and V. Kanev. Power sums, Gorenstein Algebras and Determinantal Loci. Lectures
Notes in Math. Vol. 1721 Springer�Verlag, New York, 1999.

[22] A. Iarrobino and H. Srinivasan. Some Gorenstein Artin algebras of embedding dimension four,I:
components of PGor(H) for H = (1, 4, 7, ..., 1). Preprint 2002.

[23] T. de Jong and D. van Straten. Deformations of normalization of hypersurfaces. Math. Ann.

288 (1990), 527�547.

[24] J. O. Kleppe. Deformations of graded algebras. Math. Scand. 45 (1979), 205�231.

[25] J. O. Kleppe. Non-reduced components of the Hilbert scheme of smooth space curves, in �Space

Curves, Proceedings (Rocca di Papa, 1985)� Lectures Notes in Math. Vol. 1266 Springer�Verlag,
New York, 1987.

[26] J. O. Kleppe. Liaison of families of subschemes in Pn, in �Algebraic Curves and Projective

Geometry, Proceedings (Trento, 1988)� Lectures Notes in Math. Vol. 1389 Springer�Verlag,
New York, 1989.

[27] J. O. Kleppe. The smoothness and the dimension of PGor(H) and of other strata of the punctual
Hilbert scheme. J. Algebra, 200 no. 2 (1998), 606�628.

[28] J. O. Kleppe and R. Miro-Roig. The dimension of the Hilbert scheme of Gorenstein codimension
3 subschemes. J. Pure Appl. Algebra, 127 no. 1 (1998), 73�82.

[29] J.O. Kleppe, J. Migliore, R. Miro-Roig, U. Nagel and C. Peterson. Gorenstein Liaison, Complete
Intersection Liaison Invariants and Unobstructedness. Mem. Amer. Math. Soc. Vol. 154, no 732,
(2001).

[30] J. O. Kleppe and C. Peterson. Gorenstein algebras and maximal Cohen-Macaulay modules. J.
Algebra, 238, (2001), 776-800.

[31] A. Laudal. Formal Moduli of Algebraic Structures. Lectures Notes in Math., Vol. 754, Springer�
Verlag, New York, 1979.

[32] A. Laudal. A generalized trisecant lemma, in Proceedings, Tromsø, 1977, Lectures Notes in

Math., Vol. 687, Springer�Verlag, New York, 1978.

[33] M. Martin-Deschamps and D. Perrin. Sur la classi�cation des courbes gauches, I. Astérisque,
184�185 (1990).

[34] J. Migliore. Introduction to liaison theory and de�ciency modules. Progress in Math., Vol. 165,
Birkhäuser Boston, Inc., Boston, MA, 1998.

[35] J. Migliore and U. Nagel. Reduced arithmetically Gorenstein schemes and simplicial polytopes
with maximal Betti numbers. Adv. Math. 180 (2003), 1�63.

[36] J. Migliore and C. Peterson. A construction of codimension three arithmetically Gorenstein
subschemes of projective space. Trans. Amer. Math. Soc 349 no. 9 (1997), 3803�3821.

[37] D. Mumford. Lectures on Curves on an Algebraic Surface. Annals of Math. Studies, Vol. 59,
Princeton Univ. Press, 1966.

[38] W. Vasconcelos. Arithmetic of Blowing up Algebras. London Mathematical Society. Lecture

Note Series, Vol. 195, Cambridge University Press, 1994.

[39] B. Ulrich. Sums of linked ideals. Trans. Amer. Math. Soc. 318 (1990), 1�42.

OSLO UNIVERSITY COLLEGE, FACULTY OF ENGINEERING, CORT ADELERSGT. 30,
N-0254 OSLO, NORWAY.

E-mail address: JanOddvar.Kleppe@iu.hio.no

34


