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DEFORMATIONS OF REFLEXIVE
SHEAVES OF RANK 2 ON 1915{

In this paper we study deformations of reflexive sheaves of rank 2
on IP =]Pi where Xk is an algebraically closed field of any cha-
racteristic. ILet F be a reflexive sheaf with a section SGEHO(E)
HOCP,E) whose corresponding scheme of zeros is a curve C in 1p.
Moreover let M = M(cq,cz,c5) be the (coarse) moduli space of stab
reflexive sheaves with Chern classes c¢,,c, and Cxe The study of
how the deformations of CC P correspond to the deformations of
the reflexive sheaf F 1leadSto a nice relationship between the
local ring OH,C of the Hilbert scheme H = H(d,g) of curves of
degree d and arithmetic genus g at CCP and the corresponding
local ring OMaE of M at F. 1In this paper we concider some
examples where we use this relationship. In particular we prove
that the moduli spacer M(0,1%,74) and M(-1,11,88) contain gene-

rically non-reduced components.

I would like to thanz 0Olav Arnfinn Laudal and Steir Arild Stremme

for discussions and comments.

1. Deformatione of a reflexive sheaf with a section.

If Defy is the  loca. deformation functor of F  defined on

the category 1 of local artinian k-algebras with residue field

1
O

then it i well known fhat Ext

DefF and that Extg (F,F) contains the obstructions of deforma-
r

(F,F) 'is the tangent space of

tion. See [H3]. To deform the pair (F.s) we consider the functo:

DefE’S:_l —> Sets



defined by

S
R & = '~
Dei‘F,S(R) = {o]P_R—-—/ _ERIEREDefE(R) and sp® 1, = s}/

where IPp =IP ¥ Spec(R) &and where ’\k : k~k 1is the identity. Two

deformations (E_R,SR) and (Fp,sp) are equivalent if there exisct

isomorphisms O => 0O

P P> ER => F_R and a commutative diagram
R R
s
R
0 ——> F
=, =
R '
0 —s F
Py =R

such that SR®R ’\k = sé®R ’\k, In fact we also identify the given

1
pair (F,s) with any (¥',s') where S'EHO(]P,E) if they fit

together into such a commutative diagram.

Froposition 1.1. (i) The tangent space of Defyn is
ot B
1 .
Y -
Extolp (lc(c,‘),_f_"_, where _I_C = ker(O]P—-> OC), and

2

Exto (lC(C’I)’F) contains the obstructions of deformations.
P L

(ii) The natural

S F

By the correspondence [H3, 4.11 there is a curve C = (S)OE]P

and an exact sequence

- — S — ——
§:0 > 0p=F —> I,(cy) =0
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associated to (F,s). The condition Hq(E) = 0 1is therefore

equivalent to

H'(Ig(eq)) = O

Proof of (i). Using [L2, §2]1 or [K1,1.2] we know that there is
a spectral sequence

[ Ext (g, B) Ext3(0p, 0p))

BP9 - 14m(P) q\ L

= 1 % asefs J

ta

converging to some group A(°) where A/l is the tangent space
of Dei‘F S and A2 contains the obstructions of deformation.
it |

Since 'Epéq =0 for p=>2, we have an exact sequence

0 = Eqéq"q — A% > 838 >0
Moreover

Extq(O]P 0p) = 0 for q>0 and Ext?(0p, F) - HYE) for any q,

and this gives

Eoéq = kera® ond Eqéq = cokera? for a>0 .

Observe also that

Hom(F ,F) Hom(Op, Op) |
~ }
E’léo - iﬂ(q)<1 20 \\_,3 \// t'= coker

because Hom(OI” OI;)E Hom(F,F). We therefore have an exact

sequence

0 — cokeraq_q—¢>Aq —> keral—= 0

for any q@>0. Combining with the long exact sequence
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o 1
—> Hom(E,E) T+ H(B) —> Ext (L(c,),E) &> Ext” (F,F)

o > 2 > 0. 20
S H (B) = Ext“(Ly(c),F) L > Ext(F,F) &> H(F) -

)

deduced from the short exact sequence
S
0 — O:[P"”> F - -I-C(C”I) > 0,
we find isomorphisms
A% = Bxt%(15(c,),E) for q>0.

(ii) Let 8 — R Dbe a morphism in 1 whose kernel (7 is a

k-module via R —=>k, let s,:0 -> F be a deformation of
’ R IPR =R

s:O0p~—>F to R, and let Fgq be a deformation of Fp to 8.
To prove the smoothness of ¢, we must find a morphism Sg
£g O]P _>'ES

S
such that sg¥glp = €p, i.e. we must prove that sp€H (Fp) is
contained in the image of H°(Fg) —> H°(Fp). Since

- D — —
0 >EkG‘L >FS ,_I:"_R—>O

is exact and since Hq(g) = 0 by assumption, we see that

HO(ES) - HO(ER) is surjective and we are done.

Remark 1.2. 1In the exact sequence (*) of this proof, mq is the

tangent map of ¢ : Dei‘Il

P— t
» g > Defp and 47 maps "ohoitrre-
=

tions to obstructions". In facgt ¢ 1s a2 morphism of
principal homogeneous spaces via wqo Using this it is in
general rather easy to prove the smoothness of ¢ directly
from the surjectivity of wq and the injectivity of me.

This gives another proof of (1.1.1ii) .
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2. The relationship between the deformations of a reflexive sheaf

with a section and the deformations of the corresponding curve,

o : -
Let F, s€H (F) and I = I, = ker(O]?—> OC) be as in the pre

ceding section, and let DefI : 1 —> Bets be the deformation functo

of the OE,-Module I. Then there is a natural map
v :Defg s~ Defl
defined by
¥ (Bp,sg) = Mp ® (Op(-c,) &, R)
where I, = cokersp. If Hilby : 1 —> Sets 1is the local Hilbert

functor at Cc P, we have also a natural map

Hile - DefI

of functors on 1. Recall that C is locally Cohen Macaulay and

equidimensional [H3, 4.17,

Proposition 2.1. (i) The natural morphism

Hlle - DefI

is an isomorphism of functors.
(ii) If H'(®(-%)) = 0, then

1\ :Def.E g —> DefI

b]

is a smooth morphism of functors on 1.
Observe also that
1 ~ .7
H (E(-4)) = H'(I(cqa-4))

and moreover by duality that
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2

Exto

L (Zo(eq)s0p) = H' (Lg(eq-4))".

Proof of (i) If Ny = HomO]P (_I_,OC) is the normal bundle of C
in P, we proved in {K1,2.2] that

B (N,,) :-Exté;:(lﬁl) for i = 0,1

as a consequence of the fact that the projective dimension of
the Op -Module I is 1, from which the conclusion of (i) is

easy to understand., We will, however, give a direct proof.

To construct the inverse of Hile(R) —> Def;(R), let ! be a

deformation of I to R. Observe that there is an exact se-

quence
r+1 £
(*) 0 ~>F > % OIP(_D.) == I =0
— i=’| 1 —-—

T

where E 1s a vector bundle on P of rank r. AE is therefore

invertible, and we can identify it with Op (d,]) where d, =-Z'ni.

If P = ®0p(-n;), then there is a complex

~ T v r
) BRI 0B V@) > (B - op

and it is well known that the maps P L Ic0p and P — Op

deduced from (*) and (**) respectively are equal up to a unit

of k. We can assume equality. Now since mR is a lifting of

I to R, there is a map

T+1

fo:F, = D 0. (-n.) — M
R * =R 129 ]PR i =R

such that fp@&p T =f:Bk—=>1.

surjective. Moreover if Ep = kerf

By Nakayama's lemma, fR is

R » We easily see that §R®Rk
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and ER is R-flat. It follows that E—R is a locally free

OIP ~Module of rank r satisfying
R

Ir

Furthermore there is a complex

~ T WV TV
Ep > Bg = (ABp) (49 —=> (nEp) (dq) = Op

which proves the existence of an OIP ~linear map

which reduces to the natural inclusion IcOyp via (-)®pk. It
is easy to see that a s injective, that cokera 1is R-flat

and that col«.era®Rk = OC" We therefore have a deformation

Cp € Pp of C<P . Finally to see that the inverse

of Hile(R) - DefI(R) is well-defined, let A :_PQH - _I\l]'? and
| I ! — R . . 'S

a' : My O]PR be O]PR linear maps such that B8 &g 1 15 the

identity on I and a ‘o"R 1 is the natural inclusion IcR.,

(We do not assume a'B =a). We claim that Ima' = Imc . In fact
since

Extélp (05+0p) = O for i = 0,7,
we have

k = Hom (04 ,0n) = Hom, (I,0..) .
O]P PP O]P = ]P
We deduce that the map

R = Hom (0 O+ ) —> Hom (Mg, 0
O]PR P ]PR O]P =R’ ]PR

R R

induced by o, is surjective. Hence

0'B = ro
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for some 1r€R, and since a'a®’1k = a‘X"lk is the natural inclu-

sion ICZOK,, r 1is a unit and we are done.

(ii) Let S —> R, (¢l and sp:O0p —> Fp be as in the proof of

R
(1.1 ii), Moreover let M, = cokersp, and let Mg be a defor-

mation of Iy to S. To prove smoothness we must find a deforma-

tion

SS : O]PS—> -ES

with cokernel Iy such that SSQ%SqR = Sp. By theory of exten-

sions it is sufficient to prove that the map

1 - 1
O]P (_Iig ’C]PS) — EXtO]P (m-R’O]PR)
S R

Ext

induced by (—)®SI2 is surjective. Modulo isomorphisms we refind

this map in the long exact sequence

E 1 ® L L Yo R fp 0. ®CL)
= BExt (Mg,0p ®00) = Ext (Mg,0p )~ Ext (Mg,Op )~ Ext'(Ig,0p )
S S R S
Since BxtS (Mg, Om 8¢ OU) = Ext® (IL.(c,),05)® Ob=0 by
O]P —S? Fq S Op =C 717" ‘
S P
assumption, we are done.
Remark 2.2. The short exact sequence
by -S— * ——— —
€:0 = Op—>F —> I,(c ) =0
induces a long exact sequence
~ Exty (Tn(cy),0p) = Ext) (I )F)———wq\Extq (I.,L) -
"0 =0 1 P Op =C 6172/ T B0 =000

P

2 . 2
Extq (I5(cq),0p) — Ext

e
‘ P O]P(lc(c,l),g) RIS Ey:tg (I.,1.) =

]
I adat
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-~

where V' is the tangent map of ¢ or more generally,

a map of principal homogeneous spaces via wq and wg maps
"obstructions to obstructions". As remarked in (1.2), the
smoothness of {§ follows therefore from the surjectivity

of 4" and the injectivity of ¢°.
Remark 2.3. ILet E&be the extension
~ = — —
0 —> O]P > F >—I-C(°’|) > 0

and let Def :1l — Betbs

c.E be the functor " defined by
+ 2

'|r | (CREPp) € HilbL(R) and & € /

| a
_ Al

Defq g(R) _,} (Cg, 55 , o 7/

i t Ext (;C (C1)101>) satisfies

- 'R R

Sr¥gk = &

Two deformations (CR

,§R> and (Cﬁ,%ﬁ) are equivalent if
o
Cg = CLEP

R R and if there is a commutative diagram

éﬁ : 0O =0 —_

F,o—> 1, (c,) =0
:PR Iﬁ —CR 1
| ° [
\;/ - u 1
[ - — — v A
R 0> 0p —> T >10R(c,|, >0 ,

both reducing to the extension E via (-)8h1c . In the

same way we identify the given (C,%) with any (C',t')

provided C = C' and E' = ut for some unit ué€k . Note
that we may in this definition of equivalence replace the

identity 1 on lCR(Cﬂ) by any Op linear map. See

R
™a 2, 6.17 and recall Hom(lc,lc) = k. Now there is a for-

getful map
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and using (2.1i) we immediately have an inverse of «.

Hence a iS an isomorphism. Observe that we might construct
the inverse of a(R) for R€obl by considering the in--
vertible sheaf detFp on IPp. See [(Ma, 4.2] or [G,4.1].

In fact if (Fp,sg) is given, there is an Pp a morphism

2
i:nFp—> det Ep= OPR(c,])
and a complex

0 —> o]PR-——-> Py > O]PR(C")

which after the tensorization (—)®Rk is exact. Hence

0 — O]P -——B-> Fo —> coker s

—> 0

is exact, coker Sp is R-flat and coker Sp > O]PR(C,]) R

and putting this together, we can find an inverse of a(R).
One should compare the isomorphism of o with [H3, 4.1]
which implies that there is a bijection between the set of
pairs (F,s) and the set of (C,E) moduls equivalence under
certain conditions on the pairs. Thinking of these families
of pairs as moduli spaces, [H3, 4.1] establishes & bijecti n
on the k-points of these spaces while the isomorphism of «

takes care of the scheme structure ac well.

To be more precise we claim that there is a quasiprojective
scheme D parametrizing equivalent pairs (C,E) where

1) C is an equidimensional Cohen Macaulay curve and where

2) the extension & :0 —>0p—> F — lC(C’l> —> 0 1is

such that F is a stable reflexive sheaf.
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Moreover there are projection morphisms

D -—a—> H(d,g)
*) p|
M(cq,cz,ca)

defined by p(F ,SK) = Fp and q(CK,gK) = Cp for a geometric
K-point (CK,QK) corresponding to (F ,SK), such that the fibers
of p and gq are smooth connected schemes. Furthermore, D is
smooth at (F ,SK) provided Hq(EK) = 0, and gq is smooth at
. 1

(CK,gK) provided H (;CK(01-4)) = 0.

_ N
To indicate why let Sch/k be the category of locally

noetherian k-schemes and let D: Sch/kx —> Sets be the functor

defined by
Cg € H(3,8)(8), Lg is invertible on & and‘]‘
A I
_ Eg € Ext (;CS(C,]), Opy g ® Lg) such that . /ﬂ
Q(S) = {(CS’LS"DS>

CS>%SSpec(K) satisfies (1) and gSéSK Z 0

| for any geometric K-point of O

Two deformations (CS,LS,QS) and (Cé,gé,gé) are equivalent if
1

Cq = Cg and if there is an isomorphism 7 : Lg —>'Lé whose in-

duced morphism Extq(lc (cq),w) maps &g onto ' Now if
S

Ege
UcH(d,g) 1is the open set of equidimensional Cohen Macaulay

curves and if C,cP x U L>vu

U is the restricting of the uni-

versal curve to U, one may prove that E = Extq(lc (cq)J}PxU)
U

is a coherent Oy . -lModule, flat cver U. By [EGA,IIL,7.7.6]

there is a unique cohersant Oy-Module Q such theat

1) For good ideas of this construction, see the appendix [E,S81,
some of which appears in [S,M,S].



for any quasicoherent Opy-Module R. If Q) = Proj(Sym(Q))-
is the projective fiber over U defined by Q, we can use

{(EGA I1,4.2.3] to prove that
D(-) = Mor, (-, B(Q)) .

Now let DcP(Q) be the open set whose k-points
are (C,8), E:0 — Op—>F — l:-C(C’l) —> 0 , where F is a
stable reflexive sheaf. Then we have a diagram (*) where the
existence of the morphism p follows from the definition [Ma1, 5.5
of the moduli space M = I"I(c,],cg,c})° Moreover since IP(§) re-
presents the functor D, the fiber of q:D — H(d,g) at a
K-point CpcP®, of H(d,g) is just DN P(Ext (ICY(C/])’O]PK)V)
where (=) = HomK(—,K). Moreover if we think of tr;e fiber of p
at a geometric K-point -EK of M as those sections s EHO(F_K)
where (s)O is a curve, we understand that the fiber is an open
subscheme of the linear space IP(I*IO(_E_‘K)V)° In particular the

geometric fibers of p and g are smooth and connzacted.

Finally the smoothness of p and q at (C,E) follows from

(1.11ii) and (2.1ii) provided we know that the morphism

* ., -~ . ) )
P OM,_E_‘ - OD,(_:E_‘,S) induced by p:D — M makes a commutative
diagram
Def_l_?_,s = Mor(@D,(E’S),_)
® | e \l/ Mor(p*,~)
. ~ A
Dczg = Mor(OM’E,—)

of horisontal isomorphisms on 1. In fact the commutativity from



- 13 -

the definition of a moduli space [Ma1, 5.51 while the construction
of M implies the lower horizontal isomorphism. See [Ma2, 6.4]
from whiéh we immediately have that the morphism Defy —> Mor(SM’F,—]
is smooth, and since the morphism induces an isomorphism of tange;t

spaces, both isomorphic to Extq (F,F), it must be an isomorphism.

A -
Remark 2.%4. In particular the smoothness of Defy —> lor (Oy F,—)
Yo

which is a conséquence of the smoothness of the morphism
treated in [Ma2, 6.4}, implies that Oy p 1is a regular
L=

local ring if and only if Defn is a smooth functor on 1.

3. _Non-reduced comnonents of the moduli scheme M(c, ,__92,__05).

One knows that the Hilbert scheme H(d,g) is not always reduced.

2.1
Qﬁ';h, we
proved in TK1,3.2.10] that H(d,g) is non-reduced for every d42>14,

In fact if g is the largest number satisfying g <

and we explicitely described a non-reduced component in terms of

the Picard group of a smooth general cubic surface. -

Example 3.1. (Mumford [M1)]). For 4 = 14, we have
ac-u
B =g = 24, and there is an open irrecducible nubscheme

UCH(14,24) of smooth connected curves whose closure U = W

makes a non-reduced component, such that for any (CcP)€ U,

o (O for wv=2
h%(Z,(v)) = {
1 for v=3%
1 . .
h'(I,(v)) =0 for v g{%,4,5},
4 _ 0O for v>4

1 for v

N
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See [K1,(3.2.4) and (3.1.3)1. In fact with CcP in U,
there is a global complete intersection of two surfaces of
degree 3 and 6 whose corresponding linked curve is a dis-

joint union of two coniques.
Now let CcCI be a smooth connected curve satisfying
(*)  H'(Ta(cs)) =0, H'(I(c,-)) =0 and H (0.(c,~4)) £ O
=C 71 ’ =11 - c 1

for some integer c,, let %EIfxw(§4—cq)) = Extq(lc(cq)J%P) be
non-trivial, and let (F,s), sGEHO(E), correspond to (C,E) via
the usual correspondence. Then F 1is reflexive, and it is stable
(resp. semistable) if end only if c¢,>0 (resp. c,>20) and C
is not contained in any surface of degrec <%c, (resp. <fcy) .
See [H3, 4.2]. Combining (1.1) and (2.1) with (2.4) in case F

is stable, we find that Op 7 is non-reduced iff Oy 4 +is non-
. h Ry b

reduced.

Example 3.2. Let (CcP) e H(14,24) bvelong to the set U of
(3.1) and let c, be an integer satisfying (*), i.e. c4 =52

or ¢4 = 6.

(i) Let ¢, = 6. By virtue of (1.1) and (2.1) the hull of
DefF is non-reduced. Moreover F is semistable with Chern

classes (Cq,cg,ca) = (6,14,18), and the normalized sheaf

F(-3) has Chern classes (c%,cé,cé) = (0,5,18).

(11) Let c, = 2. The corresponding reflexive sheaf is stabl
and must belong to at least one non-reduced component of

M(2,14,74), i.e. of M(0,13,74).

(iii) With ¢, =1 we find at least one non-reduced

component of M(1,44,88) = M(-1,14,88).

-
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Combining the discussion after (2.3) and in particular the
irreducibility of the morphism q with the irreducibility
of the set U of (3.1), we see that we obtain precisely one
non-reduced component of M(0,13,74) and M(-1,14,88) in

this way.

We will give one more example of a non-reduced component and in-
clude a discussion to better understand (1.1) and (2.1). In fact
recall [K1,2.3.6] that if an equidimensional Cohen Macaulay curve
(CcP) € H(4,g) is contained in a complete intersection V(EH,EQ)

of two surfaces of degree f, = deg¥F, and f, = degFE2 with

H“(;C(fi)) -0 and Hq(lc(fi—4)) -0

for i = 1,2, and if (C'cP)e H' = H(4',g') is the linked curve,

then O is reduced iff O is reduced. Since any curve
H,C H' C _

(CcP)e U of (3.1) is contained in a complete intersection

V(Eﬁ,gé) of two surfaces of degree fq = f2 = 6, the linked curves

C cT must belong to at least one (and one may prove to sexactly

one) non-reduced comppnentq)WEEH(22,56\ of dimension 88, Sece

[K1,2.3.9). One may see that W contains smooth connccted curve:

Moreover using the fact that W (4-f1—f2) and wc|(4«f1~f2) are

the sheaves of ideals which define the closed subschemes
1

C _C_V(_l:“_,],F2) and CEV(f_qs_lig) respectively,
that

one proves easily

HO(Ly (#)) = 0, H' (L5, (W) = 0 for vg{3,4,5) and H (04 (5))#0
See [S,P] and [K1,2.3.31.

1) The condition K. (I (f. —4)) implies also that the linked
curves C'cP form an open subset of H'.
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Example 3.3. Let (C cTP)e€ WCH(22,56) be as sbove with C'

smooth and connected. If ¢, is chosen among 1<c, 29,

then C:EJP defines a stable reflexive sheaf El and in
fact a vector bundle if ¢, =9 by the usval correspondence.
Using (1.1) and (2.1) we find that F' Dbelongs to a non-

reduced component of M(c,,cp,c3z) for the choices A <2

€1
or ¢, = 6. In particular there exists a non-reduced com-

A
| A

ponent of M(6,22,66) = M(0,1%,66). Moreover we obtain pre-
cisely one non-reduced component in é%ggﬁgég if we make use
of the discussion after (2.3%). If cq =9, we find a re-
flexive sheaf E'(EM(9,22,0), and the normzlized one is
F'(-5) €M(-1,2,0), but we‘can not conclude that M(-1,2,0)
is non-reduced, even though H(22,56) is, because the con-
dition H'(I;(c,-4)) = 0 of (2.1.ii) is not satisfied. In
fact one knows that M(-1,2,0) is a smooth scheme. See
[H,S7 or [S,M,S].

As a starting point of these final considerations, we will suppose
as known that there is an open smooth connected subscheme

UMEEM(-1,2,O) of stable reflexive sheaves F  for which there

exists a global section s € H°(F(2)) whose corresponding scheme

1 » . o« * . .
of zero's C = (s)O is a disjoint union of two coniques. More-

over dimUy = 11. In fact [H,S] proves even more. We then have

an exact sequence

0 —> O]P—> E(E) — lc: 2) =0

for EGEUM, and since the dimension of the cohomology groups

i . . . : . e e s
H (lcv(v)) is eezeily found in case C  congiste of two disjoint
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coniques, we get

h®(B(1)) = h°(151(2)) = 1

rﬂ for v = -1
R (E(V)) = b (Zy (v41) = o tor veo

0O for v ¢ {-1,0,13.

By dim Uy = 11, Exth)(EJE) = 0. (The reader who is more familier

with the Hilbert scheme may prove our assumptions on UM by first
proving that there is an oper smooth connected subscheme UCH(4,-1)
of disjoint coniques C' and that dim U = 16. This is in fact

a very special case of [K1,(3.1.10i). See also [K1,(3.1.4) and
(2.3.18)1. With ¢, = 3, we have H' (I (cy)) = H'(L; (cqp=8)) = 0,
and by the discussion after (2.3), there exists an open smooth
connected subscheme of M(3,4,0) €%>M(—1,2,0) defined by

Uy = i(p(q_q(U)))° Moreover diﬂlUM = 11 because diﬂlUM4-ho(£(2>)
dim U + ho(wc,(ﬂ—cq)) )

Fix an integer v>1, and let U(v) be the subset of H(d,g)

obtained by varying F€U,cM(-1,2,0) and by varying the sections
ssGHp(E(v)) so that C = (s)o is a curve, i.e. let U(v) =

q(p‘q(UM)) and regard Uy as a subscheme of M(cq,cg,o) with
cq = 2v-1, ¢, = 2—v+v2, d =c, eand g = T+ 7 ey (cq-b).
Recall that p and q are projection morphisms
D jLD-H(d,g)

F

M(cq,ca,O)
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For (C<P) € U(v), there is an exact sequence

0 —> O]P—-> F(v) — LC(E\J-—’\) — 0

some F(v) €Uy. Now (1.1.1ii) and (2.1 ii) apply for v = 2 and
all v>6, and it follows that H(d,g) is smooth at any (CcSTP)
in the open subset U(v)cH(d,g). Moreover by the irreducibility
of p, U(v) is an open smooth connected subscheme of H(d,g).

Furthermore

dim U(v) = 1¢d+%v (v-5)(2v-5) for v>6

(resp = 4d for v = 2) which asymptotically is ~ 4d-+;q;/2 for
~

v>>0. To find the dimension of U(v), we use the fact that p

and q are smooth morphisms of relative dimension h%(E(v)) -1

and ho(wc(4—cq))-1 respectively. This gives
diml%ﬂ+-ho(§(v)) = dim U(v) + ho(wc(ﬂ—cq))

for v =2 and v>6, and since ho(wc(4-cq)) = hq(OC(Cq~4)) =

for v>6 (resp, =2 for v = 2), we get
dim U(v) = 10 + h®(F(v)) for v>6

(resp. = 9+h%(F(v)) for v = 2). The reader may verify that
h%(E(v)) = x(EMW)) = %(V—’\)(2v+5)(v+i!-) - 4a+%(v-5)(2v-5)v-4o

for any v2>2, and the conclusion follows.

We will now discuss the cases 5<v<5 where we can not guarantee
the smoothness of g since (2.1.ii) does not apply. If v =5,
then the closure of U(5) in H(22,56) makes a non-reduced com-

ponent by (3.3). For v = 3 or &4, we claim that H(d,g) is smooth

along U(v) and the codimension



-~ 19 -

gimW - ainU(v) = b (L (e =4)) = h'(B(-4))

where W is the irreducible component of H(d,g) which conﬁains
U(v). To see this it suffices to prove Hq(ﬁc) = 0 and
Exte(lc(cq),g(v)) = 0 for any (CcP)e U(v) because these con-
ditions imply that the scheme D and H(d,g) are non-singular

at any (C,&) with %EHO(wC(LL-c,‘)) and (CcP) € H(d,g) respec-

tively. See (1.11) . Moreover if these "obstruction groups"

vanish, we find

dimW - dim U(v) = dinV¥W - dim ‘-1—/I (U(v)= ho(l\]c) - dim Ext (-I~C(C’1) , B(v))
- 1" (Z5(eq-4))

where dimU(v) = dinlq-q(U(v)) because of ho(wc(4—c1)) =1,

and where the equality to the right follows from the long exact
sequence of (2.2). Now to prove Extg(lc(cq)zg(v)) = 0 we use

the long exact sequence (*) in the proof of (1.1.i) combined with
Hq(g(v)) = 0 and Extg(gng) = 0, and to prove Hq(ﬂc) = 0 we use
the long exact sequence of (2.2) combined with Extz(lc(cq),g(v))::C
and ExtE(lC(cq),OIﬂﬁz HO(;C(cq-u))V = Ho(g(v—ﬁ))v = 0 for

v =5 or v =4, and we are Gone.

Computing numbers, we find for v = 3 that U(3) is a locally

closed subset of H(8,5) of codimension 1, and any smooth con-

nected curve (CcP) €U(3) is a canonical curve, i.e. wo = Oc(ﬂ)c
For v = 4, U(4) 1is of codimension 2 in H(14,22) and

wg = 0g(2) for any (CSP) € U(4).
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