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2.3. The technique of linkage (liaison).

In the preceding section we studied problems related to the non-

’ P
singularity of the Hilbert scheme Hilb 1 at a rational point

(XeP) where P = Pi. It should not be difficult to understand
that this is in general a rather hard problem. Already the ques-
tion of existence a (smooth connected) curve X1 with a given
degree d1 and arithmetic genus gy > sometimes with additional
requirements such as ho(zx(s)) >0 for a given s, is a non-
trivial one. We often solve it by linkage (liaison), and we link
X1 (think that X1 exists) to a curve X, of low degree d,

arithmetic genus g, where we know existence. Reversing this

and

process, we may prove the existence of X, <cIP.
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Now instesd of considering the problem of the non~singularity of
Eil‘bp'f at (X,‘S'P) directly as we did in Section 2.2, we may

seak for a connection between the non~-singularity of H:'Ll‘op'| at
(4,‘] <P =nd the non-singularity of Hilbp2 at (XZS P) where

X, srd 23:2 are linked by a global complete intersection Y.

In thisz :cotion we answer this problem, and also when the linked
curve £.CFP of a "genmeric" curve X,;SP of some irreducible
cenprneat of bHilbp" is itself a "generic" curve for some com-
ponent ci Hilbp2. To be precise we will be studying how defor-
mations ¢ X, SP correspond to deformations of X,&F. It is
not surpv.using that one rather have to study the connection bet-~
ween deforustions of X CYCP and of X,CYC P where Y = X, UX,
is a giotal complete intersection of two surfaces of degree f,1

and f,. So we are situated on the Hilbert-flag scheme D(p;3f4.f5),
and here the connection is very nice. Indeed if D(p;_f_)CM is the
open gubecheze of D(p3f) consisting of objects (XSYSP) such
that X iz Johen Macaulay and equi-~dimensional and such that Y
is a glohol complete intersection in P of type £ = (f“l’fZ)’

see (1.%.11), then

D (Pq ;i)CM = D(P2§£)CM

are isomorphic. Now if Hilbgu is the Hilbert scheme of curves

in P (2.2.7), we know that
| . . R,

is smooth at (XSYSP) under some conditions (1.3.4) or (1.3.14),
and in these cases Hilb | and Hilb 2 are closely related. In
particular (X,|S]P) is a non-singular point, resp a "generic"

point of a component, of Hilbp'l iff (X2S P) € Hilbp2 is
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correspondingly. As byproducts we also prove

dim; cokera = dim, cokera
k XﬁEY k xagr?

and the exact sequence of (1.3.1C) will therefore, in some cases,
make it easy to find hj(gx ) provided we know hj(gx ). Finally
we introduce what we call\t;e postulated dimension of g reduced
Component V of the Hilbert scheme which is the number

uda-bz

2

where 8%, defined in (2.2.7), belongs to a sufficiently general

curve (XEP) of V. Then we prove that V has postulated
dimension, i.e. dimV = 4d4—52, iff the "linked" component has

postulated dimension (2.3.16).

To begin with, we recall some basic facts abbut the notion of

liaison as proved by Peskine and Szpiro in [P.SJ.

Let k be a field and let X,SP] and X,SP be closed sub-

schemes whose union Y = X1L1X2 is a global complete intersection
in IPig, If X; and X, are equidimensional, without embedded

components and without common irreducible components, then Xq

and X2 are geometrically linked by Y. it follows that'

\Y
(1) I = 0 I = 0Y
where (=)VY = HomOY(—,OY). See [P.S.,(1.1)]. Moreover if X4

and X2 are Cohen Macaulay, one knows by Gorenstein duality that

1 ,. .
(2) ExtoY(OXi,OY) =0 for i=1,2.

Then dualizing the exact sequence

0 — _I_Xi/'Y —> 0y —> oXi - 0,
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it follows from (1) and (2) that
v v _
(3 Ix ;=% lXé/Y = O,

Now let Y_C_]Plr: be a global complete intersection and let Xiv_C_Y
be clceed subschemes for i = 1,2 such that X,] and X2 are
eguidincnsional and without embedded components. Then by defini-

tion X,] and X2 are algebraically linked by Y if (1) holds

[P.8.,82]. Again we deduce (2) and (3) provided the X; are |
Cohen Macaulay.

kFur'i:hermore we have the following important result P.S.,(1.3)].

Proposition 2.3.1. Let X&> Y be a closed embedding of equidi-

mensional projective k-~schemes of the same dimension, and
let X %bve Cohen Macaulay and Y be Gorenstein. If X'e> Y
is defined by the sheaf of ideals Iy y = o% in Oy, then
X' is Cohen Macaulay and equidimensional of dimension dimY.
Horecver (1), (2) and (3) holds if we replace X, by X

by X'. | |

snd. AP

Now we will state and prove the main theorem of this section.
For this we need to have a notion of liaison satisfying (3), and we
will therefore make the following definition of linkage used in
this paper. First note that if we define X' SY by -I-X'/Y = O§ =
HomoY(OX, Y) where XCY is given and if X" = (X')', then by
dualizing

0 ">EX/Y > 0y => Oy = O
we fiﬁd a morphism

\



- 113 -

whose cokernel is Extqo (OX,OY). Correspondingly there is a mor-
Y
phism
v
Opr &> Iz 1y

Al

with cokernel Extqu(OX. ’OY)’ and since there are »natural mor-

phisms
Vo
--X/Y - IX/Y —_ O . = -I—X"/Y’
it follows that

x"ex,

Definition 2.3.2. ILet X&> Y be a closed embedding of projec--

tive k-schemes, and define X' <> Y by Iy, /Y= O)\é as
above. |
i) We say that X&> Y is linkable if the natural morphism

Oy &> IV

X' X/Y
and the composition of natural morphisms
Oy =>> Oyy &> IV
X >4 __XI/Y
are isomorphisms. Under these conditions we also say that

Xe> Y and X'e> Y are linked, or link, or that X and
X' are linked by Y.

ii) If any xEAss(OX) satisfies

we say that X&> Y is geometrically linkable, ox that

Xe> Y and X'==> Y 1link geometrically.

Note that the definition (2.3.2i) is just (%) of (2.3%.1), from
which (2) and (1) follows easily. Moreover by (2.3.1), X*> Y
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is linkable provided X is Cohen Macaulay and equidimensional,
Y is Gorenstein and equidimensional and dimX=dimY. And under
these conditions, together with requiring that Y is a global
complete intersection, the notion of linkable, resp. geometrically
linkable, of (2.%.2) coincides with the algebraic, resp. geometric

notion of liaison of [P.S.].

Befere stating the theorem, we will see how the Hilbert polynomials

of X and X' correspond.

Temma 2.%3.3. i) Let Y = 'V(Fq,..,,Fr)_C_]PII: be a global complete
intersection of type £ = (f’l’“”fr) with Hilbert poly-
rcmial g, and let X o> Y satisfy the conditions of (2.3.1).
If X, resp. the linked scheme X', has Hilbert polynomisal p,

r
resp. P, and if £ =i§1fi’ then

p(v) + (1) Tp' (£-n-1-y) = q(v).
ii) Ii‘. n=3% and r = 2, and if the degree, resp. arithme-

tic gonus, of X and X' is 4 and 4', resp. g and g',

then

ot
+
o
1

f,|f2

f+f -4

1 t 'I 2
(@-4') —==—.

|
i
03
Il

Moreover in this case

0% (Zy () = B (Og (£4+E5-4-v)),
D (Ig(v)) = BTy £+ 5m0-0)),
hj(OX(v)) = 1Ty py(E+E5=0-v)).
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Proof. Indeed the exact sequence

0 - EX/Y —> 0y => 03y = 0
together with

-1 -1
Xl
see [A.X.,I,(2.3)], imply that
X(03()) = x(0g()) = x (g @ wy (V).
Using that the dualizing sheaf @y on Y satisfies wy = OY(f—n—ﬂ),

and using duality on X', we find that
-1 - . n-r
X(wg: ®ay (V) = x(wyg: (a+1-£+y)) = (-1)7 "x(O  (f-n-1-v)).

Then we easily obtain the relationship between the Hilbert polynomi;
als p and p' as above, and also the formulas for the degree

and genus. Moreover the expressions for hOQEX/Y(v)) and

hq(OX(v)) are indeed easy. |

Finally to prove
01 (Zg(v)) = 0 (Tyr (£4+E,~8-v))
=X TR ASXTAMTRTITV

we use the exact sequence
0= 1

y > Ix > Ly >0

together with Hq(ly(v)) = 0 and Hz(ly(v))-: Hq(OY(v)), and we
deduce that

1 1 1
0 = H'(Ly()) = B'(Lyy(v)) = H'(0y(v))
is exact. We have already seen that

Iy iy = wx,(tt-fq-fg) and Oy = wY(4-f,|-f2),



- 116 -
and so by dualizing the exact sequence above,
0 3 o} 1 Y
H (OY(f,l+f2-Ur-v)) -> H (OX,(f,l+f2-J-l—-v)) - H (_;_X(v)) -> 0
is exact. However the cokernel of
H°(0y(v')) = H°(04, (v'))
Y X!

is H/‘(_l;X.(v')) because HO(O]P(\)'))—> HO(OY(\)')) is surjective.
Thus

H (_I,X(v))v L (I (£4+E,=4=v))
as required.

We now come to the theorem

Theorem 2.%.4., If ¢q is the Hilbert polynomial of a global com-

plete intersection of type £ = (f;,...,f.) in ]P]r; and if

p and p' are polynomials satisfying
p(v) + (+D*Fp' (T £;-n-1-v) = q(v),
then there is an isomorphism

D(P;;‘-)CM = D(P' ;£)CM

Recall that D(p;f)<D(p,q) is an open subscheme (1.3.11) and
that the K-points of D(p.;g_)cm, k <> K a field extension, are
objects (XcYcP xSﬁec(K)) with X Cohen Macaulay and equi-
dimensional. Thus D(p3f)sy<SD(p,q) is open:‘)

The key lemma of the proof of (2.3.4) is this

Lemma 2.%.5. Let IP be a projective scheme over a field k, let

(XcYSP x8) be an S-point of D(PP) and assume for all

1) by well-known depth and dimension formulas. See the proof of (2.%.6)
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s €S that the corresponding X,CY, of the fibers is link-
sble. If X'6> Y is defined by Iy »y = Oy, then X' is
S-flat and for any s€S the fiber morphisms

Xsw YS end (X')sc—> Ys

. . M
are linked, i.e. (X') = (X,)' where l(x,s)'/Y = 0g -

<
Furthermore

X" = X.

Proof. Let s€S and let m be the maximal ideal of O = Og g°
°
i -
Put 0O; = O/m™, Ji = ker(oi Oi-’l) and

Xi = XgSpeo(Oi)gYi YgSpec(Oi).

Thus O’l = k(s) and X,]

X,CY, = T,. Moreover let Oy =

s .
i
v
HomO (OX.’OY.) and Oy = Hom, (OX’OY>°
Yi i 1 Y

First we procve that
v v
0 ® 0. =0
X o, i1 X5 1

is an isomorphism. To see this we consider the following diagram

of exact horizontal sequences

v \Y2 v
Og ® J; e ., —> 0y ®0; 4
i Oi i i Oi

Voo e L
0o~ HOEOY. (OXi,OYi ® Ji) - HomO (OX. +Oy . ) - Hom,,
i

Yi i i Yl

— 0

(04 ,0 ) =0
. Xi’ Yi_.'] ’

recalling that J, is a k(s)-module, so

1 1
Ext'. (0y ,0, ®J.) = Ext) (Oy ,0y ) ® J. = O.
= Oy XY LT TE0y T g (e)
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Now the vertical arrow to the right in the diagram above is sur-
jective for any i. It follows that the vertical arrow to the
“left is surjective, which therefore implies that the vertical

arrow to the right is indeed an isomorphism.

Next we prove that
1% Y
O0+®k(s) =0
X0 (s) XS
. . . Y AV
is an isomorphism. Note that lX'/Y = Og and _]_Z_(XS)./YS = OXS.
So the isomorphism above implies that X' —> S8 is flat at s€S
and that the fiber morphism (X') €Y, of X'CY at s€S coin-
cides with (Xs)'SYs’ i.e. that (Xs)' = (XS)'. Now let x€X
map to s €8 via the structure morphism X« 8. Then x€Y and

abusing the language, xEXi and xeYi as well. Put

A = Ox,x B = Oy, x3 Ay = OXi,x’ By = OYi,x’
A A vV vV
B = iﬂi;zziBi, A= i_i.EAi’ A" = Homy(A,B) and 4] = HomBi(Ai,Bi).

Then it will be sufficient to show

v ~. AV
Since we alrealy know
AY® - M
g i1 T ALY O3 Ay g
Bi Oi

we deduce that [EGA,OI,(7.2.9)]‘

(limAY) ® B, =AY,
<e— 17 B 1 1

Moreover one knows that [EGA,OI,(7.2.’IO)]
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1imdY = Hom (//;\ Q) -AV®1§
g = Hom LA,B) =

<-_:L-*- B B

and we conclude as expected.

Finally it remains to show that

be exact. Since X is S-flat and (X")S = (X
;th/x®k(s) = 0,
and so by Nakaysnmas lemma, X = X, as required.

Note that we can easily continue the proof and we will see that,

with assumptions as in the lemma, X and X' "are linked by Y.

Proof of (2.3.4). If § =D(p;f)gy end if (XSYSPx 8) is
the restriction of the universal object of D(p,q) to S, then
by (2.3.5) there is an object (X'SYSPx 8) €D(P)(8) which by
(2.3.3) and’ (25.’1) factors via

Starting with S = D(p';f),y and using (2.3.5), we have an in-

verse, and the proof is complete.

Note that it is not necessary for the theofem (2.3.4) to deal
only with global complete intersection Y__q]Pf{l . Indeed let 1P
be any projective lzéscheme and let D(p,q)CMG be the oper?_)sub-
scheme of D(p,q) consisting of points (XE€Y<CP) with X<=> ¥
as in (2.3.1). If (XcYcP) is a given k-point of D(_.p’Cl)CMG’

1) Use for instance [H4,V,§9].
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and if the corresponding linked object X' &> Y has Hilbert poly-
nomial p', then the connected component of D(p,q)CMG containing
(XcYc®P) and the connected component of D(p',d)oye containing
(X' cYcP) are isomorphic. This follows easily from (2.3.5) and
(2.3.1)

Now we come to the corollaries, and we restrict to the case of
curves in IP =IP12° In the following D(p,q)CM is the open sub-
scheme of D(p,q) whose K-points are (X_C_:_YE]P}g) with X a
curve over K (2.2.7), so D(p;_;‘-)CMED(p,q)CM is open, and abu-
sing the language, we usually look upon the first projection

morphism pr, as defined on D(p;_i_‘_)CM,i.e. the morphism
pr, D(p;_j;)CM e HilbgM

is the composition of D(p;:-f-)CM > D(p,q)cM and the first pro-
jection morphism D(p,q) oM = HilbgM. Note that pr, as above
is no longer in general a projective morphism. Since we work

with curves in ]Pi, we sometimes write
Hilbgy = H(d,8)qys
D(p;i)m = D(dsg;_:.f_)CM

where p(v) = dv+1-g. If d' and g' are as in (2.3.3ii),

we let
prj : D(d',g';£) oy —> H(A',8" )oy-

Corollary 2.3%3.6. Let fq1.f5,4,8,4" and g' be numbers satis-
fying the relations of (2.3.3), let UcH(d,g) be the open
subscheme whose K-points (X& ]P;{) satisfy

H'(Ix(£,)) = 0 and H (I (£;-4)) = 0
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for i = 1,2, and let U' cH(d',g') be defined by the same

conditions, Then the schemes

U(£)

un pr/l (D(dsg;i)cﬂ)

U (£)

it

U npri(D(a', 8" 58 gq)

are open subschemes of H(d,g)yy and H(4',g')gy rTespec-

tively, and there is a commutative diagram

D(p3floy — D(p";Day
pr; (U(E) = (pry)” (U (D))
g '

y 7 b 7

U(£) U

where the restricted projection morphisms PT4 and pr,']
of the diagram are irreducible, surjective and smooth of

relative dimension

2
aim_pr; " (U(£)) 2 0%y (850,

Pr’](x) = 1=
for any x= (XgYE]P) €U(£),

2
o I
Cllmxu (PI',‘) (U (i_) ).pr:] (x') =i§/]ho(-];X' e (fi)),

for any x' = (X' €Y' cP)eU'(£).
In particular the irreducible, resp. embedded, resp. con-

nected components of U(f) and U'(f) are an one-to-one

correspondence,

We observe by (2.3.6) that the k-points of the "linked" family
U'(_f_) is given by
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- |there exists Y of type f and a ]
U'(f) = {(X'EIE’) € H(a! ,g')CM-curve (XZcP) of U containing Y ;\
' such that X' and X are linked byY|

Moreover if XcP is a curve of U(f) contained in a global com-
plete intersection Y of type £, and if X'cTP is the linked
curve of X by Y, then we easily deduce by (2.3.6) that the local
ring OH.,X of H = H(d,g) at (XcP) is non-singular (i.e. as
always smooth), resp. a complete intersection, resp. satisfies the
condition Rk’ resp. the condition Sk’ resp. is generically re-
duced (i.e. Ro)’ resp. is without embedded components (i.e. 8,),
resp. reduced, resp. normal (by Serre's criterion), resp. Cohen
Macaulay, resp. regular, resp. an integral domain iff the local
ring OH',X' of H' =H(4',g'") at (X'<cP) is non-singular, resp.
a complete intersection etc. See for instance [A.K.,VII,(4.9)].
Furthermore XC P is a "generic" curve for some irreducible com-
ponent of .H(d’g)CM iff (X'cP) is a "generic" for some compo-
nent of H(d',g')CM. Indeed we will call a sufficiently general
point (XSSP of an irreducible non-embedded component V of

H(d,g)Clvl a "generic" curve for V.

Proof. Note that U is an open subscheme of H(d,g) Dby semi-
continuity [H1, IIT,(12.8)], and that the restriction of the pro-
jection pr,:D(p,f)gy —> HilbBy to pr; (U) is smooth by (1.3.4).
It follows that U(L), which indeed is equal to pr,(pr; (U)), is

open, and that

pry 2 ey (U(L) = U = (L)

is smooth and surjective. By (1.3.13) it is irreducible, the same

arguments apply to pri: (pr,'l)""(U'(_f_)) - U'(£) as well,
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To see that we have
“‘1 ~
pr; (U(£)) = (pr)(U' (L))

under the isomorphism D(p;i)CM = D(p';i)CM of (2.3.4), it will
be sufficient to show that

H'(Ix(£)) = 0 and H (Iy(£,-4)) = 0

for i = 1,2 iff
/l
H'(Iy(£,))=0 and H'(Iy,(£;-4))=0

for i = 1,2, where X and X' are linked by some Y of type £.
This equivalence follows from (2.3.3). Moreover the dimension

formulas for the fibers are a direct consequence of (1.3.12).

Finally for any irreducible morphism p:D —=> H of finite type
of noetherian schemes, we easily see by the discussion of (1.%.13)
that the inverse image of a decomposition of H into connected
components, resp. a topological decomposition of H into irre-
ducible components gives a corresponding decomposition of D;
Moreover if we take the inverse image of a decomposition of H
into irreducible and embedded components, i.e. H = UH. as a

i
scheme, we obtain a decomposition

D = Up” (H;)

into irreducible subschemes where the inverse image of the non-
embedded components are non-embedded by the topological argument.
However, if p is smooth and if x€D is the generic point of

p~'(H,) where H, is an embedded component, we deduce by the

depth-formula

depth OD,x = depth oH,p(x) + depth(OD,X® k(p(x)))
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and the corresponding dimension formula that

depth OD,x <dim OD,X

because depth(OD’X@'k(p(x))) = dim(OD,x® k(p(x))), and we are done.

Sometimes we Jjust want to know when we can deduce the non-singu-
larity of H(d',g') at &' E]P,)‘ from the non-singularity of
H(d,g) at (X<P), and we have

Remark 2.3.7. Let XcP= ]Pf{ be a curve contained in a Y of

type £ such that the morphisms vy of (1.3.1C),

2
. 7O 1

is surjective, and the corresponding morphism of the linked

curve

2
0] 1

is the zero map. Then if H(4,g) is non-singular (i.e. as
always smooth) at (XcP), then H(4',g') is non-singular
at (X'€P), This follows easily from (1.3.3), (2.3.4) and
from [EGA,IV,(’I'?,"I’I,’I)] since, according to the exact se-
quence of (1.3.1C), Yyrey = O iff the tangent map of

pr), at (X'cYCP) is surjective.

Before giving examples, we observe that we via (2.%.3ii) can

replace U(f) and U'(f) by some smaller open subschemes and
still conclude as in (2.3.6). Indeed if

e, f,g:2 — Z+

are maps where 2 + 1s the positive integers, we can consider the
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open subscheme U, of U(f) of curves Xc P where
ho(_I_X/Y(v)) <e(v), h"(_I_X(v))f_f(v) and h/'(OX(v))f,s(v)

for all v. Then by (2.%.3ii) we transform these conditions into
corresponding conditions for the linked curves, and these define
a subscheme U,ZcU'(f). Then (2.3.6) holds if we replace U(f)

and U(L) Dby U, and U) respectively.

Note also that if XcP =IP£ is a curve which is generically a
complete intersecticn over an algebraically closed field of
characteristic zero, then by [P.S.,(4.1)] there is a global com-
plete intersection Y of type £ = (f,],fz) containing X with
fjjmaani for j = 1,2 such that the linked curve X' of X
by Y is reduced and the linkage is geometric, Moreover X' 1is
non-singular, resp. locally a complete intersection, provided X
is non-singular, resp. locally a complete intersection. Observe

that

mEX N < max{e(X)+3,c(X)+2}.
I<iz<r,

Indeed c(X)>e(X) implies maxn,lif_ maxnai-E = c(X)+2, and

c(X)2 e(X) implies max n,]i_<_maxn2i-’l = e(X)+3,

Examples 2.%.8. We consider the Hilbert scheme H(9,8)s over an alge-

braically closed field k of characteristic 2ero, and we review
the family of (2.2.10i) which is the subset U,II'IH(9.,8)S where

U, ESH(9,8)yy consists of curves (XSP) satisfying

i

th‘I_X(\))) f /I for \)=2
0 for v#£2

It
o

hq(OX(v)) for v>2,
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Since x(_ZEX(2)) = -1, h/l(_I_X(2))_>_’l, and so U4 is open by semi-
‘continuity. We have in (2.2.10i) seen that for any smooth
curve XSP of U,, h'(Ny) = O, and this is equivalent to
saying that U,N H(9,8)S is smooth of dimension 44 = 3%6.
We will now illustrate (2.3%.6) by giving another proof for

this, from which we also deduce some further informations.

Since the resolution of I = ®H°(Iy(v)) must be of the
form as in (2,2.10i), any X< P of U, is contained in a
global complete intersection Y of type (4,4) where

4 = maxn,;. This gives by (2.3.3) that the linked curves
X'cP satisfy

a' =7, g' =4,

L

hq(gx,(v)) = hq(gx(q_v)) - 1 for v = 2
- 0 otherwise,

ho(g_Z.X,/Y(v)) = hq(OX(lL-v)) =0 for v<2,

and that by [P.S.,(#.1)], if X is non-singular, there
exists Y of type (4,4) such that X' is nonésingular. Now

we consider the open set U, of H(7,4)y of curves (X'cP)

satisfying
ho(_I_X.(v)) =0 for v<2
1 (1 for v =2,
B (Exe (V) = {0 otherwise,

and we observe that for any (X'cP) € U,"nH(’7,4)S there
is a Y of type (4,4) such that the linked curve XcP
of X'clP by Y is non-singular. This follows from

max(c(X')+2, e(X')+3) = 4
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and [P.S.,(#.1)]. Then by (2.3.6) U,]-nH(9,8)S is smooth,
resp. irreducible, iff U%ﬂH(’?,Ur)S is smooth, resp. irre-
ducible. And it is easy to see that U, 0NH(7,4)g is smooth
of dimension 44' = 28 Dbecause d4'>2g'-~2 implies H"(oX-('\))
- 0. Hence H'(Ny,) = 0. Thus by (2.3.6)

dim(U,NH(9,8)g) + 2h° (Ig py(#)) = Aim(UA N H(7,4)g) + 2h° (g, 54D,
and since 1°(Iy, y(#)) = n'(0p) = 8 by (2.3.3ii),
din(U, N H(9,8)g) = 36.

Furthermore if we accept that u;n H(7,4)8| is irreducible
(Recall d'>g'+3 should imply H(7,4)S integral, see
[N,§21), it follows that U,NH(9,8)g is smooth and con-

nected.

Example 2.3.9. Let Xk be algebraically closed. Then there is a

non-embedded non-reduced component V of H(14,24) and an
open subset U of H(14,24), UcV, of smooth connected

curves lying on smooth cubic surfaces. See (3.2.4) or

(M2]. By (3.1.3) ,

Hq(zx(\’)) =0 for v§g {59495}
for any XcP of .U, and one may also prove (use (3.1.61iii))
1 DI 1
h (Ix(3)) = 1, h (Ix(®)) = 2, b (Tg(5)) = 1.

Using x(_I_X(\))) = x(O]E,(v)) - x(OX(v)) and Riemann-Roch,
we find that any X<P of U is contained in a global
complete intersection Y of type (6,6). By (2.3.3ii)

the linked curve X'c P is of degree d4' = 22 and arith-
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metic genus g' = 56. Moreover any XcIP of U is con-

tained in U(6,6) of (2.3.6) since
H'(Ix(6)) = 0 and H'(L(2)) = O,

and (2.3.6) applies. Thus the linked curves X'CIP belong
to a non-embedded non-reduced componenf V' of H(22,56).
Finally by using [P.S.,(4.1)], V' contains smooth connec-
ted curves. Indeed it will be sufficient to prove maxng; =6
where the n.. Dbelong to the graded resolution of I =

Ji
@Ho(lx(v)) for XcP in U, We omit proving this.

Our next corollary is concerned with a family V of Hilb® and
its corresponding 'linked" family V' of Hilbp', and it relates
the dimension of V! to.the dimension of V. First to define

V', we will here just consider those closed irreducible families V
of Hilbp, which appear as the image, via the first projection
morphism PT,, of some irreducible non-embedded component
WED(p;E) gy where D(p;I);, is the closure of D(p;f)gy in
D(p,a). Now start with such an irreducible closed subset V of
Hilb® ang give V the reduced scheme structure unless V is an
irreducible component of HiloP in which case we always endow V
with the scheme structure induced from the scheme structure of
HilbP, Anyway by generic flatness [M1, Lect 8] and by the smooth-
ness and connectedness of the fibers of pr,: D(p;g)CM-> HileM,
see (1,5,42), there is an open subscheme UCSV, . such that the

restriction of pr, to prLT" (U)SD(p;i)CM,

pry : pry (U) = U

is irreducible and smooth of relative dimension
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dimpr> () - @inU = §‘h°(.1 (£.))
PT - R % Suriag

where (XcYcCP) ¢ pr (U) In particular there is only one irre-
ducible component W of ﬁfﬁ?ijzﬁ whose image via the first pro-
jection morphism is V, and using the isomorphism D(p;ﬁ)CM==D(§;£)CM
of (2.3.4), W corresponds to an irreducible component W' of

1
D(p L)~ Then we define the "linked" family V' of HildP? by
V' = pI','l (W')

where prj: D(p',q) wé-Hilbp', and we give V' the reduced scheme
!

structure unless it is an irreducible component of Hilb® . Now

starting with V', then since there is only one irreducible compo-

nent W' of D(p T)CM whose image is V', we deduce
(v)!
Moreover there is an open subset U'cV' such that

2 2 )
. ' . _ 0 _ 1 _
dim W' = dimV? —i):/\h (-:LX'/Y(fi)) —ii’\h (.OX(fi 4))

for any (X'cYCS® of U' where X'&> Y and X=> Y are linked.
Note that when we talk about (irreducible) components of Hilbp,

or of D(p,q), or of some open subschemes of these, we always

mean, unless explicitely mentioning the contrary, a non-embedded
irreducible component endowed with the scheme structure inherited
from the scheme of which it is a component. It follows that the
dimension of the corresponding local ring at the generic point of

W is zero, and such a component is reduced iff this local ring is

a field.
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Corollary 2.3.70. i) Let VEHilbg, be a closed irreducible
subset of HilbléM which is ’che\image/l )of some irreducible
component .of D(p;_f_)CM. Then there is a well-defined "linked'"
irveducible closed subset V' of HilbBy such that (V')'=7V

C
and such that

dim V' = dimV +
: i

2
- o) 1 :
where XCIP is a sufficiently general point of V and

where Y 1is a global complete intersection of type £ con-

taining X.

ii) Moreover if

B (Iy(£;-4)) = 0

for i = 1,2, then V' is an irreducible component of Hilbp,

and in this case, if V itself is a reduced component, then

so is V',

Proof. ii) By (2.3.3ii), H (I (£;)) =0 for i =1,2, and so
V' is a component by (1.3.5). Now if V is reduced, then the
component W of m which maps to V wvia the first pro-
jection is reduced. Indeed this follows from the smoothness of
pT, :pr;/](U) —> U. Thus W' is reduced, and so is V' since pr}
is smooth at points (X' CYCP) satisfying H'(Lgi (£1)) = O.

This proves (ii).

Our final corollary is concerned with the relationship between
the algebra cohomology associated to x = (XSYcSTP) and the

corresponding linked object x' = (X'cYcP).

1) More precisely, the closure of the image,



- 131 -

Corollary 2,3.17. Tet X be a curve in P =T, let Y be a

global complete intersection of type (£,4,f,) containing X,
and let X' be linked to X by Y. Then

dim coker O‘KE_Y - dim coker 1)2(91 = dim coker Gy <Y dim coker 112(, cy

where o and 1° are as in (1.3%3.1C). Moreover if the

linkage is geometric, then

2

coker lXE_Y = 0 =coker l2

X'cY
Proof. If d(x) is the category associated to x = (XSYcP),
see the discussion before (1.2.5), and if x' = (}f't_:_Y_C_]P), then
by (2.2.14) |

x(d(x)) = x(a(x"))

because (4-f,-f,)d+2g = (4-f,|-f2)d' +2g' by (2.3.3ii). Using
that the isomorphism D(p;g)CM = D(p';:_f) oM induces an isomorphism
of tangent spaces, we have the first part of the conclusion of
(2.3.11). Finally suppose that f:X <> Y is generically an
isomorphism, and let g:Y&> P be the embedding. To show

coker 15y = O, it will, by the big diagram of (1.3.1), be suffi-
cient to —show that Aa(i‘,OX) - Aa(gf,OX) is injective. 'According

to the spectral segquence of (1.2.3), there is a commutative diagram

47(£,04) —> A3 (gt,04)

= . i

! |
A
HO(A7(£,04)) —> BO(A%(gf,04))
where the vertical morphism to' the left is an isomorphism because
-_é_q(f,OX) - and _A_E(f,OX) have support in XN X', Moreover the

local version of the exact sequence of (1.2.3) shows
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A°(£,04) = A7(gf,0y)

and we are done.

We may use (2.5.’\1’1) to compute h/l(ﬂx), and for this we consider

the exact sequence of (1.3.1C);
Yy A Aoy SEE o o1
>@H (Ly(f;)) ~>cokeroy y —> H (My) ——=>OH (04(£;)) =,

and we review (2.2.10ii) where now k is an algebraically closed

field of characteristic zero.

Example 2.3,12. Let £ be as in (2.2.10ii). We want to prove
H'(y) = 0. Since

maxn,: <max(c(X) +2, e(X)+3) =5

and since s(X) = 3, we may link X by a global complete
intersection Y of type (3,5) such that the linked curve

X' is reduced.(Indeed since X is smooth, we may essentially
by (P.S.,(#.1)] find a Y of type (£,,£5) such that the
linked curve X' is reduced, where f, = maxn,; or larger
and where f, is the degree of a surface V(F,]) for which

X > V(F,]) is generically a divisor.) Using (2.3.3ii) it

follows that Yxiey is surjective because

B (Zg0(3)) = 1" (Zg(M) = 0, 1@ (5)) = 1 (@g(-1) = 0,
and that Hl‘(gx,) = 0 because X' is reduced and
hq(OX.(’l)) = ho(_I_X/Y(3)) = 0. Thus cokerOLX.”CnY = 0 Dby the

exact sequence of (1.3.1C), and by (2.3.11), coker Qyey = 0.
Then again by the exact sequence of (1.3%.1C), Yxey is

surjective and

H'(My) = H (0g(3))2H (05(5)) = O.



- 133 -

ing a good formula for the dimension of a reduced component V of
HilbgM which holds in most cases. Indeed the formula of (2.2.13)
is not always easy to use. So we postulate a dimension formula
of V, and our main contribution is that, under some conditions,
the dimension of V 1is as postulated iff the dimension of the
"linked" component V' is as postulated. Technically the whole
point is to generalize (2.3.11) together with the exact sequence

of (1.3.1C), i.e. we will construct an exact sequence

_ ) , ‘
0 > OB Ly ry(£;)) > 41(2,0,) = By T ow' (1)) =

1 2 2
C(XSY) = H'(¥y) -> Homp(I,H(I)) —> ExtS(I,HS(I)) ~> O
where C(XCY) Ccokeray o and where A = R/I is the minimal cone
- 2
of X in P, and we will show that C(XSY) and _ExbS(I,H(I))
is invariant under linkage. Now if XcC P is a sufficiently gene-

ral curve of a reduced component, one knows that

dinV = 4d+h (W),

The number
n : %
L+ dlmoHomR(I,H (1))

which we can show is equal to 4d+52 with 62 as in (2.2.7), is

the postulated dimension of V. Therefore V has postulated

dimension provided
C(XCY) = 0 and  Ext2(I.HX(I)) = O
- o RV """ m e

We expect these conditions to be weak for a "generic" point XCP

of a reduced component.
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To motivate we consider the problem of whether it is reasonable

to expect coker Ugey = O if Y = V(F,l,F2) is chosen in the

following minimal way:

deg F,|

Ho(Zp(£4-1)) = 0O for f,

degF

o
Indeed (2.3.11) makes it easy to produce special examples where
cokeray # O as proposed by M. Noether [N,§12.4]. On the other

hand we may prove that the conditions

= ='f" =
Su,\) GU-,V (u f, and v f2)

appearing in [N] is equivalent to
coker O‘XEY =0

provided D(p,q) is non-singular at (XSYSP). And the whole

list of curves in [N] satisfies s = 0
[ ] H,yV MaV,

“of [N, §12.4]. So we expect that coker Gyey = O 1s a weak claim

except for those

for large classes of curves provided f, and f‘2 are small, and

that C(XCSY) = 0 for large classes without regquiring f, and
f2 small.

Example 2.3.13. There are curves X of degree d = 271 and genus

g = 54 in IP:IPE,: whose ideals I, possess a resolution of

the form

2
0 = 0p(-9) ®0(-6) »1331039(-5) - Iy = 0.

Thus for any such curve, e(X) = max No s -4 = 5, and since

the cone of X is Cohen Macaulay,

B'(8y) & Homp(I,HX(I)) = H'(0g(5))%
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by (2.2.9). Therefore if Y is a global complete inter-
section of type (5,5) containing X, then the exact

sequence
1 12 2 .1
0 -> coker XY - H (Ny) -—>iE?qH (0x(5)) == 0
implies
2 .
ares = dim coker Qyey = 1.

the that to construct curves X as above we take a plan
curve X' with d' =4, g' =3 and a global complete
intersection Y of type (5,5) containing X', and we let
X be the linked curve of X' by Y. Sincé X' dis of
type (1,4), H (Hg) =H (0, (1))®H'(0g, (4)) ® k because
Wy = OX,(’I). Thus.

dim coker G'X'_C_:_Y = h/| (_N_X,) =1

by (1.3.1C) and by (2.3.11)

dim coker QXEY = 1.
Moreover using (2.3.3), d =21 and g = 54.

This example of coker Oyey Z0 is minimal with respect to the

number s(X) among the -c-ur'ves whose cone is Cohen Macaulay. How-
ever by @.3.14) and (2.2.9), all curves satisfying the conditions
of (2.2.9) have C(XcY) = O. In particular all curves whose cone

is Cohen Macaulay satisfy C(X<SY) = O,

Lemma 2,353,714, Let XCTP = ]Pi be a curve of degree d and let

Y be a global complete intersection of type (f,‘,fe) con-

_ taihing X such that X &> Y is generically an isomor-

phism (as in (2.%.2ii)). Then there is a group C(XSY)
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and exact sequences

- HO(ly) A Yxgx, QBH (Ix(£:)) = C(XEY) =
i=

— 1" (W) > Hom(I,HX(I)) => Ext5(I,HS(I)) ~> O,

and

O-*C(XEY)-'cokeraXtY—~oHomR(I/I ,Hi(I))-*oExtgﬁl,Hi(I))"O

where A = R/I and B = R/I is the minimal cone of X

and Y in JP respectively. Moreover all groups of the
. ) ] 2

second exact sequence are invariant under linkage, and if &

is the number introduced in (2.2.7),

2.2 o Top
44 + 8 *iiq[ho(lxﬂ(fi)) ~h (Iy(£;))]

is also invariant under linkage.

Proof. We consider the diagram of exact horizontal and vertical

sequences

Yiey 12
>OH (Ix(£;)) => coker aXCY - H () SCY: 4 (OX(f )) =0

0 —> _Homg(I/Iy,H2(I)) = _Homp(I,H(I)) =@ H (0g(f;))

|

2 2
oEXR(I’Hm(I))

b
0.

For the vertical sequence, see the spectral sequence of (2.1.2),
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and combine with H'(Ny) —=>> Ext2(I,I) surjective. It follows

easily that there is a well-defined morphism
cokeraxsy.~> OHomR(I/IB,Hi(I))
whose cokernel is OExtg(I,Hi(I)) by the five-lemma . Let C(XCY)

be the kernel. Then both sequences of'(2;5.14) is easiiy seen to

be exact, and it will therefore be sufficient to prove that
Hom, (I, ,,H2(I)) and Exto(I,H(I))
o0lp B/A"m o R *"m

are invariant under linkage where IB/A = I/IB. To see this, let
A' = R/I' %be the minimal cone of the linked curve X' of X

by Y. Then by Gorenstein duality the pairing
H°(A) x Homg (A,B) —> H2(B)
m BY™ m

induces isomorphisms

A
H2(A) = Iy v, and Ho(4)' = /a0

because Ip,n. =@H(Iy ry(V)) =®HomOY(OX,OY(V)) = Homp(4,B).

((-)A is completion with respect to the maximal ideal of B).

Correspondingly

LGOI RIS ACDNES WX
Recalling that _

HO(I) % Ho(A) and EO(I') = HI(A'),
we deduce isomorphisms

JHomg (T /4 (1)) = Homg (Ty /4 Ho(1'))
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since to any B-linear map

5
IB/'A - Hm(I)
there is a map
I Brr\V Voo BT
B/A' &> H (1) = I = Hy(I')
and conversely.
Next.to prove that

2 2 ~ i1 e
(EXER(T,EE(1)) = Exbg(I',HA(1'))

we use the duality theorem (2.1.5), and it will therefore be suf-

ficient to prove
2 perl ~ 2/l
_q—E}Ctm(I{m(I) ,I) - —4E}Ctm(Hm(I' ),I' )e
Now the spectral sequence of (2.1.2) implies that
L2 ~ 2 2
_ExES(E(D),1) = Homg (B2(1),HE(1))

and correspondingly for _4Exti(Hi(I'),I')° So it suffices to

prove that there is a perfect pairing
2 2 2
HO(I) xHo(I') — Ho(B).
This follows from the usual Gorenstein duality concerning
H2 (L, 5 ) % Homg (I /0 ,B) —> H2(B)
m\B/A B*"B/A? m
if we combine with the exact sequences
2 2 2
0 - Hm(I) —> Hm(IB/A) -—> Hm(B)v
2
B —> HomB(IB/A’B) - Hm(I') -> 0,

see the proof of Hq(LX(v)) =-H1(lx.(f1+f2—4—v))v of (2.3.3ii)
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which is similar. Thus
Ho(T) = BA(1")"

as required.
Finally using the first exact sequence of (2.3.14), we get that
a' - ain (X cY) + dim Ext2(I,H(I)) =
= (o) R ’Hm B
o} 1 | .
zlh (;XJY(fi))-h (Lx(fi))]-+4d-+d1moHomR(I,Hi(I)).
Therefore it will be sufficient to prove
2 ‘m H 3
6% = dim_ omR(I,Hm(I))
since it then will follow that
SIRO(Ty (2 )) = B (T (£, ))] + 44 + 62
SN /YN =X i '

is invarient under linkage by the part of this lemma which already
is proved. Now using the graded resolution of I appearing in

(2.1.6), we find a complex
T, r, T

3
0= Homg(1,H2(T)) 2@41{‘ (0g(143)) DH' (Oglnp;) *iEEH/] (0g(nz;)) =0,

and it is enough to prove that this complex is exact. So we must

prove

1 3 2 5¢ _
OEXtR(I,Hm(I)) = 0 and OEXtR(I,Hm(I)) = 0.
Now by the duality theorem (2.1.5) we easily see
Ext?(I,I) = 0 and Ext2(I,I) = O
o m? - o TmTYs T T

and so by one of the spectral sequences of (2.1.2), we conclude as

required.
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Then we make the following definition.

Definition 2.3.15. ILet V be a reduced component of H(d’/g)CM

and let XC P be a sufficiently general curve of V.

With 82 as in (2.,2.7)', we say that V has postulated

dimension provided

dimV = 44 + 62.
Then we e&sily prove

Proposition 2.3.16. Let V be a reduced component of H(d,g)CM

and suppose there is a curve (X<P) of V and a global compl'ete

intersection Y of type (£,,f,) containing X such that
(I (£.)) = 0 and H'(L(£,-4)) = 0
=x il = XMy =

for i =1,2. If V' is the linked component, then V' has

postulated dimension iff V has postulated dimension.
Proof. If (X,SP) is the "generic" curve of V, then
H'(Iy (£5)) = 0 = H'(Ly (£5-4))
=X, 7100 T T T =X, 1

for i = 1,2 by semicontinuity and by the assumption on (XcSP).
If Y, is a global complete intersection of type (i‘,‘,fg) con-
taining X,, then by (2.3.6)

dinV +2h°(_];_X1/Y1(fi)) = dim V' +2h°(;_XJ‘/Y1(fi)),

and we conclude by the last part of (2.3%.14).
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We have introduced the notion of postulated dimension only for

reduced components, For the non-reduced components we usually

expect

dimV <44 + 6°

since we for a sufficiently general curve XC P of 'V expect
h/l(l_\I_X) = 62. See (2.2.9) and the discussion after the proof.
Anyway we will in Section 3.2 give classes of non-reduced compo-
nents, all of which satisfy

AV = d+g+18<4a+0(04(3)) = 4d +8°,

Once having such a non-reduced component, we can find other non-
reduced components by using (2.3.6) as illustrated in (2.3.9).
Combining the conditions of (2.3%.6) with the last part of the

conclusion of (2.3.14) we see that
o< 2
dim V<44 + &

for all the non-reduced components obtained in this way.

Observe also that the number 62 is easily found provided
s(X) = minn,; is small. Indeed if X is a smooth connected
curve and if s = s(X), then

1) s<3 implies 62

B1(04(s)) ,

2) s=4 implies 6% = b"(0g(s))

unless X 1is a global complete intersection in which case

52 = 1" (0g(s)) +

S

]

3) s=5 implies 62 = h’I(OX(s))

unless the cone of XS is Cohen Macaulay. In fact if X is

2

a'global complete intersection, then 6 is immediately found,
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and otherwise we link the curve X to a curve X' by a global
complete intersection Y of type (s,f) where f is as small

as possible. By (2.3%.3ii)
B1(0g(£)) = hO(Zy, jy(s=4)) = O

unless X'is plane and s =5 which implies that the cone of XcP

is Cohen Macaulay by (2.3.3ii) . See also (2.3.13).

Remark 2.3%,17. (Components of the Hilbert-flag scheme of postu-

lated dimension.)
Let W be a reduced component of the Hilbert-flag scheme
D(pﬁ,q)cM = D(d,g;g)CM,‘ We say that W has postulated
dimension provided

dimW = 4d+62+§ (n°(z (£ )-hll(I (£.)]

P Y4 S =71

where XcYCP is a sufficiently general point of W and
where Y is a global complete intersection of type

(f’l"”"’fr)’ r<2, In view of (2.2.14) we deduce that W

has postulated dimension iff

a2 - coker 12 = 62

T 4
res -t h (OX(fi)"

i=1
Compare with (2.2.9ii) . If W has postulated dimension,

we observe that

T
dimpr (W) = 4d+ 6% -5 0 (1 (5,)) .
i=1 o7

Moreover if r = 2 we get by (2.3.14) that a reduced com-
ponent WED(d,g;fq,fz)CM has postulated dimension iff
the "linked" component W' < D(4',g' ;f’l'fz)CM has postu-

lated dimension. If r =1, say f, = s, we find that W
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has postulated dimension iff
. 2.0 1 s+3 2.1
dim W = 4d+6+h (lx(s))—h (_I_X(s)) = (4=s8)d + ( 3 ) + g~2+8-h (OX(S))

by (2.2.74). In particular for small s

]

dimW = 2d+g+8 if s s(X)

il

2,

dimW = d+g+18 if s = 8(X)

[

2,

and unless X 1is a global complete intersection,

dim W

]

g+ 33 if s =s(X) = 4,

We prove the validity of these formulas in Section 3.’1
under some conditions. In fact the dimension of W is as
postulated provided X is a smooth connected curve which
is a divisor on Y where (X<YcP) is the "generic” point

of W.

Finally observe that a reduced component V of the Hilbert scheme
H(d,g) has postulated dimension in the following cases. First if
XCSP is a sufficiently general point of V, we know that V has
postuiated dimension provided the curve XCIP satisfies the con-
ditions of (2.2.9i) + Next we claim that if X is a smooth con-
nected curve which is a divisor on some surface Y of degree

s<4 , then V has postulated dimension and Hq(_I_X(s)) = 0. To

see this, let WcD(d,g3s) be a component such that pr,(W) = V.
Then pr,, restricted to prgq(V) , 1is generically smooth by

generic flatness and by the smoothness of the fibers of pr,‘(’l.,5.,’l2)=.

In particular W is a reduced component of postulated dimension,

and the tangent map of PT,

p] : 47(d4,04) = HO(N.
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is surjective., This implies the injectivity of

1 2
H (;[_X(S))«C-> A (g-’od)res = COkerOXgY

by using the exact sequence of (1.3.,1C) . By the discussion of
(3.1.1) which essentially uses (1.3.9B), coker Oxey = 0, unless

s =4 and X is a global complete intersection in 1P, Com-
bining with
2

dimpr (W) = 43+ 6% -1 (L(s))

we conclude easily,.

Example 2.3%3.18, We claim that there is a reduced component

V' €H(10,14) of dimension 43 which does not have postu-
lated dimension, and we will indicate why. In fact there

is a reduced component V of H(4,-1) whose general

member X_C“]E’5 is a disjoint union of two conics. (Apply
(3.1.10) to the component W(&,m) = W(2,2,0,0,0,0,0) of
D(#,-133) and let V = pr,(W(s,m))). Now if WE&D(4,-1;2,7)
is a component such that V = pr,i(W), then there is a "linked"
irreducible subset V' of H(10,14) which by (2.3.10) is

a reduced component of H(10,14) of dimension 43. The

2

number 44+ & which belongs to V', is

2

43+ 6% = 43 +1"(04,(2)) = 4 +1°(Zy y(3)) = 42

where X' and X are linked by a sufficiently general Y
of type (2,7). The dimension of the groups OC(X'<Y) is

t
seen to be 1, and V contains reduced curves,
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3.1, The Hilberb—figg scheme of curves and low degree surfaces.

In this éhapter k 1is algebraically closed, and the components
are irreducible and non-embedded unless explicitely stating

"connected component” or "embedded component'.

Let D(4,g3s)g be thé Hilbert-flag scheme of smooth connected
curves X of degree d and arithmetic genus g and surfaces Y
of degree s, XcYcCP = IP?C. We describe in this section the
irreducible components W of D(d,g3s)g for s<3 which contain
points (XCYCTP) where X is a divisor on Y. Indeed D(4,g;2)g
is a smooth connected scheme, and it contains points x = (XSYCSP)
where X is a divisor on a smooth quadric surface Y if it is
non-empty. Aﬁd the main theorem of this section (3.1.4) implies
that there is a one-to-one correspondence between components of
D(d,g3;3)g as above and tuples (&,m) = (6,m,l...,m6‘) e‘ 27 satis-
fying |

® Z Mg+ 0y + M3, My 2052 ... 2m: >0,

5 -1y O B

c- e ma o=(3D- T
with two exceptions, If ~(6,4,0,0,0,0,0) for & £ 1 is a solu-
tion, then the corresponding component does not contain smooth

connected curves, and D(1,0;3)g corresponds to (0,0,0,0,0,0,-1).

Let lW(é,m) be the component of D(d,g3;3)g corresponding to a
solution (&,m) of the system above, and let S(&,m)cW(d,m) con-
sist of curves X and smooth surfaces Y, XSYcP. Then S(5,m)
is an open smooth subscheme of D(d,g;B)S, hence irreducible, and
we can describe S(8,m) as follows., To each geometric K-point

(X_C_YEIP?{) of S8(6,m), kCK a field extension, there are six
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| mutually skew lines Eq,...,E6 on Y inducing an isomorphism

Pic(¥) = 2%/ under which the invertible sheaf 0y(X) maps to (&,m).

As corollaries we study the image in H(4,8)g of the componemts-W

of D(d,g;s)S via the first projection morphism

According to conventions earlier made in this paper, the image
is the scheme~theoretic one unless prq(W) is a non-embedded irre-
ducible (resp. connected) component in which case prq(W) has a

scheme structure inherited from the scheme structure of _H(d,g)s,

i.e,
Opz, (W), = CH(a,8),t

for most points t € pr,(W) (resp. for all points t € pr,(W)).
Then we show that prq(D(d,g;2)S) is a smooth comnected component
of H(d,g)S provided’ g £0 and g # d-3 The exceptional

cases are btreated separately. If s = 3, then (3.1.10) states
_thaf pr,(W(s,m)) is a reduced irreducible component of H(d,g)g

provided

H'(1x(3)) = 0

for some (XcYcP)e 8(6,m). The condition Hq(lX(B)) =0 1is
usually equivalent to m >3, see (3.1.3) for precise information.

Moreover if

H'(04(3)) = 0,

then pr,(W(s,m)) < H(d,g)g 1is a closed subscheme of codimension
hq(;X(B)), and H(d,g)g is non-singular along pr,(8(s,m)).

Finally for the remaining cases where we in particular have
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H/I(_I_X(B)) £ 0, we prove that if pr,‘(w(é,g)) is an irreducible
component of H(d,g’)S, it is necessarily non-reduced. A necessary

condition for pr, (W(s,m)) to be a non-reduced component is seen

to be

0 £ 0 (Zz(3)) <n'(0g(3)) .

We conjecture that this condition is sufficient, and Section 3.2

is devoted to a closer study of what happens in this case.

Furthermore we determine the dimension of the components of
D(d,g;s)S for s<4 and of H(d,g)S obtained as above, and we
can see that the components involved have postulated dimension

(2.3.15) and (2.3.17).

We will begin by determining the dimension of the irreducible

components of D(d,g;s) for s<4,

Let X be a divisor on a surface Y, and let x = (XSYCP)¢€

D(d,g;8). Recall (1.3.9) that if X is reduced and s <%, then

cokera = 0 and coker 12 = 0O,

It follows that D

D(d,g;s) is non-singular at x = (XcYcP)
and that

D= al = (4—s)d-+(sgB)4.g—2,

see (1.2.9) and (2.2.14). 1In particular if WcD(d,g;s) is any

irreducible compounent containing x, then W is reduced and

u . 2d+g+8 for s=2,
dinW= <

‘ d+g+18 for s=3,

If X is integral and s = 4, then

dinW = g+ 34
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if W contains a point x = (XCYCP) where X is a global
complete intersection of Y and some other surface, and
dinW = g+ 33 otherwise.

To see this, we will use a result of Noether, here stated as

follows.,

Lemma 3.1.,1. Let W %be an irreducible component of D(d,g;s)

with s>4. Then the following conditions are equivalent

i) There is a closed point x = (XcYSP) of W where

a =0 and D(d,g3;s)  is non-singular.

ii) There is a closed point X, = (X,]_C_Y,]E]P) of W where
X,] is a global complete intersection of Y,l with some

other surface.

Now the dimension formula for W in case s =4 follows from
(3.1.1). Indeed if x = (XSYCP) is a sufficiently general point
of W, then

. 10 - 1
is either zero or surjective since H/l(l_\T_X/Y) = HO(OX)V =~k by
(13.9). Consider the following three cases

1) a surjective,

2) o
3) «

0O and D(d4,g;4) is singular at x,

il

0 and D(d,g;4) is non-singular at x.

Using (1.2.9) and {2.2.14) and observing that

2

coker 17 = O

by the discussion of (1.3.9C), we find

2

e . 1
5% < =
g+55<dinW< a _g+55+ares.
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Since the inéquality to the right is strict provided D(d,g34) 1is
singular at = and since aies = dim cokera <1, we deduce

dinW= g+ 3% in cihe first two cases and dimW = g+ 34 in the

case (3)., Moreover (%.,1.1) characterizes the case(?) in a nice

way, thus giving the desired description of when dimW = g+ 34,

Proof of (3.1.1). BSuppose (i). Since the second projection

pr, t D{d,g;s) = D(p,q) —> Hilp?
is smaoth at x (1.3.7),and since Hilb% is irreducible, pr?(W)=Hilbq,
Using a theorem of Noether, see [Le, page %96] or [SGA,7II, exp XIX],

there is a smooth surface Y, of degree s with

Pic(Y,) = 2.
We deduce that every effective ¢ivisor on Y,l is a global complete

intersection as done in [SGA, 7II, exp XIX], and (ii) follows from

pro(W) = Hilb® beocause (¥, CP) € Hilbl,

Conversely if x, = X,I_C_:_Y,]_C_IP) is as in (ii), then D(d,g3s) is

non-singular at ==, Dy (1.4.7), and axqu/l:O by the fact that the

sequence

O Ny o >N, =>0, (8) =0
'}x/l/l,] ---X/l X,l

is split. So (i) holds.
Now we want to describe the components of D(d,g3s) for s<3,

We begin with s = % and a remark which describe the curves X

which are divisors on a fixed smooth cubic surface Y.

Remark %.7.2. Y & smooth cubic surface). Recall that any smooth

cubic surface is obtained by blowing up six points

£ e
P15°°°,P6 < :ﬂ?

. in "general position" [H1,V, §47, Fix six



- 150 -

points PyeceyPg EIPi, let Eﬂ,,..,E6 be the exceptional

lines, and let H be the inverse image of a line in 192
via the bleowing up morphism 1 Y= P° » If hyeq,0e0,8¢ € Pic(Y)
are the linear egquivalence ciasses of H’E1’°°°’E6 respec-
tively, then {h,ea,u,,,e6} is a 2~basis for Pic(Y). In
the following we will always identify Pie(Y) and 22 via
the isomcrphism

o: 7Y > Pic(Y)

given by 6

275, 000,0) = 8h- zq 165

Moreover if X is a given curve on Y, then there exist six
mutually skew lines Eq,o,.,E6 givirng rise to an isomor-
phism 8 : 77 = Pic(¥) such that the tuple (8,m) =

(8,m4,0.0,1) corresponding to L = Oy(X) satisfies

J‘ da = 56-1qui, g
1=
(*)

| n - +
Lo Zmytmatmg, 8 2my and my>my>...2mg

6 m
R

whers m: = maX(O,mq), This follows from the proof of (4.2)
in [H1,V, 8§47, and as in Peskines lectures (University of
Oslo, 1978), we call the corresponding basis {h,eq,...,e6}

of Pic(Y) on adequate basis with respect to L =0 (X)
Different adequate basis define the same tuple (5 m)

Conversely given six mutually skew lines on Y, i.e. an

isomorphism 8 3 o

= Pic(Y), and a tuple (8,m) € 757 satis-
fying (*) and the additional condition m;>0, then the
corresponding invertible sheaf L € Pic(Y) has sections,

and if we exclude tuples of the form (§,6,0,0,0,0,0) where

5 £#1, then there are irreducible non-singular curves among
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the sections of L. These tuples together with (0,0,0,0,0,0,-1)
give precisely the tuples whose correspondirng L's have non-
singular irreducible curves among its sections. For a proof

of this, see [H1,V,(4.13)] and the exercise (4.8).

Now if X is a reduced curve on Y, it is easy to see that

the tuple (8,m) which corresponds to L = Oy(X) must
satisfy

6 :
4 =3-Tm, g-= 2)..2(21)
: 1= i=1
(**)

‘ ; +
K Z Mg+t Ty, 02my and myZmyZ...2mg -1,

L

Indeed if m <-2, then X will contain E; at least
2 times. And conversely one may prove that an invertible
sheaf L with a tuple (&,m) as in (**) has sections among

which there are reduced curves,

For later use we will include the following result, pointed out

to us by Peskine~Gruson, and indicate the proof.

Proposition %5.1.3, ILet X be an effective divisor on a smooth

cubic surface Y, and let L = OY(X) correspond to a tuple
(6,m) where |
6 > g +ls+ Mgy Hy)ZMY 2 eee 20 e
i) Then
o

H" (_];X(n)) A0 <=>n € (m6,26 —i§.2mi -1

provided (8,m) is not of the form

(8,m) = (AM3t,A+t,t,5,5,t,6) for some AZ=2
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in which case

6
H' (T (1)) £0 <=>ne€lm ,26=% m, -1)
ey g 6 . i ’
i=2
or not of the form

(8,m) = (3t,%,t,t,t,5,t=1) for some A>2
in which case
6

H'(I,(n)) £0 <=>n¢ (mg,26 =% m, ~1]
729 i=2 l :

- ii) Moreover
h/‘(OX(n‘)) = h°(L(-n-1)) for n>0.
Proof. ii) Indeed there is an exact sequence
0 ~> 0y = L —> EX/Y -> 0
and an isomorphism (1.%.9)
Ny y = 0x(1)
and we conclude easily by duality on X.

i) Assume H'(Iy(v)) # 0 for some integer v.

Step 1. Computing the intersection numbers X.E for every line

EcY, we find

g = X-Eg = min(X-E),
6

26 - Z m, = max(XE).,
i=2 T

If we can prove
win{a]H' (Iy(n)) £01 = m +1

(except in one special case), we deduce by duality on Y and the

expression of max(X*E) above, recalling H,I (;_X(n)) =H/| (;_X/Y(n)),
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that

. b
max{niH/] (;_L"‘X(n)) £0} = 28 - ngi -2
1=

(except in one special case).
Step 2. We claim that it will be sufficient to find

min{n|H (Iz(n)) £0} if I = 0y(X) satisfies
HY(L) #0 and H2(L(-1)) = O.

Indeed if L 1is as in (%.1.3), then there is an integer v such

that

H2(L(~v)) £ 0 and HO(L(-v-1)) = O.
If D is a section of L(-v), considered as a curve, then

B (Ig@)) = B @) ®uy) = 0N @) ni) ®wy) = 01 (Zy(n-v)).
So
min{n!H (I;(2)) £0} = min{nlH (Iy(a)) #0} - v.

Since L = OY(X) and L(-v) = OY(D)v correspond to (6,m,],.3.,m6)

and  (8-3v,m -V,00.,0--V) respectively, the claim follows easily.

Step 3. Since m-12>0 implies H°(L(-1)) £ O by the discussion
of (3.1.2), m=0. We can by (3.1.2) find a section X of the
invertible sheaf _];_+ defined by (6,m,-T,...,,m,:-;) which is a smooth
connected curve unless (6,_n_1_+) = (A,2,0,0,0,0,0) for some A #£ 1.

If A>2, then X 1is a smooth non-connected curve. Since

. b
X= X+2 v,E,
jp 11
are linearly equivalent where Vi = -my and where the number +

is defined by

m_.G_,Al_>_O and mt<O



(t =1 if mi<O for 811l 1 and t =7 1if mizO for all i),

we deduce

6
BH(0, 5 (1))

' (Iy(n)) =E2(0y(2)) 2EO(0g(n)) 3H(0g, 5 (n)) =
_ ii i=t iTi

if n<0 and a slightly modified result if n = 0., Now let
EcY be a line and let v>1 be an integer. Using that there
is an exact sequence
- ) s — -

we find

min{n‘;Ho(OvE(n)) £0} = =v+1,
Thus if m6_<_-’| , then

min{nkH!(_I_X(n));éO} =mg+ 1,

and if m. = 0, we do have X = X, i.e. L= _L_+, Since X is

smooth and comnected (resp. non-connected if L corresponds

o (1,1,0,0,0,0,0) for 122), H'(Ly) = 0 (resp. H (Iyx)#0),

il.€.
min{nZH/‘(_I_X(n)) £01>1 = mg + 1
(resp. min{anq(l_X(n)) £0}=0 = m6) .

fl

Moreover X = X are rational curves by (Bb’l',ﬁi), and it follows

that
min{an/‘(LX(n));éO} =1 =m+1.

Finally, reviewing the proof, we will see that H/‘(LX(n)) = 0
for every integer n iff L(-v) = Oy (step 2), or X = B

(m6_=-’| of step 2) or X = X are rational curves of degree
as<3 (m6 = 0 of step 3). The conclusion of (3.1.31) holds

for these cases as well., In fact for these cases L corresponds
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to (3v,v,v,v,v,v,v), (3v,v,v,v,v,v,v=-1), (3v+l,v,v,v,v,V,V) or

(Bv+1,v4+1,V,v,V,V,V).

Now we aim at describing the irreducible components of D(d,g3;3).
We restrict, however, to those components containing points

(XSYSP) where X is a reduced curve and a divisor on Y. 1In

fact let
( 2) {( ) ( ),X is a divisor on Y1
U(d,g; =1 (X&Y¥CP) € D(4,8;3
S(d,g;E) =

{(XcYcP) € U(4,83;3)|Y is a smooth surfacel,

Then S(d,g;3) € U(d,833) are both open in D(d,g;3) and the
composition
U(d,g33) ~> D(4,833) I
is smooth because H (fy,y) = H2(0g(~1))" = 0. See (1.3.7). It
follows that U(d,g33) is non-singular, so there is a decomposi-
tion
- U(a,8353) = || U,
i€l
into connected components. By the smoothness of PTo, Prg(Ui)
is open in Hilbq, and prg(Ui) will therefore contain a smooth
cubic surface. Thus B; = S(d,g;B)flUi is smooth and non-empty
and |
8(d,s33) = 118. .

fex ' |
Take the closure W; of B8;. in D(d,g;3). Then W, is a reduced
(i.e. generically smooth) irreducible component of D(d,g;3).
Since for reduced curves X, HO(OX(—ﬂ)) = 0, all irreducible

components containing points (XSYSP) with X reduced and

X &> Y a divisor are among the Wi's (and there are no more wi's.
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We skip the details since otherwise we can redefine 8(4,g3%) by
throwing away the Si's which do not contain reduced curves).
Now the main theorem of this section determines the index set I,

and describes the S. 1in a nice way,

Theorem 3.1.4. 1) Any irreducible component W< D(d,g3;3) con-

taining points (XCYCP) where X is reduced and where X

. is a divisor on Y is a reduced component of dimension
dinW = d+g+ 18,

ii) There is a one-to-one correspondence between the com-
ponents of (i) and tuples (8,m) € 2%/ satisfying (3.1.2%*).
Put

W(s,n) =W and S5(8,m) = 8,
if W corresponds to (6,m) and W = S'i, Then to each
geometric K-point (XEYE]PE) of 8(s,m), there is an
'isomorphism B 297 ~ Pic(Y) such that the invertible sheaf

L = OY(X) corresponds to (8,m).
Proof. i) is already proved, and for ii) we will construct a
nice scheme T = T(d,g;3) and a smooth surjective morphism
¥+ T = 8(4,g3;3)

where, over T, The pullback XTEYTEIP XT of the universal object
of D(d,g;3) and the family of six mutually skew lines are de-
fined. Using intersection number theory we can describe easily

the connected components of T as we now shall see.

First we will define T and V. Let

R' = 8(1,033) x geee X 5(1,033) (six times)
Hilb® Hilp%
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Then any point of R' is Just six times E’I"”’E6 and a smooth
cubic surface Y, E,cY for i =1,...,6. If we denote by
Hilb% the scheme of smooth surfaces in Hilbq,' then the obvious
morphism R' —>> Hilbél is smooth and surjective (it is in fact
étale) since pr,:8(1,0;3) —=> Hilb% is, Moreover since the
intersection numbers Ei"Ej is defined in terms of Hilbert poly-
nomials [M1, Lect 121}, and since these Hilbert polynomials are
"constant on the connected components of R'", there is a sub-

scheme R og R', open and closed in R', defined by

E.°E. =0 for i # J,

i.e., a point of 1R is just six mutually skew lines E,,ce.,B
= 1

6
and a surface Y, Eig_Y' for i =1,.0..,6. Then we define

T = T(d,g3;3) by the cartesian diagram

r 225 g
d

S(d,g33) = Hilbg

and the morphisms of this diagram are smooth, hence dominating
provided $(d,g;3) is non-empty. They are surjective if we can

show that

pr, 1 5(d,g;3) —> Hilbg

is surjective. To see this, pick (XSYCP) € 5(d,g3;3) eand.let
(Y' SP) € Hilbg, be arvitrary. To prove that there is a point
X'cY'cP) € 8(d4,833), choose isomorphisms

Pic(Y) = 2%/ = pic(y")

as in (3.1.2**), and let L = Oy(X) €Pic(Y) map to L' €Pic(Y').
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Then L and L' correspond to the same tuple (6,m), a btuple
which satisfies (3.1.2**)., So L' has sections, and a section
X' of L' considered as a divisor on Y’ defines a point

X'cY'cP) € 5(d,g53).

To study the components of T, let for any +t¢€T

mi(t) = XOE]‘_

1 6
JORE CPEANC
| i=

where the t = Spec(k(t))-point of T is the six lines E,l,,.”E6
and the curve X of degree d and the smooth surface Y, Ei_C_Y
and XcY. Again the intersection numbers XoEi are constant on

each connected component Tj of T, Put
(8(73),m(T3)) = (8(+),m(+)) €2°7

for some +t GTj. Moreover we claim that different components of T.
correspond to different tuples. To see this, let T(8,m) be the

disjoint union of those connected components TjST such that
(6(1‘1),&(‘1\3)) = (692_) ®

Then consider the geonetric fibers of the composition

D
T(6,m) € T —> R,

If r»€R is a given geometric K-point of R, which means that

a smooth surface Y and six mutually skew lines E,],o.a,EG ofrer
an algebraically closed field K are given, then the fiber
péq(r)ﬂT(é,g) consists of curves X on Y satisfying XeE; =m,
for all i = 1,2,¢e+46. This is a linear system, see [M1, Lect 137.

Thus péq(r)ﬂT(é,E) is connected. Since the composition
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D
7(6,m) € T —=> R

is smooth and surjective, it is also connected. Using the next
lemma which states that R is connected, we deduce that T(6,m)

is connected,

We have now a smooth surjective morphism
2 = S(dag;a)

of smooth schemes, For each connected component Si_C_S(d,g;Bj,
q;"'/‘(si) consists of a certain number of the connected components
of T. Choosing a géometric K-point x = '(XEYE]P%) of Si’

we see by the construction of T that the fiber q:'q(x)_C_T is x
together with all vpossible choices of six mutually skew lines on Y.
Cbserving that (3.1.2**) is obtained by a special choice of six
mnutually skew lines, we easily see that among the components of T
which map to Si, there is a component T(%,m) whose corresponding
tuple (8,m) satisfies (3.1.2**). This (&,m) is unique. More-

over D(5,m) ~> 8,

D
is a surjective morphism since the composition T(é,qx_n@_).—>.Tv-—2-> R

is surjective. Let this S; be S5(6,m) . Now putting all this
together we easily get the theoren.

Lemme %,1.5. R 1is a connected scheme.

Proof. Let r and »' be k-points of R corresponding to two
choices of six mutunlly skew lines on smooth surfaces, E’I’°°‘°’E6
on Y& P’ and E,'{,...,Eé on Y' E]Pa, respectively. If we can

prove that there are connected schemes

P
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over R and morphisms

X -2 X q or Xy <Xy

over R for each i = 0,...,n~-1, such that

X, = Spec(k) ~> R and X, = Spec(k) = R

are the k-points r and r', then R is connected . See

[H3, Chap I or use that each time there is a commutative diagram
X ———> 7
\.R N
where X and Y are connected schemes, then the images of X

and Y in R are contained in the same connected component of R.

Recall that the lines E,,...,E; on YCSP® ave obtained by blow-

ing up six points P,,...,Pg€ P° in "general position", and that
if E2 is the blowing up of ]P2 along 72 = P, U.s. UP6 , Then
the linear system of curves of degree 3 in IIP2 passing through

Pjyeee, Py defines an embedding
B - P’

whose image is YC ]PB. If ;[_Z = ker(O o= OZ), then the linear
P

system above is given as the k-vector space Ho(_I_Z(B)). And it

~2

is a choice of a basis of Ho(lZ(B)) which defines P —>]P9,

or more precisely, if

is the blowing up morphism, we know that the inverse ideal sheaf

. =1 s s .
i EO],[:,2 given by m -:-[-Z'O]'E‘,’a is invertible. Indeed

I, =0, (-E)®... ® 0, (-E) .
7 = Op (B4 2 -Fe)
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Hence iz®rr*0 2(5) is invertible, and any choice of a basis of
]P.

Ho(iz‘&rr*o 2(5)) defines an embedding ° —>17. However
r

H(L,(3)) = (I, ® m0_»(3)) -

In the same way the lines E,'],...,Eé correspond to six points

P,'I,...,Pé € P° in "general position" etc.

To prove that R is connected, it suffices, heuristicaliy speak-
ing, to prove that the scheme W whose k-points are ordered
tuples (Pq,...,PG,g) where (P4,...,Pg) are points in "general
position" and where 5 = {80’34’82’83} is a choicé of a basis

of HO(lZ(B)), is connected. We shall prove that W is connected
(or since we do not prove representability, we will prove that

the corresponding functor is connected). Hence R 1is a connected

scheme since W-R is surjective.

To be precise, the ordered tuples x = (P,],...,P6) and
x! = (P,'],...,Pé) are k-points of
\' v \Y
V = PZ x]P2 X eoe x]P2 (six times)
k k k
oV 2
where 1P is the Hilbert scheme of points in IP~. If

A = OV.,x and A' = OV,X'

and if K is the quotient field of A or of A', then, over
Spec(A), there exists an ordered tuple (P']A”"’P6A) of A-flat
schemes P:'._AE_IIP2 x Spec(4) = ]Pﬁ whose fiber at the closed
point of Spec(A) is P, €°, 1<i<6. By simply blowing up
IPE along ZA = P,‘AU cee UPBA’ we claim that there is a flat

family of six mutually skew lines over Spec(A) and an embedding
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of A-flat schemes

fﬁ - PJ x Spec(A) = ]Pz

whose image is Y, C P . It will follow that there exists a map
§ ¢ Spec(4) —> R

such that ¢(Spec(k)) = r. Correspondingly there will be a map
§' ¢ Spec(A') "R such that ¢'(Spec(k)) = r'.

Now define

d
= and C = I
a2 = a0~

where Iy is the ith power of I, and I = O 2
Then let

P° - Proj(C) and ]Ei = Proj(gA) .

By the universal property of blowing up, there is a commutative

diagram :
~o T 2
rn — By
A A
l ° \
B T . p°

Moreover ]52 is A-flat since the sheaf I is.
A =z,

To prove that there is an embedding

' i is P-13
whose fiber at the closed point of Spec(4) is -7, we
claim that

O 2 ~ .O
BT, (3) 9k = (L (3))
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and that HO(_I_Z (3)) is A-free. Indeed counting dimensions of
A

the vector space appearing in the exact sequence
0 = H°(Z,(3)) = H°(0P2(3)) —> H°(04(3))
we get that HO(O]PQ(B))-—> HO(OZ(B)) is surjective, so
5(Z,(3)) = 0

and we conclude as claimed by base change theorem.

Next if
_ N »
Iz, =M™ 1z, O

=7
A A Py

then we claim that
H(I, ©mf0 ,(3))® k = HO(L,®m*0 ,(3))
=by A in A =Z P°

and that

H°(T, ©u* =~ HO(I .
(__ZA nAo]Pi(B)) (_ZA(B))

Indeed there is a commutative diagram
=0 - orT
H (_I_ZA(/Z‘)) -} (;—ZA&ﬂiole(B))
.‘ A
l
! !
H°(15(3)) =H°CI’_Z®n*o]P2<3))

so the vertical map to the right is surjective. We conciude by

base change theorem and Nakayama's lemma. Now since the mor-

phism 152-*195 is defined by a basis of Ho(izf&n*olpgﬂ)),

we can 1ift the basis to a basis of Ho(fZ ®TTRO 2(3)), thus
A r
A

~2 3

defining a morphisn i -»IPy making a commutative diagram
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A A
l °
2 - P

~~

Moreover IZAS)".Z.O]PE(B) is very ample because J:_Z®n*OP2(5) is.
A

If mn: Spec(K)~R is the composition of the natural map
Spec(X) »* Spec(A) with ¢, and if n' is correspondingly defined,

then we have comuutative diagrams

Spec(k) — Spec(A) <— Spec(K). Spec(K) —> Spec(A') < Spec(k)

}\’_, o ?‘\" l"'/

R R
Moreover there is a commutative diagram
Spec(A) < Spec(K) —> Spec(A')

\gb/

The latter diagram implies that the restriction of the tuples
(P’IA""’PGA) and (P"lA' ,...,PéA.) to Spec(X) are the same
tuple . (P/]K’ v e o ’P6I{). SO

® - ® =
ENG L2yt 'I‘ZK ’
‘and we deduce
fPi X - Spec(K) = i’i.x Spec(K) = 'i,},’i.
Spec(4) Spec(A')

However the restriction of the embeddings

'fPi —> P7 and IPi. - B2,
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to Spec(K) need not be the same. Over Spec(K) they correspond
to two choices {So"“’SB} and {sé,...,s%} of a basis of

HO(IZ (3)). Ve therefore let
K

B = Klt]

be a polynomial ring in one variable, and if we Lft (P p,...,Pgy)

and P2 trivially to Spec(B), i.e.

2 2
P.pn = P X Spec(B) ¢ Py x Spec(B) = P; and
1B T ghee(x) X “spec(x) B
P2 = BS xSpec(B)

we can define a morphism

:Eé - Ié

using the basis {so-ft(sé-so),...,834-t(sg-S;)} of HO(EZB(E» =

HO(lZK(B))§9B . It follows that there is a morphism
K

fnec(B) =My =R ,

and the K-points + =0 and t =1 of BSpec(B) composed with
Spec(B)~R are just the K-points n and n' of R. Thus the
diagram
Spec(X) =0, Spec(B) L=1 Spec(X)
{ P
\j;\\<s° L oh////%'
R

commutes, and the proof is complete.

Examples 3.1.6. i) BSolving (3.1.2**) for 4 =9 and g = 8,

there is only one solution

(7,3,2,2,2,2,1).
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Thus D(9,83;3) contains only one irreducible component of
the form described in (3.1.4), and its dimension is

d+g+18 = 35. Compare with (2.2.10ii) and (2.3.12).

ii) Solving (3.1.2**) for 4 =8 and g = 5 there are
two solutions (5,2,1,1,1;1,1) and (6,2,2,2,2,2,0). So
D(8,533) contains two irreducible components of the form

- described in (%.1.4), both of dimension 31. Compare with

(2.2.16)

iii) Solving (3.1.2**) for 4 = 14 and g = 24 under -
the condition mg >0, there are two solutions (11,4,%,3,3,3,3)
and (12,4,4,4,4,4,2), The corresponding components are of
dimension 56. For later use we will compute hq(OX(B)).
Indeed if L corresponds to (8,m;,...,m;), then L(n)
corresponds to (64-5n,m14-n,...,m6-+n) since OY(ﬂ) corre-
sponds to (3,1,1,1,1,1,1). Thus if L is given by

(1114,5,5,515’5), then

n°(L(-4)) = 0,

it

ol =
n(0,(3))
by (3.1.3), and if L is given by (12,4,4,4,4,4,2), then

n1(0g(3)) = hO(L(-#)) = 1,

iv) For d = 15 and g = 27 there are three solutions
(11,5’5,5’5’5’5), (12’5,4’5’5’5’5) aIld (12,4-’4,4’4,5’2)

satisfying m6;:O. Computing hq(OX(B)) as in (iii), we
find
0 for the first two cases

h'(04(3)) =1
"1 for the case (12,4,4,4,4,3,2).

So there are tiree components of D(15,27;3) of dimension 60.
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v) For d =16 and g = 31 there are two components
of dimension 65 given by (12,4,4,3,3,3,3) and
(13,5,4,4,4,4,2) containing smooth connected curves.

Moreover

q A in the case (12,4,4,3,3,3,3)
n'(0g(3)) = |
2 1in the case (13,5,4,4,4,4.2)
vi) For 4 =16 and g = 29 we find three components
of dimension 63 containing smooth connected curves. They

correspond to tuples

(41,3’5,5,5,5,2), (12,5,4,5,3,5,2) and (12,4,474"4,2’2)‘
This time

1 0 in the first two cases
n'(04(3)) = ¢
1 in the case (12,4,4,4,4,2,2).

If we consider the irreducible components W<cD(d,g;2) containing
points (X<SYcP) where X is a reduced curve and a divisor

on Y, we can by the discussion right before (3.1.4) conclude that
W contains points where in addition Y is a smooth quadric sur-
face. Moreover, slightly modifying the proof of (3.1.4) we claim
that there is a one-to-one correspondence between such components

and tuples (qq,qz)e Z@g satisfying
d =aqq+9, 8= (.q,‘—’l)(qg-—’l) and 02qq %4q5.

Indeed this time a k-point of R 1is two intersecting lines E,‘,E2
and a smooth quac‘lric surface Y, Ei €Y. And to see that R is
connected, which is the main point of a proof of the claim above,

we use that to amny k-point of R, there is a morphism
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5 ><:lP’I —> ]PB-'-V—-> ]P3

s P
9, s

where P4 is the morphism of Segree and 9, an automorphism

of B>, © = po9,, such that (P xP') =Y and

9*E; = P x {pt}, o'E, = [pt}x P’

for some point {ptl}<¢ 1 . PFurthermore since deformations obtained

via automorphism of 195 lie in the same connected component of R,

see the last part of the proof of (3.1.5), we conclude that R is

connected.

Since there is at most one solution of the system above, there is
only one component W<D(d,g32). Note also that a solution
(a4,95) of positive integers together with the solution (0,1)
if 4 =1 corresponds to a component which contain irreducible

non-singular curves on smooth quadrics.

If we also study D(d,g;2) at points x = (XSYCSP) where X
is smooth and connected, but not necessarily a divisor én Y,

we can determine the structure of D(d,g;2)S completely. Indeed
we claim that D(d,g;2)g 1is non-singular at such points x.

To see this, we use [H1, IV, (6.4.1)] which states that if X 1is
a smooth connected curve on a singular quadric surface Y, then
dq =4y or qq = q2-1 . If Q= 9 then X is a global com-
plete intersection, and in the final case, the cone of XC P>

is Cohen Macaualy. D(d,g;2)S will therefore be non-singular

at x by (1.4.7) and (2.2.8). Finally if W is a component of
1)((1,3;2)'S which contains x, then W contains points (X'cCY'cCP)

where Y' is a smooth quadric surface. Indeed if we make the
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deformations of the cone of X& 193 explicitely which is easy

{
since the cone is determinantiel,we will see that there is a de-
formation X' which is contained in a smooth quadric surface

1 E]PB. This gives

Proposition %.1.7. D(d,g;E)S is a smooth connected scheme of

dimension 2d+g+8 if it is non-empty. Moreover D(d,g;2)gq:
in case d>1, is non-empfy iff there is a tuple (qq,qe)

satisfying

d =qq+d, & =(a-1(gy-1) and 0<g,<q,
in which case D(d,g;2)g contain points x = (XSYCF)
where Y is a smooth quadric surface. Finally to any such

point x +there are two intersection lines E,I,E‘2 contained
in Y inducing an isomorphisnm
Pic(Y) = 222

which maps OY(X) onto (q4,95).

As applications of (3.1.4) and (3.1.7) we will study the Hilbert
scheme H(d,g) and certain subfamilies which correspond to the

image of some component of D(d,g;s) via the morphism
pr, ¢ D(d,g5s) —> H(4,g) .
Start with s = 2 and D(4,g;2)g non-empty. Then we have a well-
defined tuple (q,‘,qg) and there are two cases to consider.
1) H'(Ix(2)) = 0 for some (XSYCP) € D(d,g32)g

2) H'(I4(2)) 0 for all (XCYSP) € D(d,g32)g.

Note that amy point (XCYCP) € D(d,g;2)g satisfies H'(Ix(2))=0
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if one point does. This follows from the fact that we can charac-
terize the vanishing of Hq(;X(2)) in terms of the integers gq,
and q,, see (1.%.10) if Y 1is a smooth quadric surface and ob-
serve that H (Iy(2)) = O if Y is singular. Using Kiinneth's
formila as we did in (1.3.10), we can easily see that

1) B'(Zg(2)) = 0 iff 9,23 or q,<3

2') HNIZ(2)) £ 0 iff q;<3 and qy>3

in which case

h'(I3(2)) = (ay-3)(3-a4).

In general

pr, : D(d,g;2)g = H(d,g)g

is proper, hence closed. Moreover in the first case (1), pT4 is

a smooth morphism by (1.3.4), hence open. We deduce that

prq(D(d,g;E)s) is a smooth connected component of H(d,g)g of
dimension
[ 4d + (q44-3)(qr-3) = 2d+g+8_ it 9 23

' 4g if <3,

again by (1.3%.10). Note that the dimension of prq(D(d,g;e)S) is
not given by 2d+g+8 if q,<3, i.e. if d<4. Otherwise it
is, see (1.3.7) and use that h%(Ig(2)). =1 for d>4.

In the last case (2) or (2')
H' (M) = H'(0g(2)) = 0
i/ X =

for any (XcYcSP)e D(d,g;2)s by (1.3.10) since Y is necessarily
smooth. In particular H(d,g)g is non-singular along

prq(D(d,g;Z)S), and we have the following corollary in which (i)
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corresponds to (1') with a5 <3, and (ii) and (iii) correspond to

44 =1 and g4 =2 of (2') respectively.

Corollary 3.1.8. The scheme prq(D(d,g;E)S) of smooth connected
curves which are contained in some surface of degrec 2 form

a smooth connected component of H(d,g)S of dimension
2d+g + 8
except in the foilowing three cases

i) d<&4 in which case prq(D(d,g;2)S) is a smooth con-

nected component of H(d,g)S, of dimension 44

ii) d>5 and g = O in which case pr,(D(d,0;2)g)=D(4,0,2)q
is a smooth connected scheme which is of codimension

2(a-4) in H(d,o)se

iii) d>6 and g = d-3 in which case prq(D(d,g;B)S)
phe D(d,g32)g is @ smooth connected scheme of codimension
d-5 in H(d,g)s, and H(d,g)S is non—éingular along
D(d,g;E)S.

Compare (3.1.8 iii) with (2.2.16E).

Using the corollary above, we find that H(d,g)g 1is sometimes
disconnected. A classical example is H(9,10)g which is a smooth
scheme consisting of two connected components, both of dimension 36.
See [N, §15] or [U1, IV,(6.4.3)] or [T]. Another example is the

following.

Example %.19. 3(10,12)8 is a smooth scheme consisting of two

connected ¢ mponents, both of dimension 40, Indeed

D(10,1232)y is non-empty since q, =3 and gy =7 is a
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solution of

0 = q+a5, 12 = (34-1)(gp-1).
By (3.1;8),prq(D(1O,12;2)S) is a smooth connected component
of H(10,12)g. MNoreover any curve XCP°> of H(10,12)q
for which s(X)>3% is easily seen to be contained in a
global complete intersection Y of type (3,4). The linked
curve X'cY is therefore a plane curve since x(;x(2)) =1

implies hq(OX(e)) Z O and since

0% (It (1) = 17(0g(2)) £ 0
by (2.3.32). The cone of XC P> is Cohen Macaulay, again
by (2.3.3), so

H(10,12)g - pr,4(D(10,1252)g)

is smooth and connected by (2.3%.6) of dimension 40 by (2.2.9)

because 34> 2g~-2 implies 62 = O.

We now study the images of the components W(s,m) < D(d,g33)
appearing in (3.1.%4) via the first projection PTq, and there are -

three cases to consider.

{1
O

for some x

1) H(Zg(3)) (XYSP) € W(s,m),

]

2) H'(I3)) £0 for any x = (RCYCP)e W(s,m) and

l
O

H'(04(3)) =

for some x € W(d,m),
3) H'(Ig(3)) #0 ana H'(04(3)) £0 for any x € W(s,m).
The case 3) did not occur in the discussion of s = 2 since

H'(Ix(2)) # 0 implied H'(04(2)) = 0. Observe that if H'(Iy(3)=0,

resp. Hq(OX(5)) = 0, for some x € W(8,m), then the groups vanish
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for any x = (XcYcP) € S(5,m), i.e. for any (XSYSP) such that
X 4is a divisor on a smooth cubic surface Y. This is a con-

sequence of (3.1.3) and of the last part of the theorem (3.1.4).

Moreover what is the codimension of prq(W(b,g)) in H(4,g)?

To answer this, let V 2 pr,(W(s,m)) be any irreducible component
of H(4,g). Since the fiber of pr, is of dimension h°(ZIy y(3))
by (1.3.7) for (XcY<SP) € 8(8,m), we deduce

]

- dimpr(W(s,m)) = dimW(s,m) -1h°(Iy y(3))

d+g+18-0(Iy y(3))

as in the discussion of (2.3.10i) . Using (2.2.14) we find
dinpr (W(s,m)) = 4+ v(3)

where Y(3) = h'(05(3)) -n"(Iz(3)). Combining with

43 2ain ¥ <hO(Ny) = 4d+h(04(3))

(recall hq(_l_\T_X) = 111(OX(3)), see (1.3.9C)) and observing that the
inequality to the right is strict iff H(d,g) is singular at
(Xc®P), see (1.2.9), we get that

33 - g - 18 = 1°(Iy y(3)) = ~v(3) SAinV - aim pr,(W(s,m)) <h" (Zy(3))

where the inequality to the right is strict iff H(d,g) is singu-
lar along pr (W(s,m)). This gives
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Corollary 3.1.10. i) If

H'(Iz(3)) = 0 for some x = (XSYSP)€ S(5,m),

then pr,(W(s,m)) is a reduced irreducible component of

H(d,g) of dimension
d+g+18-h"(Iyy(3)) .

Indeed pr,(S(5,m)) is an open smooth subscheme of H(d,g),
and if d4>10, s(X) =3 (2.2.7) and if X is integral,
then

n®(Iyg y(3)) = 0.

ii) If
H/I(OX(B)) = 0 for some x € S(&,m),

then pr,](W(é,_rg_)) is a reduced subscheme of H(d,g) of

codimensiocon

n'(14(3))
and H(d,g) is non-singular along pr,(S(5,m)).

iiji) If V is an irreducible component of H(d,g) con-

taining pr, (W(s,m)), then

10M(14(3)) - 11(0g(3)) 2 Aim ¥ - aimpr, (W(s,m)) <h' (Iy(3))

for any x = (X<YS® € S(6,m)). Moreover H(d,g) is
singular along pr (W(s,m)) iff the inequality to the right

is strict, and we have

h'(Zy(3)) ~0"(0g(3)) = 3d - g =18 + h°(Iy y(3)).

iv) In particular if pr (W(6,m)) is an irreducible com-

ponent, then .
n'(14(3)) <b7(04(3)),
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and prq(W(a,g)) is non-reduced iff hq(gx(a)) £ Oa
We now ask:

Does there always exist an irreducible component VCH(d,g)

containing prq(W(b,g)) such that
dimV ~dinpr,(W(s,m) = [h'(Ig(3)) -0 (0g(3NT*
where (XSYcP) € 5(6,m) and where mt ;max(O,m) for
me 2z,
We know by (3.1.101,ii) that the answer is yes if H'(Izx(3)) = 0
or Hq(OX(B)) = 0. Suppose therefore that
1 -
H'(Ig(3)) #0 and H'(0g(3)) # 0
which is equivalent to
[h(Z,(3)) =101 (0,(3)) 1" <0 (1,(3))
S N=xN T X =X y

Note that if the answer to the question above is positive, then

H(d,g) is singular along prq(W(b,g)). We divide into two cases
8) 0 #0 (I3 <n(0y(3)), (XSYSP)€ S5(s,m).

If prq(W(é,g)) is a non-reduced component of H(d,g), then (4)
holds by (%3.1.10iv) 3 the question above deals with the converse

which we think_is true:

Conjecture 3.1.11. prq(W(é,g)) is a non-reduced irreducible

component iff (A) holds.
Also in the case
B) B'(Ix(3))>1"(04(3)) # 0, (XSYSP)e€ S(5,m)

we expect that the answer to the question above is positive.
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In the next section (3.2) we discuss the conjecture, and (B) is

considered in the last section of this paper.

Remark %.1.12. If WcD(d,g;s) 1is an irreducible component

satisfying

coker QX:Y = 0 and cokerl}%cY =0

for some (XSYSP), then (3.1.10) is true with obvious

modifications, i.e.

i) If Hq(EX(s)) = 0, then prq(W) is a reduced component
of H(d,g) of dimension

(4-8)a+ &+ (%37) = 2= 0O(Ty py(s))
ii) If Hq(OX(s)) = 0, then prq(w) is a reduced sub-

scheme of H(d,sz) of codimension hq(OX(s)), and H(4,g)
is generically non-singular along prq(W).
iii)

h'(Iyx(s)) = b1 (0g(s)) <dimV - dimpr, (W) <h"(Iy(s))

for any component V of H(d,g) containing prq(W) etc.

2.2, Non-reduced components of H(d,.g).

In the preceding section we conjectured that prq(W(ézE)) was a

non-reduced irreducible component of H(d,g) iff
) 0 £n' (@30 <nM0g(3)), (XSTSPY) € 5(s,m)
=X —* X 5)) -t =K 1L .

One way is true by (3.1.10iv) , the unproven part is whether (&)
implies that pr,(W(8,m)) is an irreducible component of H(4,g)-

If so, pr,(W(s,m)) is automatically non-reduced (3.1.10iv).
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We are for the time being not able to prove the conjecture, so we
illustrate by considering examples. These leads to a partially
proof of the conjecture, namely that the images pr,(W(s,m)) of

the components W(&,n)<D(d,g;3) of "maximal genus under the
condition (A)", see (3.2.2), are non-reduced irreducible components

of H(d,g). We end this section by a short discussion.

To begin with, we give bounds for the degree d and genus g

for curves X which satisfy (4).

Lemna 3.2.1. Let (XSYSP))c 8(5,m) and suppose that X is a

smooth connected curve of degree d and arithmetic genus g.

Then the following conditions are equivalent

A) 0 # b1 (Zyx(3)) < b (04(3))

- 2
AY) a >4, 5d—’l8§gf_[d '4] s
8
o g
B(Iyy(3)) = 0 amd H'(Ix(3)) #0
where [m] denotes the greatest integer such that [m]<m.

Proof. Assume (4). Then hq(lX(B)) Z 0 implies that s(X)>2
since the cone of a plane curve is Cohen Macaulay. Moreover we

must have s(X) # 2 since the implication
P 1

is true for smooth connected curves on surfaces of degree 2.

Indeed the discussion for s = 2 just before (3.1.8) reveals that
if s(X) = 2, then X 1lies on a smooth quadric surface Y #JP/'XJP1
because Hq(lX(B)) # 0. We easily deduce Hq(OX(B)) =0 by
Kinneth's fbrmula,.see (1.%.10).
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We now have s(X) = 3 and e(X)>3. Using the theorem of speci-

ality of Peskine-Gruson [G.P] which states that
- . a
e(X)+4 < S<X)+m ,
we deduce d>12. It follows that

HO(_I_x/Y<3)) =0 by (301010 l) and

g > 33 -~18 by (%.1.1031ii) and (A),

To prove

g < {628-4}

it will be sufficient to find the maximum of the genus g of
curves of degree d satisfying Hq(z_X(B)) # 0 which are con-
tained in a sniooth cubic surface. Consider the related problem
of determining the largest gehus g for which the degree da
where d>12 and the number m; are constants (under the rela-

tions of (3.1.2*%)). Let therefore

g: K2 = R

?

R the real numbers, be defined by
(x X)) = L §-1)(8-2) = 45‘? %, (%, =1) = Xa(a=1)
B(Xq5000,%5) = o TTE >
where

5
5. = %(d+i§ xi+o.)

and where o 1is a constant. Straightforward calculas shows that

g(x) has a maximum at the point <X’|’°°°’X5) given by

X mees =Xg = 7}(&“) o
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Moreover
8(x) . = 2((d+-2)% +4 - 4a(a-1)) .

Varying o between O and 2, we find that a = 2 gives the

largest g(_}_c_)m This number is

ax®
/1
g(d2—4) o
In view of (3.1.3) we find that if X is any curve of degree
a>"12 satisfjring; H/I(_I_X(B)) # 0, then m6_<_2 or OY(X) corre-

sponds to (6+9,6+3,%,3,5,3,5) for some 6>2., If m <2, then

2_y7

rq
IR

by the maximum of tThe function g(x), and in the second case

5 = 3(51-25).

~
-

Since $(5d-25) < p(d°-4) provided &>12, we find

e

ra%_y
o < [

in both cases. Thus

2
5a-18 < g < [$=2]

8 .Jn

Finally solving the inequality 3d-18 < %(52-4), we deduce

d>14, and (4') is proved. For the converse, we use (3.1.101ii).
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Geometric »nicture of 3d-18 < g < %(dz—‘#). _
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In particular the g's which satisfy (4') for some given d4's

are:
d = 14 ¢ g = 24
d =15 g = 27
d =16 : 30 < g <%
d =17 : 33 <g< 35,

' a2y
Remark 3.2.2. For every d>14 the maximum g = [——-8—-—] is

achieved by some smooth connected curve satisfying (4').
So there is a component W(&,m) € D(d,[g-(dz—l#)];i) con-

taining points (XSYSP) satisfying (A'). Letting
d = 4a+r where ax>4 and r = -2,-1,0,7,

we have the following four types of components W(é,m)

of “maximal genus under thé» condition (A)"
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i) 1= -2, (8,m) = (30,0,0,0,a,a,2) and g = g(a°-4)
1) =1, (6,m) = (30,8,0,a,0,a=1,2)  and g = 3(a°-9)
iii) r =0, (,mn) = (3a+1,a+1,a,a,a,a,2) and g = g—(dz—B) |
i) r=1, (6,0 = (3041,0,a,0,a,0,2) and g = #(a°-9).

Next we consider the unproved part of the conjecture, i.e. the
problem of determining whether pr,](W(d,g)) is an irreducible
component of H(d,g). For theée considerations, classical in
nature, we can as well suppose HO(_]_Z_X/Y(B)) =0 in view of

(3.2.14A") .

More generally fix an irreducible component W < D(d,g;s) con-
taining points where X 1is a divisor on Y and where

HO,(;—[X/Y(S)) = 0, and let V - be any irreducible component con-
taining pr,](W). Using (1.3.2), (’1,5,’12)7 and (2.2.14) we get

1 2 . . .
a -a 2dimVW = dimpr, (W) £dinV
where

o'~ el = #a+01(0y(s)) -0 (Zy(s)) = (4-s)a+g-2+ (53

for (X<YcP) sufficiently general in W. Now suppose that

pr,l(w) is not a component of H(d,g). Then we claim that

s(X,l) > s

for some point (X,]E]P) €V, i.e. that HO(‘;[_X (s)) = 0. To see
/'l
this, suppose h°(Iy (s))>=1 for all (X,SP)€ V. Then there is
/'l
an irreducible component . W' of D(d,g3;s) such that
pI‘,l(W'> =V,

By assumption, ho(_lg_X/Y(s)) = 0, i.€. ho(_]_Z_X(s)) = 1 for some

(XcYcP) € W, so by semicontinuity, there is an open subset UCW
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such that

h%(Ig(s)) =1 for all (XSYCP)e€ U.

It follows that there is only one surface Y of degree s con-
taining X provided (XSYCSP) € U, and this combined with
pT, (W') =V 1leads to the inclusion

Ucw

of .subsets of D(d,g3;s). So WSW' and since W 1is an irreduci-

ble component of D(d,g3s), W = W', We deduce
pr,i(W) = pr,I(W') =V
~contradicting pr, (W) ; V.
In particular if Y, is a surface of degree T containing the
"generic point" (X,IEJP) of V, then

r>s,

and we deduce easily

dimV = dim W(r) - ho(:-[-X,I/Y,I(r))

for some component W(r) < D(d,g;r), see the discussion of

(2.%,101i) . This leads to

Lemma %.2.3. i) Let W c D(d,g;s) be an irreducible component

containing points (XSYCP) where X is a smooth con-

nected curve and a divisor on Y and where
o —
n°(Iyg(s)) = 1.

Then pr, (W) c H(d,g) 1is an irreducible component provided

the inequality

43 +1"(0y(s)) = B (Iz(s)) > din ¥V
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holds for those components V C H(d,g)S whose"generic

point" (X,IE]P) satisfies

s(X,]) > s

0l (Zy (v)) < B (IZx(v)) for all i and v,
q

nh (W (v)) < b)) for all i and v .
/'l

Moreover
4+ (0y(s)) =1 (Ig(s)) = (4-s)a+g-2+ ().

ii) If all curves of V, V a component of H(d,g), are
contained in some surface of degree r, then there is a
component W(r) < D(d,g;r) satisfying pr,](W(r)) =V such
that

dimV = dimW(r) -h°_(_I_X1/Y/|(r))

where (X,]EY,]_C_]P) is a sufficiently general point of W(r).

iii) If V contains an open subset U < V of curves

X, € P which are contained in global complete intersec-

tions ¥, of type (£f,,f,), then

2
dinV = dinW(f,,f,) -iiqho(_I_Xq/Yq(f,]))

where W(f,,f,) is some component of D(d,g3f) satisfying
pr,I(W(g))= v, and (X,]EY,]_C_]P) is "generic" in W(£f).

To use lemma (3.2.3%) for s =3 and W = W(8,m) in the situa-
tion of (A) or (A') to see that pr,I(W(é,I_g)) is a component of

H(d,g), it will be sufficient to prove

43+ (0g(3)) =0 (Ig(3)) 2 ho@x,])
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or equivalently
1 par 21 1
n'(Ny ) <h'(03(3)) -0 (Ig(3)) = -3d+g+18
1

for any smooth connected curve X,] CIP satisfying

s(X)24 and hY(Iy (v)) <bl(Zy(v)), 120 and allv,

1

We now give four examples of components W(6,m) satisfying (4)

where we prove il Ny ) = 0.
1

Example 3.2.,4, [M2], Let d = 14 and g = 24. In view of

(3.1.61ii1) there are two components of D(14,24;3) of the
form W(8,m). The image pr,l(W(é,gl_)) of the component
W(é,m) where (5,m) = (11,4,3,3,3,3,3) 1is a reduced irre-
ducible component of H(14,24) by (3.1.3) and (3.1.101) .
For (6,m) = (12,4,4,4,4,4,2) we claim that the image

pr (W(8,m)) is an irreducible component of H(14,24), hence

non-reduced.

To prove this, let (X,<SP)E H(14,24)y be any curve satis-
fying s(Xq)_?_/-!- and e(X,\)_iB., It will be sufficient to
prove Hq(y_X ) =0 by (3.2.3i). By Riemann-Roch,

i

XLy () = (V3) = (hva1-2),

80 X(lx,l(”) =1 and 'x(;[_Xq(LL)) = 2 and we deduce
hq(qu(B)) £0 and ho(;t_Xf'l(u))zz.

If Y, is a global complete intersection of type (4.4)
containing X,, then the linked curve X,'I is a plane curve

because
1
h°(;X1x/Y1m>) =0 (0g (3)) 40
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by (2.%3.%3). The cone of X,']S]P will therefore be Cohen
Macaulay, hence the cone of X,cP will also be, again by

(2.3.,3). We deduce Hq(_I:I_X ) =0 by (2.2.9), and we are done.
/l

(Once having that the cone of X’I cP is Cohen Macaulay, we
conclude easily. Without using this, we give another parti-
ally independent proof to illustrate (3.2.%ii) . With nota-
tions as in (3.2.3) it will be sufficient %o show
dimV <d+ g+ 18 = 56. Since h°(_;X1(4))32, (3.2.311i)

applies with = = 4, and we get

dimV = dimW(s) - no(I

Iy sy, () Zainis) 1.

Moreover since X’I is a divisor on Y’I for some surface
Y, of degree 4 (see [M2] for a short proof),
dimW(4) = g+ 3% = 57,

see the discussion of (5.’I.’|), and we are done).

Example 3.,2.5. Let d =15 and g = 27 and observe that the |
image pr, (W(8,m)) of the components W(8,m) corresponding
to (8,m) = (11,3,3,3,3,3,3) and (6,m) = (12,5,4,3,3,3,3),
see (3.1.6iv), form reduced and irreducible components of
H(15,27) by (3.1.3) and (3.1.101). The final component to
consider corresponds to (12,4,4,4,4,3,2)., We claim that
the image og this component is an irreducible non-reduced

component of H(15,27).

To see this we apply (3.1.3) and (3.1.61iv), and we get
h'(Zy(v)) = 0 for v£{3,4,5}, h'(0g(3)) =1 and e(X)=3.

In view of (3.2.31i), let (X,]E]P) € H(15,27)g be any curve



- 186 -
satisfying
s(X)>4 eand hY(Zy (v)) < bl(Zg(v)) for i,veZ
, I

where (XcCP) ¢ prq(S(b,g)). We need to prove hq(l\T_X ) = 0.°
/]

First we clain
h/l(_I_,_X (v)) =0 for v £ 5.
1

In fact using Riemann-Roch's theorem, we get

X(Zg, () = (3 - (15v41-27),

so x(Ix (3)) =1 and x(Iyx (#)) = 1. Since s(X;)24,
i 1
X(ILy (3)) = ~11“<;_X1<5))+h"<oxq<5)') = 1, and since

n'(0g (3))<1'(05(5)) = 1, it follows tha
1
2 (I () - 0.

Moreover since X(l.xq(‘*)) - h°(_1_X1(4))-h"(;X1(4)) =1,

we find ho(_I_X (4))>1, and we must in fact have
1
h%(Iy (4)) =1
1

from which we deduce h (_I__X (4)) = 0. 1Indeed if ho(;_X “)=2,

then there is a global complete intersection of type (4,4)
containing X,. By (2.3.3) the linked curve has degree 1
and arithmetic genus -1, and such a curve does not exist.
The claim follows therefore from hq(lx(v)) = 0 for

v £ {3,4,51,

Next since X(-:[-:-X (5)) = 7 there is a global complete
1
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intersection Y, of type (4,5) containing X;. The

linked cuxrve X,'I is of degree 5 and genus 2 and satisfies
0 Iy (v)) = 0 for v £ 0
/l .

by (2.3.3). Then we claim gthat the cone of X,"E]P is
Cohen Macaulay. Suppose not. Since x(_I_X|(2)) =1, we
deduce h° (I l(a)) = 1, It follows that 1’2 >4 where
the integers nal belong to the minimal reduction of

I,'| = ®HOQ:-XL| (v)). Bo min n5i25 which contradicts

. 1
MAX Ny; = c(X,|)+LI- = 4,
and the claim follows.

Finally, since the cone of X,'l_f—;]P is Cohen Macaulay, the
cone of X,|_C_1_]P will also be by (2.3.3). We deduce

H“(gxq) - 0 by (2.2.9) because e(X,)<3. (Using (2.2.9)
we can prove H (l\T ) = 0 directly in an easier way without
using liaison, Ind;ed we must also in this case prove

H/l(LX (3)) = 0 and h°(_1_X (4)) = 1. Then (2.2.9) applies

without difficulties if we observe that h° (IX (4)) =1

implies minn,; 26 w1th n.. as in (2.2. 9)).

Ji

Before giving the last examples we want to add a remark which we

will use in the following and frequently in Section 3.3.

Remark %.2.6. Let R = k[Xo’““’XB]’ mSR be the irrelevant
maximal ideal, and let XCP = BY be a curve, Put
I =@H°(_1_[_X(v)), and consider the graded resolution (2.1.6)

of I which we now suppose is minimal. It is easy to
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spond to X, then up to sign we have

Mg i = Ngfy -

Example 3.2.8. Let 4 =16 and g = 31, and there are two compo-

nents W(8é,m) of D(16,31;3) given by (12,4,4,3,3,3,3)
and (13%3,5,4,4,4,4,2) by (3.1.6v). The first one has an
image in H(16,31) which is a reduced irreducible component
by (3.1.3) and (3.1.101i). We claim that the image of the

second one is an irreducible non~reduced component of H("I6,3’l).

To prove this, let (X,]EjP) € H(16,31 )S be any curve satis-
fying s(X,])_>_4 and

hi(_I_Xq(v)) < B (I (v)) for i,v € 3

where (XSP) € pr,(8(8,m)). We must prove h/](l_\I_X )<
/‘l
by (3.2.3). First we prove

it
O

H'(Iy (V) for v £ {5,6)
1

in exactly the same way as we did in (3.2.5). Moreover

since x(;[_X (5))>6 there is a global complete intersection
/‘l

T, of type (4,5) containing X,, and the linked curve X,

which is of degree 4 and genus 1 satisfies

Hq(_Z_IZ_X/'](v)) -0 for v £ {1,0} ad e(X;) =0

by (2.%.3). Then we claim that the minimal resolution of

I,'] =®H°(_I_Xl(v)) must be of the form
/‘l
0 = R(-)% -1-\T-;~R(_4)@"*Y@ R(-3)%* = r(-3)%er(-2)% > 1)0

for some non-negative integers x and y. Indeed C(X,']) <0
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and  c(X;) < e(X))

O 1implies

HAX Nzs = c(X,'])+1+j4,
maxn,s = e(X) +4=4,

see the discussion after (2.2.7). Moreover since the reso-

m n > < . < s

and combining with Riemann-Roch which implies

I

hO(EX%(ﬂ)) = 0, _ho(lx%(2)) 2, hO(EXA(B)) = 8,

we find a resolubtion as required.

Suppose ¥y = 0. Then the cone of X,"EIP and therefore the

cone of X,CTP will be Cohen Macaulay. We deduce H/‘(ljX )=0
; 1

by (2.2.9) because e(X,)<3.

Suppose y>1, and let (0,...,0,H;,...,H ) be the trans-
pose o.f say the first column-vector of N. By (3.2.6) it
follows that T((Hq,e..,H)) = (Xo,a,,,xa) which implies
x>4, This is impossible since if we consider the resolu-
tion of I,'l above, we observe that x is the number of
the relations among the generators of I,'\ of degree 2.

Since there are just two such gemerators, x<1.

Example %.2.9. Let 4 = 17 and g = 35. We claim that

pr,(W(s,m)) where (5,m) = (13,4,4,4,4,4,2) is an irre-
ducible non-reduced component of H(17,35). To see this,

we chaerve that

o(X) = 3, H'(Ig(v)) =0 for v<3
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for (XSP)e€pr, (S(8,m)) by (3.1.3). If (X,SP)e€ H(17,35)q

satisfies

s(X) 24 and hY(Iy (v))<h'(Iy(v)) for all i,v €3,
/l

then we easily prove that 'Hq(;_X (v)) =0 for wv<5, and
that there is a global complete ;‘]_ntersection Y, of type
(4,5) containing X, 1in exactly the same way as we did
in (3.2.5). The linked curve X, which is of degree 3

and genus O satisfies
c(X,")f_O and e(X,")f_O,

and arguing as in (3.2.8), we find that I:| =@HO(E_X,“(V))

admits a resolution of the form

0 = R(-4) & p_s)® @ p(-3)Pe+x I R(-5)®X®R(—2)®5->I,'|"O,

Again if we can prove y = O, we deduce H (_1\]_X ) =0 as in
/l ) .

(3.2.8) and we are done. Assume therefore y>1 and let

o
N = LN']

where O is the zero matrix and N is a (2+x)Xy matrix.

N' induces a map
]
R(-)FP E_ r(-%)®™

where p =y and g = 2+x and we have 1°() = IO(N'),
say equal to I. Since depthiR =4 by (3.2.6), we deduce

X >y+1 by using the formula
depth{R < (p-y+1)(a-y+1) ,

see [E.N]. Taking a non-vanishing y-minor Ny of N and
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crne c¢f the three generators F of I% of degree 2, then

up to sign we have

MKI = NK.F

for some minor Mgt of M (5,2.7), Since there are

matrices A,B,C,0 where O 1is the zero matrix of size

x X (2+x) such that

x4,

we find, after throwing away y columns and one of the last
three rows and taking the determinant, that Mpr = 0 De-

cause x2>y+ 1. This gives a contradiction.

The four examples of non-reduced components we now have considered
correspond to a = 4 in (3.2.2). We claim that, extending the
analysis of these examples, it will cover all the components of

"maximal genus for a non-vanishing Hq(lX(B))“ of (3.2.2). Hence

Theorem %.2,10. The image prq(W(é,g)) of any component W(8,m)

described in (3.2.2) is a non-reduced irreducible component
a°-u
of H(d,g) of dimension d+g+18 where g = [—?;—].

Proof. ILet 4 =4a+r where a>4 and r = -2,-1,0,1. We have
four types of components W(6,m) described in (3.2.2), and the

components which correspond to a =4 is already treated.

Start with r = -2, d = 40 -2 and the component W(s,m) given
by (8,m) = (3a,0,0,0,0,0,2). It follows that

g = g(a®-4) = 20%- 20,
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We will first, for (XcSYcP) € S(4,m), prove that

c 2(a=-1-v)(a-v) +1 for 1<v<a

n'(0g(v) = |

0 for v=a .,
Indeed by using (3.1.3 ii) s
LA o]
h (0x(v)) = R (T(-v-1))

where L = OY(X). As explained in (3.1.6iii) we see that L(-v-1)
corresponds to (%n,n,n,n,n,n,1-v) for n=a-v-1, and if L'

’correSponds to (%n,n,n,n,n,n,0), then we clearly have
n%(L(-v-1)) =10°I') for v>1.

Moreover one knows that
ho(yr) - (622)_.%1(1%15;;1)

provided ;_J_" corresponds té a tuple (6,m) satisfying (3.1.2**).

In fact combining the exact sequence of the proof of (3%.7.3ii)

with Riemann-Roch, we get
B%(L") = 1+10%wp(1)) = 1-x(0p(=1)) = a(D) +g(D)

provided D is a section of _I_J" which we can consider as a
reduced curve of degree d(D) and arithmetic genus g(D). The

dimension formula for hO(L") follows easily from
. &1 3,
d(D)=§6"zmi’ S(D) =‘(2)-—2(2).
Using this formula we get

n°(L') = 52 -5("") = an®+2n+1,
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and we “cduce casily the required formula for h/l(OX(\))).

Next we claim that if (X,SP) € H(d,g)g is any curve satisfying
s(X,) >4 and hi(gxq(v))ihi(gx(v)) for all i and v, then
there is a global 'complete intersection Y, of type (4,a) con-
taining X,] » Indeed

1 p 2(a-4)(a-5) +1 = 20,2—’\8a+4’| for a >4
n'(0g (4)) <nl(0g()) = {

for a=4,

and since
X(_I_X 4)) = (g) - (4a+1-g) = 2a2-’180;+42
1 .

we deduce

> 4
hO(g;X (4)) Z { 1 for o
1 for a =4

i.e. that there is a surface Z of degree 4 containing X’I"

Now it will be SufflCant to prove n° (IX /Z(a))> 0. For this,

we use the exactness of

01, =1y =1

-=> 0

together with I, = O]P(-4) , and we deduce

-1
h°<:_t.X1,Z<a>_> - h°<;xq<a>>-<a5 ).
Finally we find that ho(_I__X (a)) > (0'-'5'/') because
1
n°(ZLy @) 2y (@) = ) - (cav1-g) > (°3 )

where the first inequality follows from h/‘(OX (a)) = O and the
/l

second from

(agB)_(c, ) = 2a +2, ad+r’l-g=20.2+’l.
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If we now follow the analysis for o =4 in (3.2.4), then it is
straightforward to see that prq(w(é,g)) is a component of H(4,g).
Indeed the linked curve X,'] of X, by Y, is a plane curve because
the degree 4' = 2 and the genus g' = O, or because |

' 1
Byt v, (1) = b (0 (@=1)) £ 0

by (2.3.3). It follows that the cone of X,STP is Cohen Macaulay.
Therefore any component VEH(d,g)S ‘as in (3.2.%1), i.e. with
"generic point" (X,If_'—_']l?) , must have postulated dimension (2.3.15)

by (2.2.9)- (By (2.2.12), V is a reduced component.) Hence

by (2.3.17). Since dimprq(W(B,g))zdimV we deduce from (3.2.31)

that pr,(W(é,m)) is a component, hence non-reduced.

Next let r = -1, d = 4a-1 and consider the component W(8,m)

given by (8,m) = (3a,a,a,a,0,0-1,2). In this case g = %(d2-9) =

20 ~a-1. If (XcYSP) € S(6,m), then we first prove

104 (v)) = (a-v)(2(a=v)+1) for 1<a<y
in exactly the same way as for the case r = -2, 4 =40-2,

Moreover if (X,ZT) is the "generic point" of a component
VcH(d,g)g satisfying

s(X,l)_>_4 and hi(}_xq(v)) < hi(_I_X(v)) for any iand v,

then we prove that X,I is contained in a global complete inter-
section Y, of type (4,a+1) Dy the same proof as for the case

r = -2, HMurthermore we claim that

H/‘(_I_X (v)) =0 for v<a.
1
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To prove this, let 2 Dbe a surface of degree 4 containing X,

and consider the exact sequence

01 > Iy = LIy,/z = ©

where I, = O]P(-ll-) . We deduce

ho(_I_X/I(v)) = 1°(0p (v-4))+h°(;_x/l/z(v)) - (Vg“) for 1<v<a
since we easily prove ho(_I_X /Z(v)) =0 for v<a by liaison.

A _
This gives
n°(I, (v))+h'(0 < (V7 (2(a-v) = 1)
Ix, v))+h ( X’I(v)) < ( 3 )+ (a=v)(2(a-v)=-1) .,

On the other hand we have the identities

X(Zg, () = (3 - (avw1-g) = (V31 + (a-v)(2(a-v) - D,

the last equality is seen by using 4 =4a-1, g = 2a2—2a
2
and (vga) - (v'-;l) = 2v" +2. Combining we get
H/I(l_x (v)) =0 for 1<v<ag
1

as required,

If we now follow the analysis for a =4 in (3.2.5), then we
easily prove that pr,(W(s,m)) is a component of H(d,8).
]

Indeed the linked curve X, of X,; by Y, is of degree 5 and

genus 2 and satisfies .c(X,'I)f_O by (2.3.%). Moreover
o] ' _ .0 . _ A _
h (-I-X’I(g)) = h (:-[-X’I/Y’I(E)) =h (qu(q—/l)) =1,

and by arguing as in (3.2.5), the cone of X,SP is Cohen lMacaulay.

We deduce that ok (W(d,m)) is a component by the last part of
the proof of the case r = -2,
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The remeining cases r =0 and r = -1 is treated in a similar
way as the case r = -1, using the same proof. Indeed with

(X,cP)e V as in (3.2.31) we prove

1) X,EY, for some global complete intersection Y, of

type (4,0+1).
2) H'(Iy (v)) =0 ~ for v<a .
1
And as a byproduct of the proof of (2),

3) Ho(lx,]/z(“"ﬂ) =0

where Z 1is the surface of degree 4 containing - X,. Then the

linked curve X,'] must satisfy

c(X,'I)_<_O and e(X,'I)f_O.

We prove this by combining (2) and (3) with (2.3.3). If r = 1,
X,'] is of degree 3 and genus O, and we have precisely the same
situation as in (3.2.9) from which we deduced that the cone of
X, &P was then Macaulay. Moreover if T o= 0, X,'] is of

degree 4 and genus 1, and since the genus is positive, e(X,']) = 0.

Again we have precisely the same numerical situation as in (3.2.8).

The cone of X,C TP is therefore Cohen Macaulay., It follows that
dimV = g+ 33
by (2.3.17), and pr,(W(s,m)) is a component by (3.2.31), hence

non-reduced, The proof is now complete.

Recall the theorem on the majorization of the genus of curves of
degree d stated in [G.P]. It says that the genus g of a

smooth connected curve X,I of degree d which is not contained
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in a surface of degree <s, is given by

e

g82e(8) gy = 1 +%—(s +%-—_4) - r(s'lé)és"” , provided a>s(s-1),

where O0<r<s and d+r = 0 (modulo s) . Moreover g = g(s)max
iff X,l is linked to a plane curve of degree r Dby a global
complete intersection of type (s,%E). Using this for s = 4

and T =2, i.e. for d = 4a -2 where a>4, we find

' d—-4
g<4)max = 5 -

Compare with (3.2.21i). Now if V ?{ pr,l(W(Ba,a,a,c.,c.,a,2)) is
‘any component with "generic point" X,c¥P, then s(X;)>3 by
(3.2.31) , and by the theorem [G,P] above it follows that the
cone of X,SP is Cohen Macaulay. As in the proof of (3.2.10),

if ¥, is a surface of degree 4, Y,l_'—'_>X,|, we easily deduce
. o

In view of (3.2.%1) we thus have a simple proof of (3.2.10) for
one of the four classes of components of D(d,g;3) of "maximal
genus under the condition (4)". However we have not been able to
find such a simple proof for the other three claéses, and the

details of the proof of (3.2.10) seem . therefore necessary at

least for these cases.

Observe one more fact which follows from the theorem in [G.P].

Indeed solving the inequality

22
s M

we find d>22. The curve X,<STP appearing in the proof of



- 199 -

(%3.2.10) is therefore contained in a surface of degree 4 provided
d>22 (confirming with what we proved in (3.2.10)). We think it
should be "easy" to prove the conjecture for all components
W(s,m) S€D(d,g3;3) =atisfying (A) where g>8(5) ,y Indeed in
this case, with V as in (3.2.31i), V = pr,](w(4)) for some
component W(4)<D(d,g34), and we know that W(4) has postulated
dimension (2.3.17) by (3.1.1) in "most" cases. And if W(4) has
postulated dimension, then it is easy to prove the conjecture by
using (5.2.3;i) . LEven if dimW(4) = g+ 33+ & for some integer
£<d-15, (3.2.31) applies, and the conjecture follows. We have
worked out the details for one more class of components, namely
the components of the form W(s,m = W(3a+2,a+1,a+1,a,a,a,2) for
a>4, In this case if V?pr,l(W(é,gl_)) is a component of

2
m(a,d=4

~1) with "generic" point X, <SP , then s(X,) = 4, and

the analysis follows the lines of the proof of (3.2.10). We find
that the conjecture holds for this class as well. (We ‘can also
prové the conjecture for the component W(13,5,4,4,4,%,2)CcD(7,34;3)
where we also need to consider components V3pr,(W(s,m)) satis-
fying s(X,I) = 5, and this makes the computations more complicated.
Compare with the exaﬁple of Section 3.3) .

Therefore trying to produce counteréxampies to the conjecture,

one should perhaps consider components where g is not far from
3d - 18, FO];‘ instance if g = 3d-18 and if we want to apply
(3.2.3), we must prove dimV = 44 or . Hq(EX/I) = 0, However, if

g =3d- 18, e =e(X,;) is small because of ed=<2g-2 which
implies &=2. In many cases e = %, and at least for these cases

dimV = 43 provided V has postulated dimension, see (2.3.,15)
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and (2.3.17). So having confidence to the assertion that compo—.
nents usually have postulated dimension, it should not be easy

to find counterexamples near the line g = 3d-18 either. MNMore-
over if e is 4 or 5, it looks like s(X;)>e(X,) if (X,EP)
is a "generic curve’. If so, énd if V has postulated dimension,
dimV = 44 for all the cases where g = 3d-18. (In fact there

is only a finite number of components W(d,m) having g = 3d-18
since e(X)>3 implies 4<90, see the discussion at the end of

Section 3.3) .

1)
3,3, Singularities of codimension 1 of H(16,29).

In Section 3.2 wefound non-reduced (i.e. generically'non-smooth
components of the Hilbert scheme H(d,g) which were of the form

prq(W(a,g)) for (&,m) suitably chosen. They satisfied
8) 0 #10"(Zg(3))<n"(0g(3)) for some (XSYSP) € S(s,m).

As mentioned in the discussion of (3.1.11), we might also in-

the case

B) 0 #1'(0g(3))<n"(Zx(3)) for some (XSYCSP)e€ S(5,m),

expect that prq(W(é,g)) consists of singular points of H(d,g).

Note that if X is a smooth connected curve, then (B) is equi-

valent to

B') §<3d-18, H(Iyy(3)) =0 and H'(0g(3)) £ 0

by the first part of the proof of (3.2.1). We can establish

1) The characteristic of the field is zero.
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scme further inecuaiities for the degree and genus deduced from

(B), see tne discussion at the end of this section.

The following example deals with the Hilbert scheme H = H(16,29).
In fact we shall prcve that

there is an irreducible closed subset ZCSH(16,29) of
dimension %44 -1 = 63 of the form pr,](W(é,g)) where
(3.3) (8,m)
of H

(122, 4,4,4,2,2)  consisting of singular points

H(16,29). Moreover if V is any irreducible
component containing Z, then V ' is a reduced component
of dimension 44 = 64, and a sufficiently general point

X,]E]P of V gsatisfies

1 if v =4
/]
R (Iy (V) = {
1 0O if v £ 4.
Recall the question from the discussion of (3.1.11): Does there
always: exist a component VCH(d,g) containing pr,(W(s,m))

for which

aimV - aimpr, (W(8,m)) = [h'(Zx(3)) -n"(0g(3))7* 2

Since 1'(Iz(3))-h"(04(3)) = 3a-g-18 = 1, we conclude that the
answer is the affirmative in this case, not only for one compo-

nent V<H(16,29), but for any component V2Z.

Unfortunately we have not been able to prove completely the (at
least for this example) expected assertion that there is only one
componant ¥ of H(16,29) which contains Z., If there are two

or more conponents, then by the characterization of the "generic
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point" X, of V appearing in (3.3), it is impdssible to
distinguish their "generic points" by the dimension of the groups

H:"(_I_X (v)) for any i and v. Indeed if V, and V, are two
/‘l

components which contains Z with "generic points" X, <P and

X, P respectively, then

hi(-I—X,](v)) =hi(_I_X2(v)) for any i and w.

It follows thalt the corresponding Hilbert functions ho(OX,](\’))
and hO(OX2(v)) are the same. In view of (2.3.6) we will further
motivate why we expect that 2 is contained in a unique compo-
nent VCH(16,29). Indeed if V, and V, are different compo-
nents containing 2, then there are different components V,"

and vé of H(9,8) obtained by liaison. Moreover if X,;SP
and Xé_c_:_]P are the "generic points" of V,'] and Vé respecti-

vely, then

hi(}__X'(v)) = hi(_I_X'(v)) for all i and v.
1 2

and the resolutions of I) =®H°(I,r(v)) and 1. =@ H° (It (v))
1 X 2 =X,

are numerically the same, see (2.2.10i) and (2.3.8). Further-
more one may prove, by using [P.S.,(4.1)] as explained in (2.3.12),
that V,'l and Vé contain reduceé curves, By further liaison,
there are two components of H(7,4) containing reduced curves

as well., We certainly do not think H(7,4), or equivalently
H(9,8), contains two such non-distinguishable components.
We shall prove 3.3 as follows. First with (8,m)= (12,4 ,4,4,4,2,2)

we observe that if (XcYcP) € 8(5,m) where X is a smooth
connected curve, then d = 16 and g = 29 by (3.7.2%),

H%(Ly 4(3)) = 0 by (3.1.101) and 1'(0y(3)) =1, e(X) =3
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by (3.1.6vi) . Since g<3d-18, (B ) holds. In fact, by

(3.1.101iii), since
h(L(3)) =11 (04(3)) = 3a-g-18 = 1,

n'(14(3)) = 2, and H = H(16,29) is singular along pr,(W(6,m)) =2

if there is an irreducible component VCH, ZCV such that

dinV-ainZ = h'(Ix(3)) -h"(04(3)) = 1.
We know that

dimpr,l(W(é,g:_)) = dimW(é,m) = d+g+ 18

67,

and it will therefore be sufficient to show dimV = 44 = 64,
Indeed if VCH is any component which contains 2, and if

X,l_C_ P is a sufficiently geheral point of V, then we will show
, :
H (E'X/l) = O o

It follows that V is a reduced component of dimension 4d.
Furthermore we can by the proof of (3%.2.%) suppose s(X,l)_>_4 in
which case there is an irreducible component W(r)<D(d,g;r)

for r = s(X,)>4 such that V = pr,(W(r)). Since X(;’X’IG)):%
S(X,])f_5. The proof which now follows is long and technical,

and we will therefore first give the ideas.

In 1) we discuss the case s(X,]) =5, i.e. we study components V

Nal

of H of the form V = pr,l(w(5)) which is not of the form V =

pr,(W(4#)), and we divide into two cases
i) e(@)=2
i)  e(X,)=3.

In (i) we quickly see e(X,l) =2, and»’co show H/l@l_x/l) = 0, we
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use (2.2.9) after having proved

v =
X 0 if v £4

by liaison and by using (3.2.6). In the case (ii) we first prove
1
h (g—Xq(”)) =0 for v ¢ {3,4}

by liaison and (3.2.6). Then we use (2.3.6) which implieé that

if Y, is a global complete intersection of type (5,5) contain-
ing X,, then the linked curve X% is a "generic point" of some
component of H(9,8). We then prove that this is impossible, and
we have a contraction, We have by this proved that the family of
curves given by (1,ii), if it exists, does not form a dense subset

of any component V of H(16,29), V2Z.

In 2) we analyse the case V = prq(w(A)), and we consider three

subcases
i) o) 24
i)  o(X) >4 end e(X) <2
iii) (X)) >4 and e(X,)) =3
For all three cases we prove that dimpr,(W(4)) <44 which implies

that there are no component V of H(16,29) which contains Z

and satisfies s(Xq) = 4, This contradicts V = prq(w(l&)).

1) As always (XSP)c¢ pr, (S(8(m)) €2 and X, SP is a suffi-
ciently general point of some component V containing Z. TUsing

(3.1.3) and (3.1.6vi)

hq(_J_Z_X(v)) = 0 for v¢{3,4,5,6}, h"(oX(B)) =1 and e(X) = 3.
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Combining with

H(Zy () = 0, x(Ix () =6, x(Ix (3)) =0 and x(Iy () =~1,

and for later use x(;y (5)) = 4, we deduce
L/‘ .

H“(;Xﬁ(v)> -0 for v £ {3,4,5,6)
n' (L (3)) - n'(0g (3))21
h4(£X1(4)) =1 and e(X))>2,

1,1) Suppose e(X)) =2 and let Y, be a global complete inter-
section of type (5,5) containing X,. The linked curve X% ~> Y,

is of degree d4' =9 and g' =8 and satisfies
1
BO(Tg y, () = 21 (0g (6-v)), 2@y () = n'(Zy (6-v)) emd

1 o)
h O 1 = N 6- °
( Xq(v)) ! (_I_Xq/y/‘( v))

We deduce s(X) =4, o(X;) =2, e(X;) =1, and knowing this we
find by the arguing of (2.2.10i) that the resolution of the ideal

I, =€3H°(1X'(v)) must be
g
0 = R(-6) L& B(-5)™® —> R(-1)® > 1} =0,

where R = k[Xo,Xq,XE,X5] is a polynomial ring. If the trans-
pose of N is

-t .
N = [Lq’""LG]’

then by (3.2.6) and by the fact that degL, =1 for all i, we

deduce

(XyyoeesXz) = T((Lgyeee,Ig)) = (Tyseee,Igde
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It follows that the cokernel of

T
@ N
R’l -V > R2-v

is zero except for v = 2, and by (3.2.6),this cokernel is pre-

cisely Hq(_]_Z_X-(v))V, Thus
1
1 1
0 = 'y (v)) = 01Ty (6-v))
1 1
for v<1 and c(X,l) = 4, We deduce Hll(liX ) =0 by (2.2.9).
1

1,ii) Suppose hq(;_Xq(B)) =h1(OX1(5)) = 1. If Y, =V(F,,F,)2%,

is a global complete intersection such that deg Fi =5 for i=1,2
1

and if X, &> Y, is the linked curve, then I} =®H°(I;'(v)) has
/l:

a resolution of the following form
0~ R(-7) @ R(~6)® &> R(~6 PT*%0 R(-5)%* ~ R(-5)®* @ R(-4)®2 O R(-3) ~ I, ~ 0

for some non-negative integers x and y. We deduce such a reso-
lution from s(X,'l) = 3, c(X,'l) = 3 and e(X:l) = 1 and by com-
puting x(lx (v)) for different v's.

/'l

Suppose y = 0 and let ty - [L’I’LE’I’B’S’I"“’SxJ where deg Li=’l
for i€[1,3] and degS; =2 for all i€[1,x]. Since
t

©3 o Ox N 1, v
Bply @Ry = By, = E Iy (V)" =0

is exact by (3.2.6) and since h/l(LX-(2)) = 1, it follows that the
codimension of the vector space (I"I’I‘2’I‘5)’I in R, 1is 1,
where (I, ’I‘E’I‘B)’I is graded piece of the ideal (I"I’I‘e’IB)ER

of degree 1. Moreover by (3.2.6)

I'((I”l ’LE’LB’S’I L ’Sx)) = (Xo’x’l ’X2’X3)
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which proves that

(BhseeesBy)p & (T4,Lp,I2)5

considered as subvector spaces of R,. Since the k-vector space
(L,‘,L2,L5)2 is O dimensional and R, is 10 dimensional, we

deduce

(BsLosLgda + (84500 38,)p = Bp

which proves that hll(;[_.X-(v)) =0 for vZ<1, i.e. that c(X,)=4.
' 1

Note that h (Iy(2)) = 1 implies y<1. In fact since the
/l

sequence

Ty

*)  ®BFPerd Lr, ol - 151"(_:[.}(,-‘(\0)V -0

v T-v
is exact and since the composition

. |
Oy+3 o p®x N o8 E. g%
BV 7 @ RN —=> Ry @RI > RY

is the zero map for v = 2 where P 1is the projection onto its ¥y

last factors, it follows that
1 > aim B -
h (;-X,"(z))-':dlmkRo = Yo

Suppose ¥ = 1 and et
i} FIJ,‘L:2115L45,‘..,¢SX

“O000H H]
/I.'OX

1.
L
N

where deg Li =1 = degHi and deg Si =2 for all i. Using

| (*) for y =1 end v =2 we deduce (L,‘,L2,L5,L4),] = R,.
Moreover by (5.2._6) and the linearity of the Hi‘s,

(Xosxq,xgaxb') = r((Hqs""',Hx)) = (an'“’,HX)

from which the surjectivity of the morphism °N for 1-v>0 is
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easily deduced. It follows that
1 1
0 =h (Iz'(v)) = h (Iy (6-v))
for v=1, i.e. that c(X,) = 4.

Now since H1(1X4(5)) = 0 and H,](lX (1)) = o0, (2.3.6) applies.
It follows that X,'] CP is a “genericllpoint" of some component
V'SH(9,8), and since s(X,'l) = 3, v o= pr,l(W) for some irre-
ducible component WCD(9,8;3). Observe that it is not clear that
we can use (%.1.,101i) since we do not know whether the surface Y,]
of degree 3 which contains X,'l is non-singular. However we

can apply (3.1.121ii) because

- 2
coker a! = 0 and coker ly = 0
) Ol Xex

by (2.2.9). It follows that pr,](W) is not a component of H(9,8)
because Hq(lix%@)) # 0. Hence X,'I is not "generic", and we have
a contradiction (or we can use the discussion concerning the example
(2.2.1011i) appearing right before (2.2.13) to see that X,'] is

not "generic").

2) Let V Dbe an irreducible component of H(16,29) containing Z,
and suppose that V = pr,(W(4)) for some component W(4) €D(16,29;4).
This time h°(Iyx (3)) = 0 and h%(Iy (4)) =1, so

1 1

n1(Z; 1)) =2 and 1'(Zy (3)) = n'(0g (321
1 1 1
Moreover let Y,] be a surface of degree 4 which contains X,].
2,i) Suppose c(X,;)<4. By the discussion just before (2.3.8),

méani:max(c(xq) +2,8(X,) +3)) <6,
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and the conditions of (2.2.9.) are satisfied. Thus

2
cokerotX SYq = Q0 and coker IX,‘__ , =0,

Using (3.1.12ii), we find

aimpr (W(4)) = aimV -k (I (4)),
1
contradicting pr,l(W(LL)) = V.

2,ii) Suppose c(X,‘)>f'+ and e(X,‘)_<_2. Since the surjectivity
of
1 o} 1
H (qu(v))i@;H ©p(1)) = H <'I‘X1(V+1))

is implied by the surjectivity of
H°(oX1(v))§H°(qP<1)) —> H°(oxq(v+1))

which is true by Castelnuovo 's lemma, if Hq(oxq(v-’l)) =0, i.e.
if v-1 >e(X,), see [M1, Lect M], we deduce that if H'(Iy (5)) =0,
1
then H,‘(;[—X (v)) =0 for wv>5. Hence since c(X,‘)>L'+, it follows
1

that H'(Iy, (5)) # 0, and since (I, (5)) = 4, h°(I; (5))>5
--X,l -—X,l —-X,l -
which proves that there is a global complete intersection
Y, = V(¥,,F,) containing X, such that deg¥, = 4 eand degF,=5.
The linked curve X;<> Y, is of degree d' =4 and genus

g' = -1 and satisfies e(X,'l)_<_O and

B (Tt (v)) = 21Ty (5ov)y =f 0 08 VT
LY, = -t =
=X, X4 Yo for v £ {-1,0,1]

by (2.3.3). This gives c(X,'|)=’I>e(X,'|), S0
C(X')+4 =5 = maxnai >maucn25_>maucn,|:.L

where the integers ns; belong to the resolution of I,'| =C+)H°(;_Xv(v)).
S 1



- 210 -

In parficular using [P.S.,(4.1)] there is a global complete inter-
section Y',; = V(G,\,Gg) containing X,'] such that deg Gi = 3% for
i = 1,2 and such that the linked curve X, by Y, is reduced

and of degree 4" =5 and genus g" = 0. Moreover
H"(;_Xq(v)) -0 for v£{1,2,3]

and h1(£ u(’l)) = 2., Now a result of Castelnuovo says that

H

n' (IX"(\))) is decreasing for \)>[--] 1 =1 and strictly de-

il
creasing for v > d >-]-1 = 1. We deduce

- h“(;_X;(mzh“/(1X:(2)>>h“(_I_X;(5>>.

And this is all we need; the general theory will now produce &

contradiction. In fact since X, is reduced and since e(X:]') <1,

1
it follows that H/l(_l}T_Xi]f) = 0. By the exact sequence of (1.%.1C),
see the discussion right before (2.2.14) for further details, we

have a surjective map

Y s H (I "(3))692 —> cokera

X’I-C-Y’l
and this combined with (2.%.11) leads to
dim coker OLX’I CY" = dim coker an_C_YLI <2,

Using c(X,'])_<_2 and e(X,'])_<_2 and the exact sequence of (1.3.1C),

we deduce that

1
cokera == H ( 1) <= cokera
X\SY, ==, XiCY,

Thus

dim coker ay EY' < 2.
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Qb'serving that there is an irreducible component W(4,5)SD(16,29;4,5)
such that pr;(W(4#,5)) =V = pr (W(4)) we get

dimpr,(W(4,5)) =aimW(4,5) - h°(_I_X1/Y;](4)) - h°(LX1/Y;](5))

by (3.2.31iii). Moreover if A"(g,od) is the tangent space of

w(4,5) at (X,]CY,']C]P), then by (2.2.14)
. 1 o] o] |
dim4 '(d4,0,)-h" (I (4))-n"(ZT ' =

1a-1n7(Zy, (#))-n1(Zy (5)) +dimcoker ay 4d = 1
1 1

1 <
CY , ~—

1=

‘which gives a contradiction.

2,iii) The final case is c(X,])>4 and e(X,I) = 3, As in (2,ii)
we conclude that M. (Ix (5)) # 0, so there is a global complete
/]
intersection Y,'] = V(¥,,F5)2X, such that degF, = 4 and
1

degF, = 5. The linked curve X, e> Y, is of degree 4' =4

and genus g' = -1 and satisfies
!
h"(_I_X:I(e)) -1, h"(;_X/'I('I)) - 2, H/I(_I_X/rl(v)) =0 for v£{-1,0,1,2}.

Easy computations show that the resolution of I,'] =®H°(_]_Z_X-(v))
- 1

must be of the form

0~ R(-6) @ R(-5)% 5 R(-5)®* @ R(-4)¥ ¥ 4 r(4)®¥ @ R(-3)® @ R(-2) = 1, ~ O.

Assume y =0 and let t

N = [L/I,LE,S/I,ooo,S,]+X] where degLi =1
and deg Si =2 for all i. Since hll(__I_Xv(’\)) = 2, the k-vector
/]
space (L’I’Lz)’I-C-R’l is of dimension 2, and since we know that
r((Lqy Dpy Sqye0as8q,50) = (X ,X,%,,%5) by (3.2.6), x27.
However if x>2, the (2+x)-minor M, 34x 0 Se€e (3.2.7) for
9

notations, given as



AN
O
°
°
L ]
O O

det

N DA
[
°
[
DA O e

is zero (the numbers in the matrix above denote the degrees of
the elements at that place, the elements of degree zero is how-
ever zero since the resolution is minimal). By (3.2.7) this is

impossible. So x = 1 and since

it follows that {31,3'2} form a regular sequence in the ring
R/(L,,Ly). Hence

dimk('S',],S'2)2 = 2 and dimk(g,l ,'S'z)3 4,

This gives

it

hﬂ(_I_xa"(-“)) = dim Ry /(L,15,84,8,)5 = 0 and hll(_;_x/,‘)=’l.

Unfortunately the assumption Hq(;_x. (n,]i-LL)) =0 of (2.2.9) is
1
not satisfied. We used this assumption in the proof of (2.2.9)

to conclude that oEXt122(I"I’I"I) = 0. However combining (2.1.6)

with x = 1, we find
. 1,51 1
dlmoExtR(I,],I,I)f_’l o
Following the first part of the proof of (2.2.9), we find
1 . 1,1 1 2
h (l\T_X/'])_f_dlmoExbR(I,] ’I’I) + 8

because c(X,']) <minn2i « Thus h/‘(gxt ) £1, and now the argu-~
/]
ments at the end of (2,ii) apply and we get
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. . ‘ 1
dim coker OLX/]EY:] = dim coker aXvEY/'I =h (EX"I )21,

and 1

dim pr,l(W(l'r)) = dim pr,](W(4,5))f_4d -2
which gives the contradiction.

Suppése y=1 and let

welo w

where L,8,0 and N  are matrices of size 1x(2+y), 1x (1+x),
yx (2+4y) and yx (1+x) respectively. Since h/l(_I_X'(’l)) = 2,

v 1
L = [L,],...,L,]_I_V] #0, say L, # 0. Observe that the ideal 1°(W)
generated by the (1+y)-minors of N and the ideal generated by
the y-minors of N' satisfy IO(N)EIO(N') and also

depth - R =4
°")

by (3.2.6). On the other hand it is well known that

depth | | R= (M4+x-y+1)(y-y+1) = x-y+2,
(W)

see (3.2.9). Thus =x>y+2. Now choose a non-vanishing y-minor
t

Np+ of N', and let Np be the (1+y)-minor given by

Ny =L Noo

17K
If F is a generator of I,'] of degree 2, then

However if we throw away the last row, the first column and y of

the last (1+x) columns of M, and take the determinant, we will

see Mg = 0 because x>y+2 (the matrix M has too many
$X+5 -

. L] - - > > " '
entries which are zero). This gives a contradiction, i.e. curves X,]



- 2% -

‘as above having y>1 do not exist, and the proof of the claims

of (3.%3) is complete.

Without going into the details, we will mention that if W(6,m)

is any component of D(d,g3;3) which contains smooth connected

curves such that

H'(Ix(3)) 40 and H'(0g(3)) # 0

for some (XSYcP) € S(é,m), then

g > %(a-18)

provided d>46, There are a few exceptions to this lower bound
in the range 3%3<d4<45,, and they satisfy
6

1226515~ L m, .
i=1

Moreover since Hq(OX(B)) #0 implies 33d<2g-2, we also have
g > %d +1,

and this gives a better bound provided d<32. Using these
inequalities, we find that if w(e,g_) is any component which
contains smooth connected curves and which satisfies the condi-
tion (B), then the degree d and the genus g must belong to

the closed region indicated by the following diagram
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In fact the component W(12,4,4,4,4,4,1) < D(15,25;3) is mini-
mal under the condition (B) both with respect to the degree

and the genus.,
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