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Introduction.

The purpose of this paper is to study the Hilbert scheme HilbP(P°),
parametrizing curves in the projective 3%-space with Hilbert poly-
nomial p(x) = Ax+1-g. A well known example of Mumford shows
that H:i.ll:)P(]P5 ) may have some rather startling singularities.

In fact for d = 1 and g = 24, one may find a non-reduced compo-.
nent of Hilbp(]Pa) consisting generically of non-singular curves,
sitting on surfaces of degree 3. This example of Mumford. is the

starting point of the research presented here.

In what follows k denotes an algebraically closed ‘field, and P

is any projective k-scheme. ILet p =(p,l,,..,pr) be an r-tuple

of polynomials, piei{’,[x]. We shall show that the "flags" of

¢closed subschenes

of TP, Xi having Hdilbert polynomial p;, are parametrized by a
projective k-scheme D(P;p) = D(P; P’I”"’Pr)' If =1, we
clearly have

D(P; p) = HilbP(®).

We shall usually suppress mentioning the space P both in D(P; p)
and in HilbP(P). To simplify further, we sometimes write
D(P;p) = D(p) =D,

HilbP(®P) = HilbP = H(p) = H.
Consider the obvious projection morphisms

P-
pr,: D(P; p) —> Hilb “(P),

L

and pick a closed peint x = (X,SX%,C...SX . CP). We may compute
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the tangent spaces of D(Pj;p) at =x and of Hilbpi(]P) at pri(x),
together with the tangent maps p;]_ at x. Let g_r be the category
assocliated to a flag x = (X,]EX2C_:_...S]P), the objects of which

are the morphisms XiC->1P. There are corresponding cohomology

groups of algebras Aq(g_r,o r) (see (1.2)) such that
d

i) Aq(g_r,o r) is the tangent space of D(P;p) at x.
d

ii) If r =1 and x = (XCP), then 4 (8,0 ,) =H°(X,Ny) where
a

Ny 1s the normal bundle of X &> TP. If we by definition let

A2(h,OX) = A2(§;1 ,Od/l),

then A%(h,0) = H'(X,N;) provided h:X<¢>T is locally

a complete intersection.

P . r
iii) If a? = dlmkAq(_d_ ,Odr), then

1 .2 4 gl
a -a f-dlmOD,xf- a .

Moreover D = D(PP,p) is non-singular at x iff (if and

only if) dim0Oy _ = a.

~r

’.ﬂ.

Now restrict to the case r =2, Let 4 = 9_2, X = (X‘g-> yrg-ﬁ’ ]P)?

and suppose that g: YCP is locally a complete intersection.

We shall have the following two situations in mind

a) Y = V(F) is a surface of degree s = degF in TP = ]Plz
with Hilbert polynomial Po, and X is a curve on Y of

degree d and genus g with Hilbert polynomial p,. Put

D
D(d,g35) = D(P>;p,,p,)" end H(d,g) = Hilb '(B7).

b) Y is a global complete intersection in I[?i of two surfaces

of degree f, and f, and XcY is a curve.
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An explicite description of Aq(g,od) for q = ’1,2 may be given

as follows. Let Iy,I, be the sheaves of ideals which define

X<> P and Ye> I respectively, and let Ny = Hom, (;_[_X,OX) ,
P

—N—Y = HomO]P(_]_Z_Y,OY) be the normal bundles.

Corresponding to the diagram of projections

pr D
D(p,,p,) —=> Hilb °
19P2
Pfq;
Vp
i1t |

there is, on the tangent space level at x = (X€YSP), a cartesian

diagran 4
1 Po_
47(g,04) = H (Y, Ny )
Nl P 1
Dal D Lm
x\l/

o o) *
1O (X, Ny ) i HO(X,f Ny)

This means that A"‘(gﬂ,od) = ker(lq,mll), Here 11 ana

at s B (T ) > B (L)

*
are deduced from the natural morphisms Ny —> f*y__Y and Ny - f,f Ty
respectively, Moreover let -N-X/Y be the normal bundle of X <> Y,

Essentially from the exact sequence

we deduce a long exact seguence
o o 1/‘ 0 * 8"

12
AS(£, Oy Y > A7 (gf,OX) H(X,1 Ny) =



v Let

. 1© 2
@ = Oycy* H (Y,_N_Y) —> A™(£,04)

be defined by « = & °m' and let

1
Y = YX_C;_Y : HO(X,_N_X) —> cokerm

be the composition of 11 with the natural map

%
(X, f EY) —>> cokermq. Then there is a diagram of exact hori-~

zontal sequences (see (1.3))

O —> cokery > Ae(g_,(.)d) - ker(le-,me) - 0

t o J\ ° j

0 —=> cokery-—> cokera —> ker 12 -~> 0

In the first chapter we prove the following results

b
(1.3.2): If Hilb 2(JP) is non-singular at pre(x) = (YcP), then

1 . . 1
) . a’ - dim, cokera < d:LmOD,xga
In particular if a is surjective, D = D(®;p,,p5) is

non-singular at x = (XSYSP).

1Y
(1.3.4): Let Hilb 2(]1?) be non-singular at pre(x). If

m' :HO(Y,lj_Y) - HO(X,f*_I_\T_Y) is surjective, then
R
pr, : D(P5 pyspy) = Hilb (P)

is smooth at =x = (X€Y<P). If in addition vy is surjective,

the converse is true.

P
(1.3.6): If m' is surjective and if (YSP)EHilb 2(P) is
non-singular, the results above imply that

2

cokera = kerl _C_Ae(gf,OX)



and moreover that

0 Ak . < 1.0
(2) h™(Ny) ~ dimy cokera <dim OH(p,‘),pr,](x)-h 1)

where hO(l) = QimF°(X,Ny). In particular if 1° is

injective, H(p,\) = Hilbpq(]P) is non-singular at pr,\(x) =
(XcP).

D
Now Hilb 2(]P) is non-singular at (Y<P) if Y is as in (a)

or in (b), and n' is surjective iff

H'(P, I(s))

O in the case (a) and

Hq(IP,__I_X(fi)) 0 for i =1,2 in case (b),

Using the theory of deformations of graded algebras we can improve
upon the inequalities (1) and (2), at least in some special cases.
In fact let X &> Y <> P correspond to surjections R —>> B ~>> A
of graded k-algebras, see (1.4.1), and suppose that dim¥>1,

Let Iy = (Fq"”?Er)ER be a graded ideal such that R/Iz = B,

and suppose {F,],Fg,..,.,Fr} is an R-regular sequence of homo-
geneous elements. Let I = (F ,e.0,F,, F  4,...,F) be a graded
ideal such that R/I = A and let f; = degF; for i =1,...,t.

The algebra cchomology Hi(R,A,A) associated to the canonical
morphism R —> A, are graded A-modules; the submodule of Hi(R,A,A)

of elements of degree zero is denoted by oHi(R,A,A).,
(1:4.6): If H'(P, I (£;)) =0 for i = r+l,...,t, then there
is an injective map

)
OH“(R,A,A) <> cokera

and

@

= 1 .. 2 : 1
(3) a - dim_ OH‘(R,A,A)f_dlmOD,Xf_ a
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In particular if _H°(R,A,A) =0, then D = (P5p4,Dy)

is non-singular at x = (XSYSP),

(1e4.8) 1 If H'(P,Ly(£)) = 0 for all i = 1,2,...,t, then
HO(R,A,4) 2 ) |
o A,4) ¢ cokera ¢ A"(gf,0y
and

(#)  n°(Ny) - dim_ H°(R,A,A) <dim Of(p,) () 10 (Hy) e

b
Therefore if OH2(R,A,A) = 0, then H(p,) = Hilb 1(39) is
non-singular at pr,l(x) = (XcP).

Now, to apply these results, we should like to know how to compute
cokera or OH2(R,A,A).,

First we describe OH2(R,A,A). Let X Dbe locally Cohen Macaulay
and equidimensional, and let X< P =% be generically a com-~
plete intersection of codimension 2 . Then there is an isomor-

phism of graded A-modules

B (R,4,4) = Exti(I,I) for 1 = 1,2

where I = ker(R->>A)., BSee (2.2). To compute Extﬁ(l,l) we
establish the following duality theorem. Suppose R is of
dimension n+1, and let M and N Dbe graded R-modules of
finite type and of finite projective dimension. Let Extll;'l(l"l,-)
be the right derived functor of I‘moHomR(M,-) where T means
sections with support in the irrelevant maximal ideal mCR.
If R 1is Gorenstein, there is an integer p given by the
dualizing sheaf wp of TP = Proj(R) such that wp = O]P(—p) o
By (2.1.5) there is a perfect pairing

i+ n-i
JEEET (M) x| Bt —> k.

-V
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This theorem modulo obvious modifications is also valid if (R,m)
is a local Gorenstein ring. If M = R we obtain the usual
Gorenstein duality theorem under the restriction "N of finite

projective dimension',

Now if X = Proj(LA) = P =IP5 = Proj(R) 1is a curve such that
OHE(R,A,A) = oExt%(I,I), we deduce by the duality theorem above
that

t
EEA(R,A,0)Y = Hom (I,H-(1)) si:zH“(;X(fi-LL)) :

where H/l(lX(v))& H/I(JP, LX(v))a And if OH2(R,A,A) = 0, we can
find the dimension of H (_N_X) under some additional requirements
(2.2,9)., Moreover if we combine the vanishing of OH2(R,A,A)
with (3) or (4), we deduce criterions for the non-singularity

of D(P’l’p2) and H(p,]\) at x = (X€YcSP) and (X< P) respec-
tively, in which case we also find dim OD,x and dim OH,pr,](x)“
Finally if we can compute dim H-(R,A,A) for a sufficiently
general curve XC P of a reduced component V_C_H(p,]), then

dimV is found in (2.2.13%).

For the case -(b), let X be Cohen Macaulay and equidimensional,

Since Y 1is a global complete intersection of dimension 1 which

contains X, there is a linked curve X'cCY defined by ;[_X,/;[_Y =
1

Hom, (Oy,0y). Then x' = (% SYCP?)eD(p),p,) = D' If XY

is generically an isomorphism, i.e., if the linkage is geometric,

we prove in (2.3,11) that
(5) dim coker ay_y = dimcoker O‘X‘EY°

C

This result enables us to compute dimcoker Cyey provided we can

by linkage obtain a simpler situation. In fact (5) is an easy
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consequence of the isomorphism
D(pq389r8) g = D35 E0)0y

see (2.3) for notations., In particular Op o = Op' 1, valid also
9 9

for algebraic linkage. Combining with (1.%.4) we have the fol-

lowing result.

(2,3.6): Suppose

H'(Iy(£;)) =0  for i =

i
2
N
o)
B
o}

H'(Iy(f;-4)) = 0 for i

]
Y
no
°

Then H(p)) is non-singular at (X' CP°) iff H(p,) is
non-singular at (X_C_]PB) . Moreover (X'E]PB) is a

"generic point" of a non-embedded component of H(pll) iff
(X_C_]P,a) is a ‘'generic point" of a non-embedded component

of H(p,] e

More generally (2,3,10) if VEH(p,]) is an irreducible component,
there is a "linked" irreducible closed subset V' _C_H(p:]) which -
is a component of H(p,']) provided H/](LX(fi-#)) =0 for i =1,2.
Moreover under this condition, if V is a reduced component, then
so is V', Finally we also introduce the notion of expected or
postulated dimension of a reduced component V of H(p,) (2°5.15)°
Under the conditions of (2.3%.6), dimV is equal to the postulated

dimension iff dimV' is, provided the linkage is geometric,

In the case (a) we shall assume that X is a local complete inter-
section in Y = V(F)., If s =degF¥<3 and if X is reduced, we
easily prove that cokera = O and therefore that D 1is ﬁnon-—

singular at x = (XEYE]PE) . Let W be a non-embedded irreducible
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component of D = D(d,g3s) which contains x. Then W is re-

duced and
[ 2da+g+8 if =
dimW =~ .
| a+g+18if s

2,
5,

If s =4 and if X is a smooth connected curve, then
dimW = g+ 33

provided W does not contain any closed point <X/|.‘.:.Y/|E]P5)
where X’I is a global complete intersection in Y,I., If W does,

we find
dimW = g+ 34,
See (3,1). These dimension formulas are found in Noethers funda-

mental paper on space curves [N].

Moreover let H(d,g)g be the open subscheme of H(d,g) consist-
ing of smooth connected curves, and let D(d,g;s)g = pr}[ll(H(d,g)S)..
Then we prove that D(d,g;E)S a smooth connected écheme, and if
we combine with (1.3%.4), we find that pr,l(D(d,g;Z)S) is a smoothq)

connected component of H(d,g)s provided g # 0 and g # d-3.

Furthermore we describe in (3.1.4) all irreducible components W
of D(d,g;B)S which contain points (XSYE]PB) where X is a
divisor on Y. Indeed if d>2, there is a one~to-one corres-
pondence between components as above and tuples (6,m) =

(é,m,l,...,m6) e 797 satisfying

6_>_m,|’+m2+m5 y 8ZPMyZMsZ eee ZM- 20,
6 6 m.
gl ' 1

d =3~ m, and g=(5 )= £ (5.
i=1 27 1212

Now if
H'(I4(3)) = 0 for some (XSYSP’)e€ W,

) i.e. H(d,g)g 1s smooth along pr,l_(D(d,g;E)s)
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we deduce by (1.3.4) that prq(W) is a reduced ) irreducible

component of H(d,g)S° And if
H'(04(3)) = 0 for some (XSYCSP?) €W,

then H(d,g)S is generically non-singular along prq(W), and the
codimension of pr,(W) in H(d,g)gy is h'(Ix(3)). We divide

the remaining cases into
8) 0 #1n"(Z4(3))2n"(04(3)) for some (XSYSP) €W,

B) 0 # hq(OX(E))<h1(_Z§Z_X(5)) for some (XSYCSP) € W,

In both cases the tangent map p1 of

pI‘,| : D(dag§s)s - H(dsg)s

is not surjective. We deduce that if pr,(W) is an irreducible
component of H(d,g)S, it is necessarily non-reduced. Moreover

we easily prove that if prq(W) is an irreducible non-reduced
component of H(d,g)s, then (A) holds., We conjecture the con-
verse, and Section 5.2 is devoted to a study of the conjecture.

In fact we prove the conjecture for all components W of
D(d,833)g of "maximal genus under the condition (A)", see (3.2.2).
There exist such components W for every degree d>14, and the

corresponding genus is
2
g = =5

where ([v] 1is the greatest integer such that [v]<v. The example
of the lowest degree d = 14 gives g = 24, and this is the ex-
ample of Mumford [(M2]. Observe also that if VS H(p,) = H(d,g)

is the closure in H(d,g) of one of the non-reduced coﬁponents

1) 1i.e. H(d,g)S is generically non-singular along prq(W).
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pr,(W) SH(d,g)g above, then, under the conditions of (2.3.6),

the corresponding "linked" component V'Ci_H(p%) is non-reduced,

In the situation of (B) we easily prove that prq(W) can not be
an irreducible component of H(d,g)s. We expect, however, that
H(d,g)g is singular along prq(W), and in Section 3.3 we give an
example of this phenomenon, In fact we find a singular subscheme
7 = prq(W) of H(16,29) for some W<&D(16,2933%) satisfying (B)
which is of dimension 4d-1 = 63 such that if V 1is any com-
ponent of H(16,29) which contains 2z, then V is a reduced

component of dimension 4d.
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Chapter 1.

1,1. The representability of the Hilbert-flag functor.

In this section we shall define the Hilbert-flag functor and

show its representability.

Notations and definitions 1.1.1. Let k Dbe a field, let P

be a projective ]z:-scheme,IPE]Pn , and let F Dbe a co-

herent OZIP ~Module. Put

mh(®) = 1P, B), vN(® - andl(®
and let

be the Buler-Poincaré characteristic. If v is an integer,
X(F(v)) is a polynomial, called the Hilbert polynomial of
F, and x(OIE,(v)) is called the Hilbert polynomial of P
or of PSP, See [EGA,ITT,(2.5)1.

Let Sch/k be the category of locally noetherien k-schemes and
let Sets be the category of sets, If - f: X —> S 1is a morphism

of schemes, the fiber of f at s€S5 is the scheme Xs =

X xSpec(k(s)) where k(s) is the residue field of s, i.e.
S

of OS,s’

Defin_ition 1.1.2, Let IP be a projective k-sch_eme,IP_C_]Pi,

and let r be an integer. If S €obSch/k we define

DY(P; 8) to be the set

l all inclusions are closed

{((X,€%,2...SX,SP x8) | embeddings of S-schemes and
= Kk

each 'Xi is S-flat,
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If 9:8' = S is a morphism in Sch/k, we let
D' (P; 9) : D(®; 8) = D' (P35 8")
be the map given by

DY(P; 9)(X, Ceee CX_ CP x8) = (X, XS'€...cX_x8" cPx8').
3 1S .-+ ZX.C (XD Seee ZHpX® S |

The »r-th Hilbert-flag functor of TP

D"(P) : Sch/k —> Sets

is defined by
DX(P)(8) = D" (P; 8) S € ob Sch/k,
DY(P)(®) = D" (P; 9) , € Mor Sch/k.

Let p = (p4seee,p.) Dbe a tuple of polynomials in one vari-

able with rational coefficients. The Hilbert-flag functor

of TP with Hilbert polynomials p, denoted by Q(IP; p) =
D(P; Dqseee3DL), is the subfunctor given by

fOI‘ all i'—_-/‘,oon,r, the

D(P; p)(S) = {(X,S... SX_ CPx8)|fibers (X;), have Hilbert}

k polynomial p, for any ses

If I'=/], p'llt

Hi1b(P) = D' (P)

HilbP(P)=D'(®; p).

- H

The Hilbert-flag functor of IP with Hilbert polynomials p is
well-defined since Hilbert polynomials are stable under base field
extensions., Let- (X15°°°EXI-E]P xS) € Qr(IP)(S) and let pi(s) |
be the Hilbert polynomial of Xi at the fiber s€58. By base
change theorem [M1, Lect 7] we deduce that pi(s) is locally
constant on S. See also [EGA,III,(7.9.11)]. Therefore if
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S €obSch/k is connected, there is a decomposition

DTP)(S) = ||D(®; p)(S).
D

It follows that D'(F) is representable if D(P;p) is, and

that its representing object Dr(]P) is given by

D*(®) = ]| D(®;5p)
2

where R(IIP; p) = Mor(-,D(PP;p)). Usually we omit mentioning TP
in Qr(P), Dr(]P), D(P3p), D(P;p), Hilb(IP) etc and sometimes

also the Hilbert polynomials p and D;o

Theorem 1.17.3%. Q(]P; p) 1is representable and its representing

object D(Pj;p) 1is a projective k-scheme.

In [M1, Lect 15] there is a proof for the representability of the
functor Curvesp(]P), As Mumford remarks in his introduction, the
proof which is Grothendieck's with some modifications [SB,exp 221],
may be used without any change to prove that the Hilbert functor
is representable. Using this proof it is easy to deduce (1.1.3)

as we now shall see,

Proof Let a; be positive integers, 1<i=r, and let
@ = (@ 500050)e. If a finite k-vector space V is given, we

may define the functor

Flag(Vsia) : Sch/k —> Sets

by : —
}" _];1 are locally free

Flag(V;a)(8) =4 (Vx0g => E, —>...~> E;)| Og-Modules of rank a;,

L k all morphisms are sur-

jections. —
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One knows that Flag(Via) is representable and that its represent-
ing object TFlag(Vja) is a projective k-scheme. See [C,exp.12].
If » =1 we let

(E‘rr‘issOL (V) = Fllvag(V;a) .

Step 1. Let <X1.§.°" c Xr_C_]P xS3) € Q(R)(S), let I'Xir-

xcer(O]PxS - OXi) and let m:Px S -> S8 be the projection. By

(M1, Lect 14] there is an integer m,, depending only on

D = (p,l,,.,,pr>, such that if m>m, , then

RIm Iy (m) =0 for j>0, i€[1,r] and
1

X
™ Mely () - Iy (m) is surjective for ie€[1,r].
i i

Choose m,2m, such that HO(O]P(m,I)) = 0, Since
0> 1Ly —=> Opyg—> 0 —0
i i
is exact, we deduce

1 ~ 1
R ﬁ*OX_T (In,]) - R

for all i. If X, = PxS, I -0, and if I, _
-+l C e X /X0 =

ker(OX' , - OX_) for i€ [1,r], there is an exact sequence
i+ i

O -~ ..I_X - T

Ly & Ix
i41 i

- 0.
/%541
It follows that
Rjﬂ*LX/y (m,) =0 for j>o0, iel1,r],
17541

which implies that the morphism

Oy (m,]) —> Oy (m,])
141 i
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is surjective. By base change theorem and by Rq'ﬂ*OX. (m,‘) = 0,
i
we deduce that n*OX (m,l) is locally free. We have therefore

i
constructed a sequence of surjections

O
H (O]P(m,‘))z Og = n*erM(mq) - n*OXr(m,]) > 00> TT*OX/](mq)

of locally free Og-llodules, i.e. we have defined a map

h(m,)(8): D(p)(8) —> Flag(H°(0p(m,)); a)(8)

where a; = rank n*OX.(m,\). This morphism is functorial in S
i

by base change theoremn.,

Step 2. Define
T o
D(P; p)(8) = _T-Tq Hild “(P)(8)
i= ~

by sending (X;S...SX . SPx8) to {(X;SPx8)} and define

T a.
Flag(V,a) — T Grass (V)

correspondingly. Then there is a commutative diagram of functors.

T P-
D(P3p) > 1T Hilb *(P)

i="1 )
h(m,) % ° thl (m,)
v

T a.
Flag(V,a) = T1 Grass )
~ i="1 ~

where V = HO(OP(m,])) and where the vertical arrow to the right
nhl(m,]) is defined in the same way as h(m,‘)., It follows from

the proof of Mumford in [M1, Lect 15] that
i ., P 1
h (m,]) : Hilb ~(PP) = Grass (V)

is a morphism of representable functors, and that the corresponding



- 18 -
morphism of representing objects

Pj . o5
Hild ~(P) -> Grass ~(V)

is a closed embedding. Now if we prove that the commutative
diagram sbove is cartesian, it will follow that D(P3;p) is

representable and that the morphism of representing obJjects
D(P, p) —> Flag(V,a)

is a closed embedding and the theorem follows. To prove that the
diagram is cartesian, let V®OS => E,=>...=> E; and let
X, P xS for ’If_lif_r be given such that V®O0g —> &, and
V&og — rr*OXi(m,I) coincide. The morphisms

E.q= ﬂ*OXi+q(mq) - Ei = ﬂ*OXi(mﬂ)

induce morphisms

ﬂ*-:g-X. (m/l ) —> ﬂ*ix_ (m’l ) )
i+1 i

and since the sheaf homomorphisms
_ ) |
: (TT ﬂ*lxi(m/l ) ) (""mzl ) - _:EXl

are surjective, we easily deduce

L c kL
Xi+’| Xi’

and we are done.

The schene Dr(]P) is called the r-th Hilbert-flag scheme of 1P

and D(PPj; p) is the Hilbert-flag scheme of TP with Hilbert

polynomials p. Moreover the projection morphisms

D(P; p) = Hi1bT1(P)
defined in step 2, induce morphisms

P.
pr; : D(P, p) —> Hilb ~(P)
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of projective k-schenes. pTy is therefore projective, and we

call it the projection morphism from the Hilbert-flag scheme onto

its i-th factor.

Notations and terminology 1.1.4. Since R(p_) is representable,

there is a canonical elenent

Mor(D,D)

Xy = (XpSeee X S P xD) € D(p)(D)

which corresponds to the identity of D

D(p). We call

this element the universal object of D. Usually we simplify

the notations and we write

(XS eee S P X8) = (Xgy000,%) = X

where (X S .. CX . CPx8)eD(p)(8) is an S-point or an
S-valued point of D. To any S-point X of D there is a
morphism

Py * S —=>D
such that B

D(p;oy) (Xp) = X,

and there are ideals I, = ker(O - 0y ), L o=
X . PxS Xi ? Xi/Xi+’|

1
ker(O -> 0., ) and normal bundles N, =Hom (I, ,0v )
X5 41 X5 Xy = Opye =X K
. = Hom (T Ov Je
X; /X5 44 ““‘OXi+,| =X /X5 4Ky

A K-point X of D is an object of D(p)(Spec(K)) where
ke> K 1is a field extension. So to any point x€D there
is a k(x)-point X of D, and to any K-point X of D
there is a point x€D and a field extension k(x) &> K.

In both cases we let

%p,x = %,x°
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By a point X of D we mean a k-point of D. If a mor-

phism ¢ :S8S -~> D in Sch/k is given, then a_ K-point X

of S is a morphism Py * Spec(K) —> 8 such that

D(psvoy) (Xp) = X.

1e2. The local study of the Hilbert-flag scheme, Preliminaries.

Let k/Sch/k Dbe the category of pointed k-schemes (locally
noetherian) and let 1Sk/Sch/k be the full subcategory con-
sisting of affine schemes S = Spec(A) where A is an artinian
local k-algebra with maximal ideal m, endowed with an isomor-
phism m:A/m = k. The point Spec(k)=> S = Spec(A) is defined
by A ~>> A/m %k , and abusing the language we also denote by S

the morphism Spec(k) => S considered as an object of 1.

Definition 1.2.1. ILet X = (X,|,...,,Xr) € D(P; p)(Spec(k)) and

define the local Hilbert-flag functor at X

D, =D : 1 - Sets
~X,|_c§,,,._<_:_Xr = ——

by
Dy(Spec(k) =>8) = {Z; €D(p)(S)|D(p;9)(Xy) = X,

We let Dy(8) = Dy(9) and if ¢:S =>8' is a morphisnm

in 1, we define
2‘2{“('\") . Qx(sl) - Qx(s)
to be the map induced by

D(p3¥) : D(p)(8') = D(p)(8).
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If =1 and X = (X), let
Hilby = D(X)

be the local Hilbert functor at X = (XS P).

Notice that we shall sometimes regard RX as defined on the dual

category ;O

Remark 1.2.2. Since Q(E) is represented by D = D(p), any

X = (X’l’°'°"Xr) € D(p)(Spec(k)) defines a morphism
Spec(k) ~=> D factorizing via Spec(k) —> Spec(6D X)o
=
Clearly QE(S) 2 Mor(S,Spec(@D,X_)) = Mor(@D,E,A) for any
S = Spec(A) €obl. In particular 6D X is a hull and in
. 'L
fact a noetherian prorepresenting object for RX defined

on _];o. Moreover to the projection morphilsms

Bry * Rx = Hidby,

there are morphisms of prorepresenting objects

Op <= O o
DL TEinPix,

which is just the completion of the local homomorphisms

%p,x*°

D deduced from morphisms pr. :D =
Hilb™ L, X, 1

D(p) —> Hilb' i at  X.

Let X = (X,l,...,Xr) € D(p)(Spec(k)) be a given k-point of D(p).
Our goal is to study D(p) and pT; ¢ D(p) = Hilbpi at X and
moreover, Hilbpi at pri(_)_{_) = X.. We shall use the local de-
formation theory as presented by Laudal in [L] and [L1] to give

an explicite description of the hull of the functor P»X in terms
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of its corresponding cohomology groups of algebras and of a certain
total obstruction morphism. This hull is 6D x by (1.2.2).
1=
Moreover if Dy  is the fiber of pr;:D = D(p) —> Hilb'l at
i

Xﬁ, we determine 6D X correspondingly. ZFinally we shall
X.?

examine when pr; isTsmooth or unramified at X.

In (1.2.3) and (1.2.6) we recall some of the basic notations and

facts about the cohomology groups of algebras.

(1.2.3). To any closed embedding of k-schemes, say f:X<> Y,

and to any quasi-coherent O,-Module F, we define AP(f,F)

X
by

A%, B)(U) = HY(B,C,E(F7 (1)), az0
where U = Spec(B)SY is an open affine subscheme of Y,
where f—q(U) = Spec(C), and where Hq(B,C,-) is the
usual cohomology groups of algebras associated to the mor-
phism B —> C., See the introduction of these groups by
M. André in [An] or by L. Illusie in [Il. Note that if
EX/Y = ker(OY-4> OX), then

:t}_/i(f,oX) = I

Homy (Lx/y:0p) = Mgy

is the normal bundle of X in Y. Moreover by [L,(3.2.5)
and (3.2.9)] there are cohomology groups of algebras
AY(£,B), i>0
which are the abutment of a spectral sequence given by
EP3 = HP(Y,A%(£,B)) .

It follows that
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87(2,05) = BO(X,Ny py)

and if f3: X &> Y is locally a complete intersection, we

may prove that

2B =5 XNy ® B for 120,
Ox

Let Xﬁ-f—> Y€>P be closed embeddings of k-schemes. Then

there is a long exact sequence

— al(e,F) = al(gr,F) - al(g,0.8) — 211, F) —

for all i>0 (Use [L,(3.3.4)] combined with A (gf,F) =
al(e,x,F)).

1.2.4). Let f:Xé>7Y and F be as in (1.2.3) and let ZcX
be locally closed. By [L; (3.2.10) and (3.2.11)] there are

groups _A%(f,_];"_) and a spectral sequence
EPy% = AP(s,HH(E))
converging to A(é)(f,g‘_). If le—Z is the composition

X = X-£->Y,

then there is a long exact sequence
- AL(£,B) = 23(£,B) - Ai(f‘X_Z,_l_i'_) - a1 (e,B) -
for i>0.
Let (X ’XE”"’Xr) € D(p)(Spec(k)) be given, let

85t X ->XJ. for i<i<j<r and

f; + X, =P for 1<iZ<r
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be the obvious compesitions and define a category 4 = ar by

obd" = {£;] i=1,...,r]
o r @ for j<i
Mor(li,ij) = %

(& 5.1y for i>i,

i.e. where (g ,1) 1is the morphism

g
i

|
' °
A}
/'
r -'-—__—> P
and where -

is the identity. Let 4,

fOI‘ i =’l,o.n’r be the
subcategory of d = g?

consisting of the object f£..

(1.2.5). The algebra cohomology associated to the categories g,
. and g? are given by _
Aq(gi,og_) = Aq(fi,OXi) fOr i = 1,00s,T
where Aq(fi,OX.) are defined in (1.2.3), and by
A(’)(_@_,Og).
which are the abutment of a spectral sequence EPy 4
(48 (24,0, ) A%(s,,04 ) At (f5,OX )..oAq(fr,OXr)
1) \ / \ n%/ >
Ad(s

L 25%12*0X1> A- (fa,g25*0X2>aoa (fr’gr-_/l’r*OXr-"l)

sud
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. . e .
Since gi,i+1‘ Xi >4 Xi+1’ there are morphisms

0 , and since f. =

X. i

—> g. :. .40y which define m3
141 i,i+1* Xi

i+1

f there are natural maps lg:

i+1° 81,1447
q - 294 .

A (fi,OXi) > A <fi+1,gi,i+1*OXi) which correspond to one

of the morphisms appearing in the long exact sequence of

(1.2.3), Bee [L,(3.1.5) and (3.2.8)] for the definitions
and [L1, §2] for the spectral sequence.

(1.2.6). There are cohomology groups of algebras

2577(8,04)
—l —

which are the abutment of a spectral sequence iEpéq given

by the term EP 2 of (1.2.5) provided we replace the group

Aq(fi,oX ) and the morphisms mg and l% in the expression
i

of EP»9 by the trivial group and the trivial morphisms.

Moreover there is a long exact sequence

td P2 of 1
- 43 (8,04) —=> a%g,04) 2> Aq(g_i,od.) —= Agljr (4,04) —>
-] — - -1 =1 -

whose morphisms fit into a commutative diagram

q ) —> a4 - A4
43 (2,04) = 4%a,0,) => 4%(g;,0; )

Voo
0,4 - 0,4
iE 2 >E"}
where the vertical morphisms are edge homomorphisms and where

E%3% — a%(g;,04 )

= A,
-1

O )
9 Xi
is the natural projection. See [L,(3.1.8)] and [L1, 8§ 2].

Note that the vertical arrows are the identities if q = 1,
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The main reason for being interested in the cohomology groups
Aq(_q_r,o 1'-) or in Aq<gj_’od.) lies in the fact that these groups
for g % 1,2 determine alzldeformations of the corresponding
categories, i.e. they determine the functors ']‘)'.}_(_ and Hij.in

respectively. To be nrecise, we have the following result

[Ty (4.1.14)].

Theorem 1.2.7. (Small deformation theorem). Let n: (A',m')~ (A,n)

be a surjective morphism of local k-algebras satisfying
m'kern = O

and let ©:8 = Spec(A) = 8' = Spec(4') be the induced em-
bedding. Suppose X5 = (XjgseessX,g) €Dx(5) is given. Then

there is an element (called an obstruction)

o (%) €A2(gr,odr)-§ ker M

which is zero if and only if there is an object X' =

(X,'] yooo ,X;) € QX(S' ) satisfying
D)X = X
Moreover if 0(ZXy) = O, then the set of deformations
{x' ep,:é(s')i,@z(cp)(z') = X5}
is a principal homogeneous space over

1,47
A'(a ,Odr)ﬁkern .
Applying (1.2.7) for T = 1 we find that Aq(g_i ,05 )®kern for
&

qQ = 1,2 determine the deformations of X.q €Hilby (8) to 8.
1



- 27 -

Any m:A' =>> A or 9:S->8 as in (1.2.7) are called small,
and any E'GEQX(S') satisfying Qx(w)(z') = X5 1is said to be a
deformation or a lifting of zé to S'.

Once having such a theorem as (1.2.7), it is possible to describe

the hull of its local deformation functor [L;(4,2,4)].

Theorem 1.2,8. (Characterization of hulls),

Let X = (X,],.,.,Xr) GB(JP; p)(Spec(k)) define the category

\Y
Aq(g_,og) =Homk(Aq(g,og),k)
be the dual vecltor space and let
t%(a) = Sym [4%4,04)"7"

be the completion of SymktAq(gJOd)V] in its maximal ideal.
Then there is a morphism of complete local k-algebras

(called a total obstruction morphism)

o(d) : <T2<g_>,mT2> - (1@, 1)

satisfying
2
o(d)(m ,)Cm
p2” = "]
such that .
7(d) @k
T=(4d)

is a hull for Dy defined on lP,

fard
necs

So by (1.2.2) we have determined the completion of Op xe
p et

And applying (1.2.8) for r = 1, we find a description of O Pi < °
. - 1
Hilb ,Xﬁ
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Corollary 1.2.9, If ai = dimkAi(gﬁOd), then

a'l-a? < aim Op x < al.

Moreover
/‘

dim OD,X. = a
if and only if D = D(p) is non-singular at X (by which
we mean that the structure morphism D —> Spec(k) is smooth
at the point x€D which corresponds to the k-point X
of D).

Using (1.2.9) for » = 1 we have corresponding results for

0 D for each i,

Hilb 1,Xi

The reason for being interestéd in the groups A%_(g,od) lie in
the fact that these groups are useful in the stﬁg; of ;he projec-

tion morphisms

pry : Dy = Hilby

which we now shall see,

 .Remark 1.,2.10. If k{el = 1€ ob 1° is the ring of dual numbers,then

by (1.2.7) or (1.2.8) we find tangent spaces

Dy(xle]) = 47(8,04),

it

. 1 1
Hijby (xlel) = A7(d;,04 ) = & (£3,0¢ )-

~1

Therefore the projection morphisms pr; ¢ QX-—> Hile give
~ i

rise to tangent maps

PN ]
p:ikl-x[C]) t A (_q_,og) > A (di,og_i)

and these maps coincide with the corresponding morphisms pg

in the long exact sequence of (1.2.6) by [L,(4.1.15)].
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In the situation of (1.2.7) the morphisms

2 . A2r 4 2
pi®1ker’ﬂ s A @_,Og)®kern—> A (gi,Ogl)‘@kern

where 1, . is the identity on kern, map the obstruction

o(Xg) onto the obstructions o(X;g), again by [L,(4.1.15)1.

2

We express this by saying that p; map "obstructions to

obstructions®.

Suppose o(XﬁS) = 0 and pick a lifting Xi(iHile (8") of
’ ~ g

XﬁS #o S'. Then there is an obstruction OXi(zé) ~in

Agi(g,og)‘@kern’ which maps to o(Xg) via

2 . 22 2 |
8@ ernn Ag_i(g_,og)®kern—> A (g,og_)@)kerﬂ

where t? appears in the long exact sequence of (4.2.6).
e .
Therefore tz maps "obstructions to obstructions' as well.

In the same way the morphisms

2
52(2,05) = A2(£]X-Z,04)
and

2¢p
AS(£,05) = A5(£,04)

appearing in the long exact sequence of (1.2.4) map "obstruc-

tions to obstructions'.

Recall that

X

pT; ¢ D = Hg}in

is formally smooth (resp. formally unramified) iff

1



- 30 -

is surjective (resp. injective) whenever ¢:T —> S is small in 1,
By [EGA,IV,(17.14,2)] pr; is formally smooth (resp. formally un-
ramified) iff

.25
pry ¢ D(p) -> Hilb

is smooth (resp. unramified) at the k-point X since pr; is of

P-
finite presentation. If Dy is the fiber of pr;: D(p) —> Hilb *

3

-

) o )
at the k-point Xi = (Xi_f_Z__]P) of Hilb l, we have the following
result

Theorem 1,2.11. (Properties of pri) .

i) There is a morphism of complete local k-algebras

2 2 VA 1 1 v
Ti(_@_) = Symk[Ag.i (Q,Og-) ] - Ti (5_1_) = Symk[Ag;l(g-_,og_) ]

such that
0 ~ o) &k
Dy »X  "1p2(4)
i iv=
.. 1
ii) If Agi(_c'l;,od) = 0, then

. Pi
DTy 3 D(p) —> Hilb

is unramified at the point X of D,

iii) If Agi(g,og) = 0, then pr, is smooth at X.

Proof i) TUsing trivial 1liftings of X, EP® to S where
Spec(k) > 8 is in 1, i.e. liftings of the form X; xSCP xS,
and using (1.2.10) we prove a "small deformation theorem" (1.2,7)

where the algebra cohomology involved are

Ag-i(g_oog) for q =1,2
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(or use [L,(#.1.17)]1). 1In the same way as we used (1.2.7) to give
a description of 6D y Via (1.2.8) and (1.2.2), we deduce the
k Jewed

conclusion of i).
i1) Since A3 (d4,04) = O it follows from i) that
—l ocea

o =k .
Dy »X
1

Unlike what happens to a smooth morphism,a morphism is unramified

iff its fibers are unramified as [EGA, IV, (17,4,1)] says, and we

are done.

iii) The surjectivity of (*) follows from (L, (4.1.17)7.

Remark 1.2.,72. The results of this section apply also to the

case where X = (Xq,...,Xf) is a given K-point of D(Q)G

In this case ;EfE(K/§gg/K)° is the subcategory of local
artinian K--algebras with residue fields X, and we define

the local Hilbert-flag functor Dy at X on 1p as in
(1.2.1). BSince D represents tﬁ;'functor R(P3p): Sch/k->Sets,

it follows that
D % Spec(X)
k

represents the Hilbert-flag functor

D(P x Spec(X)sp) : Sch/K —> Sets,

and X, which is a K-point of D, is also at K-point of

DxSpec(K). By (1.2.2) we deduce that
k

“pspec(®),x~0,x & ¥

is a hull of EX on lﬁ. Now the algebra cohomology are
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K-vector spaces, and the complete local rings Tq(g} and
Tg(ﬁ) are K-algebras. (1.2.9) is still true, and in

(1.2.1131) we easily deduce

a3

/|
o ® K = T(d
Dy X g 1@

i

Since the injectivity (resp. the surjectivity) of (*),
where o:T -> § is small in lK’ follows from the assump-

tions by [L,(4.1.17)], (1.2.113ii,iii) holds,

1.3, TLocal study of the Hilbert-flag scheme and of its

projection morphisms.

In this section we shall concentrate on the second Hilbert-flag

scheme D = D(p,q) of P and on its corresponding projection

morphisms pry appearing in

pT

D(p,q) —=> Hilb?d = H(q)
*) pT, @

Hilb® = H(p)
We shall use the theory of Section 1.2 to study (*) at a point
x €D, corresponding to the k-point (XS€YSTP) of D. In parti-

cular we are interested in

(1) a diagram (**) which includes (*) on the tangent space

level at x,

and also in an good description of the "obstruction spaces”

2 2 :
(2)  A°(4,04) and A3 (4,04) for i =1,2,
—— ——l ——

say in terms of other known groups. In some way the groups of (2),
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at least the obstructions given by these groups, tell us how the
diagram (*) at x is determined by (**). Now it might happen
that these "obstruction groups" are too big, i.e. that there
might be subgroups

A2 (d 0g)

. 2 2 2
(3) 25210 )pes SA7(010g)s A, (@10g)es S

which contain all obstructions involved,

Our main results (1.%.2) and (1.3.4) of this section define
subgroups of A (4, 04 ) and of A (d ) in case Hilb? is
non-singular at pr, (X) such that the conclusn.on of (3) holds.

Finally we also study
(4) the fibers of the morphisms pry; of (").

Let (XSYCP) be a given k-point of D corresponding to xé€D,
and let f:X¢>Y and g:Y<> P be the embeddings. By abusing
the language, we let

x = (XSYCP)eD.

Now there are categories d and ¢; for i = 1,2 (1.2.5), ideals
Iy Iy Ix /Y and corresponding normal bundles Ny, Ny and Ny /Y
(1.1.4). Combining (1.2.10) with (1.2.2) we find tangent maps p;_‘
for i = 1,2 and a diagram |
’l
IER ) 25 1 (g, Oy) = HO(y)

o)
1),

8" (g2,0p) = HO(My)

corresponding to (*). In view of (1.2.5) there is a cartesian



diagram
/l
1 D
£7(8,04) &> Bo(m,)
11 1
(**) Pqt o Lm
v

‘ 1
HO(E}C) ""']'.",T> A (gsf*ox)

including the diagram above where we in (1.2.5) let m? = m%

and 1‘1=1,ﬁ-l for a=21,

Remark 1.%.1. Consider the big diagram

0

’

2" (g,Iy py)

1 v n'

0 = a'(s,05) = 4M(g£,04) 1> 2M(g,2.05) 5> 4%(£,05) -+

/I
9
(g, Lg y)

e e e e ) =~
P \l/

//

el Az(g,OY)
/ |
! v m?

—

o

—

s/

\ >
> 4%(gr,04) T 42(g, £,04) —> A3(£,05) =

b

Aa(gle/Y)

of exact sequences, the horizontal sequence is deduced from

(1.2.3) and the vertical one is the long exact sequence

}
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associated to the short exact sequence

It follows that

A" (g,lxﬂ.) - kerm ,
and that there is an exact sequence
0 = cokerm’I - A2(g,Z_E_X/Y) -> lxtezc'm2 —> 0.
Usiﬁg (1.2,6) we find that

1 0,7 1
qu(g,og) = ,E°2" = kerm,

-that

,]Eoéz = kerm2 and ,lE’lé/] = coker m’| )

and also that

0 — cokermq - Ag (Q,Od) - kerm2—> 0
o] g

is exact. We deduce k-isomorphisms
i, ~ a1
-/&5_1_/I (d,04) = Al(g,.I_X/Y)
for i = 1,2. In the same way we prove
i ~ i .
, qu(g__,og) = 47 (g,1y/y for all 120,

AED(Q,OQ)ZA]‘(J‘.‘,OX) for i>0,
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Now the long exact sequence of (1.2.6) induces long exact

sequences

1 1 1
t P a
0 — Aq(g,EX/Y) > 478,05 = BO(y) >

(&) 2 2 2
42(g, Iy ) —> 45(3,04) = 2%(at,0p) —> (g, Ly y)

1 1 1

t D - Q
0 = 47(£,05) 2> 17(a,0,) <> BO,) 2>

(®) .2 2 2
P a
25(2,05) —5> 4%(a,0,) =5 4%(s,04) == 47(£,0y),

and the spectral sequence of (1.2.6) implies that a:ll = éjlol/l

and or.:lI = 636131 where 5;, 1/I and m/l appear in the big

diagram above., Therefore there is a morphism
o 1
Y = Ygoy ' B (Ny) —> cokerm
such that the composition
HO(N,) L= c:oke:c'm/l c A2( T )
=y'4 —_ g’—X/Y

is a::. If we let
o) 2

be equal to a;, we easily deduce a long exact sequenc.e
related to (4),
1 81 p] 1
0 —=> A (g’;[uX/Y) —_ A (Q,O_d_) —> HO(EX) X> cokerm

(¢)

L po, 42 12,2 3
2> cokera £ A (gf,04) =—> A (g,f*OX) —> A“(£,0y)
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and a diagram

1 4°
cokerm ~——» coker a

/$°L‘\P2

2 2 2
Ho(yx) ‘(;';T> A (gal.X/Y) ;'2'—> A (9,09_) ;2") A (gfaox)
1 1 <2 1

\i/ [ \I/pz
AE( 2
gaoy) "':'_:"'> A (gsoY)

where the sequences are exact, Consider the situation of
(1.2.7) and tensorize this diagram by ker n. By (1.2.10)

one knows that p2®’l maps the obstruction o(Xg,Yq)

2 'kern
onto o(¥g). If Hi1b? is non-singular at (YSP), then
o(YS) = 0, and o(X5,Yy) which is an element of

A2(_c_1_,od) kern, is contained in the subgroup

cokera ®@kern.

In the same way the obstruction oX.(XS,YS) (see 1.2.10))
of Ag (g_,od)®lcern sits in the subgroup
Sq &
coker mq ®kern,

and we define

A2 (-d-’ Od)res

= cokera ,

2 l
Ag.q(g’ogl_)res = cokerm .

Using the discussion of (1.3.1;C) we prove a theorem similar to

= Q.
res cokera .

In the same way as (1.2.7) implies (1.2.8) we obtain

(1.2.7) where we replace A2(§_,Od) by Az(g_,od)
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Theorem 1.3.2. Let (XcYCcP)c¢ Q(p,q)(Spec(k)) correspond to

x €D, let

A"(d 04 ) = cokera,

res
and let
A

7°(a) ]

res

2
= Sym, [A%(4,0 )res

be the completion of Symk[A a, O4 ) 1l in its maximal

res
ideal. If HilbY is non—sn.ngular at  pry(x) =(Ycp),

then there is a morphism

0(D) g t T(D) g = T

res
commuting with the corresponding total obstruction morphism

o(d) of (1.2.8), such that

A ~~ '] A
Opx=T(Q @ k

2
(@),
2 . 2 .
Let a_ . = dlmkA (g-’og_)res° As in (1.2.9) we deduce that
1.2 1
& = 8peg2dim0Oyp x &

and that D = D(p,q) is non-singular at x = (XSYcP) if

Ag(g,od)res = cokera = O

Corollary 1.3.%. Let x = (XSYCP)€ D(p,q), let

2 v
T=(y) = Symk[cokerY 1,

and suppose that Hilb® and Hild? is non-singular at
prq(x) = (XcP) and pr2(x) = (YSEP) respectively. Then

there is a morphism

o(y) : T2(y) = 17(d) ,



- 39 -
commuting with o(d) of (1.%.2), such that
; =’res

~ m]

Proof Consider the long exact sequénce of (1.3.13;C) and recall
that p2 maps '"obstructions to obstructions". It follows that
we in (1.2.7) might replace Az(g,od) with ker p2 which by

(1.3.13C) 1is equal to cokery, and we are done.

In the same way, by using (1.2.11) and the discussion of (1.3.1;C),

we deduce that pT4 is smooth at x provided

AZ (a 1
g;q(w’od)res = cokerm = O,

Theorem 1.3.4. Let (XcYcP) € D(p,a)(Spec(k)) correspond to

x€D = D(p,2) and suppose that Hi1b? is non-singular
at pro(x) = (YSP). If n' :HO(Wy) = A'(g,£,05) is sur-
jective, then

pr, D(p,q) => HilbP
is smooth at =x. (The converse is true if y is

surjective).

Proof The converse is also rather easy since if pr, is smooth

at x, the tangent map le is surjective. Using (1.3.13C) we
deduce that

im Y= 0 3
and since vy 1is surjective, that
1
im Y = cokern

and we are done. (Compare (1.3.4) with [EGA, IV, (17.11.1)]).
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Smooth morphisms are flat and flat morphisms take generic points

onto generic points. Therefore

Corollary 1.3,5. Suppose there is element x = (XCYCPR) satis-

fying the conditions of (1.3.4). If WSD = D(p,q) is an
irreducible non-embedded component, XxE€W, then pr,](w)

is an irreducible non-embedded component of HilbP.

In case YcP =IE’§ is a global complete intersection,we shall
later prove (1.3.12) that the fiber Dy of pr,: D(p,q) —> HilbP
at pr,(x) = (XSP) is non-singular at x. It follows that
ODX,X is Cohen Macaulay., If therefore x = (X_CZ_YE]PE) satis-
fies the conditions of (1.3.4) and if WCD is an embedded com-

ponent containing x, pr, (W) is an embedded component of HilbP,

We shall include the follwing result concerning H(p) = HilbP
at pr,(x) = (XSP),

Corollary 1.3.,6. Let x = (XSYSP) satisfy the conditions of
(1.3.4) and let

. . A
T (gf) = Sym [A%(gf,09)"] .

Then

2

A5(d,04) oq = Ker 19 C A%(ef,04) ,

and there is a morphism

o(gf).. . :T2(d)__ = T (gr)

res res

commuting with the total obstruction morphism

o(gf) : T°(gt) —> T’ (gf)
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of (1.2.8) in which X = (X Bf> P), such that

~ 7 A
oH(p),prq(X) =T (gf) k.

(@) e

In particular if Hilp% is non-singular at prz(x) = (YCP) and

if mq is surjective, then
o 02 < 2 0
h (Ex) = 8heg— dim OH(p),pI'q(X)f‘h (EX) ®

Moreover H(p) = Hilb® is non-singular at pr,(x) 1if in addition
l2 : Ag(gf,ox) — Ae(g,f*OX) is injective.

Proof ILet m:A' ->> A be small in 1°, let S = Spec(4) and
pick (XS_C_]P x3) € Hj;;bX(S), By (1.3.4)

pr,(8) : Dy(S) = Hilby(S)

is surjective, and it follows that the obstruction
o(Xg) EAg(gi‘,OX)@kern for the existence of a lifting of X STPxS

to 8' is contained in
ker l2 ® ker n

since p2 maps obstructions to obstructions". See (1.3.13C) and

. . . ' . 1 .
its discussion. Moreover since cokerm = O by assumption,

2

AE(_q-_,Od)res = kerl

—-—

< Ag(gfsox)
by (1.3.1;C) and we are done.

Concerning the smoothness of the second projection pT, : D(p,q) —oHi]:bq,
we use (1.3.1) together with (1.2.113iii) and we obtain (1.3.73i).
(1.3.73i1i) follows from [EGA,IV,(17.11.1)1.
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Proposition 1.%.,7, i) If A2(f,OX) = 0, then
P, ¢ D(p,q) = Hi1b%

is smooth at x = (XSYCP),.

ii) Suppose that Hilb? is non-singular at pI‘Z(X)o Then
Prs is smooth at x if and only if D(p,q) is non-singu-

lar at x and the tangent map

Dy ¢ A/'(d,o ) = HO(ly)

is surjective.

To use the theorems (1,%.2), (1.3.4) and also (1.3.7) we should

like to know how to compute Az(g’od)res

= cokera , Azd (g_,od) =
g4 e
cokerm' and Ag (g,od) < Ag(f,OX). We restrict to the case
-.2 —

where 1P = ]Pn and where g:Ye&> ill?iL is a globale complete

intersection, and in this case A2 (d,O is easily found

d)res
(1.%.8), and also Aa (a Od) in some special cases (1.3.9).

It seems harder to gzse a good description of Ag(d’od)res which
makes it possible to decide when it is trivial, or to find its
k-dimension, and in Chapter 2 we shall deal with this problem and

related topics.

Remark 1.3.8. (g:YS> P = JPII; is a global complete intersection,

dimY¥>1) . Suppose
= V(F,‘ goee ’Fr) = JPE is defined by a homogeneous

%)Ho (P, O]P(v) )-regular sequence {F,,...,F.}, f. = deg F,

i
for 1<i<r, and suppose Y2X., ©Since
n' : HO (Ty) = cf>H°(o (£:)) = EO(N, ® 0,) = & H(04(£;))
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it follows that

1 1 ad ]
A_d_,](-d-’od)res = cokerm =@ H (-lX,(fi))’

s 1 =1
Notice that

45(g,0y) = B () f—,éqH“(oY(fin
i=

and that this group is trivial if dimY¥> 2. We deduce by

the diagram of (1.3.1;C) that

a2
Ag_,l (gu’og)res

qu@-’od.) ’

2
A ’(Q’Od)res

- Ag(g_,od) .

Remark 1.3%.9. (XEYEIP?: where Y = V(F) is a surface of degree s

and where X is a divisor on Y).
In this case we shall compute
2 1
A (f,OX) =H (_IF_X/Y)
and look closer to its consequences. One knows that
Ny v = Exb. (Oyy0y) = Ext! (OgyOy)
-—X/Y"—-—-OY XX ..._OY XvyY
where the isomorphism to the right follows from the fact
that X is a divisor on Y, i.e. from pd, Oy = 1. S0
Y

Ny ry & Em"cY(oX,wY)(Lp-s) = wy(4-s).

It follows that

AS(£,04) T HO(0g(s-4))""
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Therefore if s<3 and if in addition X is reduced (or
weaker if in addition H°(0X(s-4)) = 0), we deduce (&), (B),
(C) and (D) below;

(4) Ag(f,OX) =0 and pr, is smooth at x = (XEYS]PE:) .
Since a: Ho@_{Y) - Az(f,OX), we get
(B) Az(_q,,od)res = cokera = 0 and D(p,q) is non-singular at x

by (1.3.2) or directly by (A). Another consequence is this.
Since cokera = O we deduce by (1.3.1;C) that y is sur-
jective and that 12 is injective, from which it follows that

l2 is an isomorphism since

A5(f,oX) = Hz(EX/Y) = O.
By (M1.3.4) and (1.3.8) we find

(¢ H/I(_I_X(S)) =0 iff pr, is smooth at x,
and by (1.3.6) and the isomorphism of

1
171 ' (W) = H'(0g(s))
that
if H'(Iz(s)) =0 or H'(0g(s)) = O, then HilbP is
(D) non-singular at pr,l(x) = (XS]PIE) and

dim O y = 4d+h/l(OX(s)),

H(p),pr,(x

If YcP-= ]P?{ is a surface of degree s containing X, and if
there is an open dense subset UcX such that U 1s a divisor
on Y, we can by the proof of (2.3.11) deduce that ,12 is

surjective,
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So if cokera = 0, we easily prove (B), (C) and (D) of (1.3.9).

Example 1.3%.10. Suppose X& ]P]?[ is a divisor on a smooth conique Y,
i.e. XCSY = PyxTy is defined by Iy, = Oy(-aq,-ap),
4q<4a,. Then d = q,+q, is the degree of X, g= (q,]-’l)(qz—’l)
is its genus and p(x) = dx+1-g is its Hilbert polynomial.
We claim that H(p) = Hilbp(I55 is non-singular at prq(x) =
(XSP?) and that

o 44 if g3
A O (p) ,pr, (x) = . .
| (=3)(qp-3) if gq> 3.

In fact by (1.3.93D) it suffices to prove (1), (2) and (3)

belows;
(‘1) H°(0y(-2)) = 0

which guarantees that Az(f,OX) = 0 without assuming that

X 1is reduced,
| (q-3)(ay-3) if q >3

(2) n'(og2)) =
0 if @953
(% n1(14(2)) = 0 for q,>3.
Every thing is easy. .Since
0 —> Oy(-a4,~qy) => Oy => O —> O
is exact, we deduce
10(04(-2)) = H(0y(~2-a4,-2-3,)),
H'(04(2)) g B2(0y(2-a4,2-a,)),
B (1g(2)) = B'(Iy 5(2)) = B (0g(2-q;,2-a,)).
1

Since Y = B xIP; we apply the Kunneth formula and we are

done.
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Finally we study the fibers of the projection morphisms pry.
The fiber of |

pro: D(P; p,q) — Hilbd(P)

at a K-point (YE]P{{( Spec(K)) is just the Hilbert scheme
HilbP(Y) over Spec(X) which is thouroughly treated elsewhere
(see [M'lj). We shall here deal with

pry : D(]PII;; P,q) —> Hilbp(]Pﬁ).

Terminology 1.3%.11. Iet k&> K be a field extension.

i) We shall say that

. no_

is of type I = (f'l""’fr) or that g is a global complete

intersection of type f if

. = I

is a closed subscheme defined by a homogeneous % HO(OI, (v))-
K
regular sequence {F"l’""F 1  where f; = degF; for

15iZ<r.
ii) If T€obSch/k we say that

g:YT - ]P$=]P§XT

is of type £ if g 1is a closed embedding of flat T-scheme

such that the fiber morphisms
. . ph
Bt * Yt >3 ]Pk(t)
are of type £ for each t = Spec(k(t)) €T.

iii) We define

D(Pys P3 £) = D(D5 £qs0008,)
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to be the representing ob,jeét of the open subfunctor of

R(]PII;; P,q) consisting of elements (XEYC ]Pfrl) such that
\_’_CEP.‘CT‘[,l is of type f. It is an open subscheme of D(p,q)
since morphisms of type f are stable under generization

(EGA,IV,(1.10.4)]. Notice that if r =1 and £ = (s),
D(P;S) = D(p,q)

since in this case any point (Y¥YES ]PE) of Hilb? is of
type (s).

If Z 1is a scheme and 2z €Z, we let

_d:LmZZ = dim OZ,z'

Propogition 1.3.12. The fibers of the composition px»fl-:

pr

D(p;£) SD(p,q) — HilbP
are smooth and geometrically connected provided the degree
of q is strictly positive. If (XSYC ]PE) is a K-point
of D(p3;f) corresponding to x€D(p;£f), and if DZ is the
fiber of pr, at z = pr, (x), then

dim D = dimKA’I (g,_I_X/Y)
where g:Y<> ]PI% is the embedd'ing
Proof ILet ]P=IPE and Y = V(F,‘,,.,,Fr)S]P, let n:A'-->> A
be small in 12 (1.2.12) and let ¢:S = Spec(A)<> 8' = Spec(a')

be the induced mo'rphism, To prove that D g > -Spec(K) is smooth

at x,we consider the diagram

S — p, — D(p,q)
.cp:./ ° L {E; \L

S' —= Spec(K)—> Hilb®
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Therefore there is a diagram of deformations

G XxS' e P xS

"k ;
;oo !
B <—Xx8c¥yc Px8

K K

where (XXSSYS_C_]P x8) € RXCY(S). Since deg(q) >1, we deduce
that QimY> 1, and since YSP is of type £, that H'(Iy(£,))=0
for each i. If EYS = ker(O:PxS - OYS) , then by base change

theorem

H(P x5, Ly (£;)) —>> HO(P, Iy(£;))

is surjective for each 1i€([1,r]. So there is a sequence {F,'],,..,F;‘},
F. € Ho(l (£.))., of elements of R®A where R=0 H°(04(V))
1 YS 1 . K v P
which reduces to {F,],,.,.,Fr} in R via the natural map
R®A ~»> R®K = R, Since {Fgseee ,Fr} is a R-regular sequence,
X K '
it follows that

RgA/(F,;,...,F;)

is A-flat and moreover that

Ty = V(E),e-erF)SPx S,

Since
(o] (o]
By (£50) SR (Igg(13)),
and since

HO (L, ot(€5)) = Ho(lx(fi))gA' > B (Ty o (£,)) = H°(;X(fi))§A

is surjective, we may lift each F]'_ to F:_ GHO(__I_XxS'(fi)) and

thus define a scheme

1" n '
YS' ='V(Fq,ooo,Fr)SPxS °
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Clearly Xx8 €Y.+, and Yo+ = S' 4is flat. Therefore
=g S _

D, —> 8pec(X) is smooth at x and moreover
dinD, = aimA'(g,Iy )
by (1.2.1131i) and (1.2.12).

Suppose K is algebraically closed and let (XSY& ]PE) and
(X_C_Y'E]PE) be K-points of D(p3f), say

!
Y = V(F/‘,en;’Fr)SPﬁ and Y = V(Gq,oolo,G’r)S:Pﬁ °

If B = K[t] 4is a polynomial algebra in one variable,we let

H, = F; +t(G;~F;,) for 1<igr,
o ) .
and HiEH @—X(fi))gB = H (£X><Spec(B)(fi))° If we define

Yy = V(H;,00.,H,) S P xSpec(B) ,

then XxSpec(B)SYB, and its fibers at +t= 0 and t = 1, say
at xo,x,lGSpec(B) respectively, are just XCSY and XEY', |
The morphism Yy — Spec(B) is flat at x, and x, Dby the first
part of this proof, and also over some open subset U,]SSpec(B) =
IA% by [M1, Lect 8]. Therefore it is flat over the open subset
Us = Uy {xo} U {x,]} of Spec(B). In particular if z € HilbP
corresponds to the K-point (XS ]Pﬁ) of Hilbp, there is a mor-
phism |

v U2 - DZ

which induces a morphism
Vg U=Un 67 0(p;0),) - D(p3D),

where D(p3;f), = D(p3f)ND_. U is irreducible, and x,_ and
=z /Yy Xq

o)
are contained in U and we are done.
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Recall that a morphism is connected in the sense of Hartshorne
(a3l iff
c,) its fibers are geometrically connected and
c2) it is universally submersive.

Moreover one knows that a morphism is universally submersive

in the following two cases

us,) it is surjective and proper,

us,) it is surjective and flat and quasicompact.
Correspondingly we define a morphism to be jrreducible iff

i,) 1its fibers are geometrically irreducible and

12) it is surjective and universally open.
By [EGA,IV,(2.4.6)],if a morphism is locally of finite presenta-
tion, (us,) implies (i,). Notice that these definitions of a
morphism to be connected or irreducible are stronger than those
given in [EGA,IV,(4.5.5)). However, [EGA,IV,(4.5.7)] implies the

following result:

et £f:X-> Y be connected (resp. irreducible) and let

T —> Y be any morphism. If T is connected (resp. irre-

, ducible), then so is XxT.
Y

See also [H3, (1.8)].

Corollary 1.3.13. Let ¢ :T —> H(p) = Hilbp(:lP;) be a morphism,
let '

(pr&,4) : D(p3£) x T —> T
prT$' P H>(<p)

be the second projection, and suppose the degree of the
Hilbert polynomial q, corresponding to £ = (f454..,f.), is

strictly positive,
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i) If r =1 and if (px%,q;) is surjective,then (DI%‘-,W) is

connected and its fibers are smooth.

ii) If r>1 and if for any K-point (XS ]PE) of T,
H'(I(£;)) = 0 for i<1Zr,
then (pI‘::fr,W) is smooth and irreducible.

i) follows from (1.3.12), (us,l) and (ci) for i = 1,2.

(1.%3.4) we find that (px\f‘-\,w) is a smooth morphism and in

particular that (usz) holds. Therefore (i,) holds and (ii) fol-

lows from (i) .

The following remark generalizes (1.3.4) in the case (X_C_Z_Y‘C_:_]Pi)

is a point of D(p3f), and it indicates a direct proof of (1.3.4).

It may also be used to generalize (1.3%.13) in an obvious manner.

Remark 1.3.%14. Let x = (XSYS]P?) be a point of D(p3;f) where

dimY> 1, let ‘I‘XH be the sheaf of ideals which defines the
universal object X CPxH of H = HilbP, and let

m:lP xH-> H be the second projection. We claim that if
W) mIy (£,) @k(x) > B(Ly(;))
is surjective for all i = 1,2,...,r, pr, is smooth

at x. In fact if ¢:S = Spec(d) &> 8' = Spec(dA') is

small in 1 and if

InCP S, S P xS’ D(S Hilb(8"),
(Gg ST ST x8) (g SR XED) € DB X oy 0

o~

it suffices to prove that
®) B (1)) > B (1))

is surjective for each i
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since we then might 1ift each F:;_E HO(I_[_XS(fi)) where
t [ ] 13 0 .
Yy = V(F,],‘.,.,Fr) to F.€H (-I-Xsu(fi)) and thus obtain
‘ 1]
a lifting Ygi = V(F;,...,FI',) CPx8' of Y CPxS to S

as in the proof of (1.%.12). Moreover

(B) follows from (4) sinée by base change theorem and by

the surjectivity of A" = A R

H°(;XS,_(fi)> = mIy (£,)94" s> m,L

i Xy

is surjective for each i, Notice that if (XEY_C_:_]PE) is

(£;) 84 = H(Iy (£;))

a K-point of D(p3f) corresponding to x€D(p;f) and

if k(pr,](x)) is the residue field of O then

H,pr,](x) ’

pT, is smooth at x provided
o
ﬂ*le(fi)®k(Prq(X))_>H ('lX(fi))

is surjective for 1<i=<r.

1.4, The relationship between the local Hilbert-flag functor and

the corresponding graded deformation functor,

In Section 1.3 we characterized the completion of the local
k-algebra Op . of D =D(p,g) at x = (XSYSP) via a total
9

obstruction morphism
. me d
.o(d)res. T (d)res > T7'(4)

if YCSP was sufficiently nice (1.3.2). The main result of this

section (1.4.6) shows that under some extra conditions, stated
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as the triviality of a certain group oHi(B,A,A), there is a sub-
space
H2(R,AA) cA2(4.0.)
le) 7 — —? d

res

and an obstruction morphism

’ A
0@y T°(@)yy = Sym [ BR80T = 1'(2)

such that the diagran

o
12(8) 0 3_(.:_).1_'9_§> 71(a)
\ ) /'o(g_)gr
(D) g

commutes. This implies that

A ~ 1 A

and we deduce in Section 2.2 some useful consequences since we
there succeed in computing OHE(R',A,A) provided X is sufficient-

ly nice and of codimension 2 in .

To be precise we fix for the remainder of this section the follow-
ing situation.

(1.4.1). If Z is a closed subscheme of IPn=IP§,

ideal I, the minimal cone of Z in " is the graded

defined by an

k-algebra

Tx(0 Tu(Z
(]Pn)/ (1)

(o]
where TW(F) =P T(F(v)) and where F is an O]Ep—Module.
\):-—m . .
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Correspondingly put

B () = @ HL (V).
v

Now let Xéa YeE> 1P be closed embeddings of projective
k-schemes where P cIPD, and let R, B and 4 be the mini-

mal cones of PSP, Y SPy and XCTP, respectively with

corresponding irrelevant maximal ideals mpCR, mySB and

m =m, A, Then there are canonical surjections

Ri>B % A,
and we let

Iy = ker¥, I = I, = ker ¥y and IB/A = kero ,

and as always ;gY = ker(O]P - OY) etc. Moreover we shall

suppose that

depth_ RZ2 dept B>2
mR ’ hmB -

It follows that

HI%)R(R) =0 and HIinB(B) =0

for i = 0,1 and that

HO(A) = 0, HI(A) = H)(I.) = HI(T. o) and HX¥1(a) = mL(0.)
m I R *A=X *A=X/Y m *MX
fOI' ii,lo

Definition 1.4.2., i) The graded deformation functor

is defined by

R®C —> A, is a homogeneous
Det®, (C) = {R® C ¥
PV k 'lifting of o¥ to C
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ii) Correspondingly we let

o .10 _
Def(th,cp) 117 —> Sets

by the functor defined by

B, and A, are graded and C-flat,
¢ Vo P C C
(0) = (REC —>By—> A }

Defo‘
c c
WM =@ Mo T =Y

,®)
C

whaie ’lk : k =>kis the identity on k.

Then there is a commutative diagram

Def (4,0) ™ 2xey

| . °

y |
o e o .
Defq)\,J > H:l:‘:’l.bX

where the horizontal morphisms are defined by applying the functor
Proj. The main ideas of the proof (1.4.6) are as follows. In
(1.3.2) we described the hull of Dy <Y its "obstruction space"
was A° (4,0 )res = cokerc, By exactly the same technigue we
characterize in (1.4.5) the hull of Def%lli,cp)’ and its "obstruc-
tion s;pace"'is 0H2(R,A,A) provided ¢ :R —> B is a complete
intersection. The main theorem (1.4.6) is obtained by examining
when Def(q’, ) <> DXCI is an isomorphism (true if Hi(B,A,A) =0),

and in this case we also find 2(R A,A)ccokera .

Recall that the cohomology groups of algebras Hi(R,A,A), intro- -

duced in (1.2.3), are graded A-modules, i.e.

HX(R,A,A) = T JEE(R,A,8),
\)-..OO

See [K1,(1.7)]. Moreover there is a theorem similar to (1.2.7)
for deforming the morphism o :R = A as a graded morphism
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where the cohomology groups involved are oHJf(R,A,A) for i = 1,2

[K1,(1.5)]. It follows that the tangent space of Def® is

oy
Ded, (k[¢1) = JH(R,A,4),

and that we may describe a hull of Def®

. 1.2, .
e as in (1.2.8) with an

obvious change in the notations.

Remark 1.4.3. ILet Z' = V(m)cX' = Spec(d) and let f':Xe> Y's

Spec(B) be the morphism induced by ¢:B —> A. To any
graded A-module M there are groups Ai.(f',ﬁ) intro-
duced in (1.2.4). Put

HL(B,4,M) = AF, (£',8)

Since f' 1is a morphism of affine schemes, we deduce by
- (1.2.3) that
Ater f) = gls,a,M).

Therefore there is a spectral sequence
HP(B,4,H(4))

converging to ﬁtRCB,A,A) by (1.2.4). These groups are
graded A-modules, and the spectral sequence preserves the

grading. In particular

2 U 1 ) 1
oHn(Bsd,A) = H (B’A’Hm(A)). = oHomB(IB/A,Hm(A)),
r
and if D B(-n.) —=>> IB/A is a graded surjection and if
i=1 1
H'(Iy(n;)) = 0 for 1<i<r, then

2
JE(B,A,4) = O.
Moreover, using the isomorphism

N > .
-A-l(f' EX'-—Z' ’OX' ) zv-C‘.BwAl(f,OX(V))
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which is easy to prove via spactral sequence of (1.2.3),
and using (1.2.4), we find a long exact sequence

- Hi(B,4,0) > 11(8,4,8) = a¥(2,0,(»)) = #(B,4,4) .

For details, see [K1]. ©Notice that
JHE(B,A,4) = 42(£,04)
m3ps "obstructions to obstructions" since the morphism
A2(£1,04,) => Ag(f'lx._z. ,Og)
does (1.2.10).

Remark 1.4.4. (The analogue of (1.3.1)). .Consider the big diagram

0

!
v

I‘
B (R,B,Ip )

E'(R,B,B)
‘Lq“’*

/‘ *
0 -> H'(B,4,8) > H'(R,A,A) 2> u'(R,B,A) = H(B,A4,4)",

{ \ Lzm*

2 *
S H2(R,A,4) 2> HA(R,B,A) ~> HO(B,A,A) -

b

of exact sequences, and let
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JHUR,4,4) ' Hq(R,B,B)l

o
EP,% - 1im(p)Jf q *N AA
gr- 2 P ® Hq(R,B,A) Px
0 _

—

Then we define oap,, and yp, to be the compositions

l‘
2

JH'(R,B,B) 2> H'(R,B,A) = H(B,4,4)

gud
1 Tor 1

o (R,A,4) 2 o (R,B,A) —>> coker &
respectively., If ¥ :R = B is a complete intersection,then
JE°(R,B,-), and this implies that

~ 2
cokera B & oH (R,A,4)

and that

COkeI' /ICP* = OG

The analogue of (1.3.2) is

Proposition 1.4.5. If ¢:R - B

is a complete intersection,

then there is a morphism

o(@), .+ T2(@),.. = Sym [ HE2(R,A a7 >0 @) ~sym 507"
— gr' — gr— ymk o 9%% — gr ymk gr

such that

i-s a hull for the functor Defc(’w’cp).

The proof is the same as for (1.3.2), only with a change in the
notations.

Theorem 1.4.,6, Let R LS BE A be as in (1.4.1) and assume

that ¢+ R -> B 1is a complete intersetion and that
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JE(B,4,4) = 0.
Then there is an injection
J°(R,A,4) &> cokera
- and an isomorphism on ;P

o ratd
Def(y,0) = Bxey -

In fact, under the conditions above, there is a commutative

diagram
P @)ge 2 1@
23 o(d) v
@, —E> 1@,

where the totalobstruction morphisma o(d),.. and o(d)g,

S
are as in (1.3.2) and (1.4.5) respectively.

Proof It suffices to prove that the tangent spaces of Def%w ©)
9

and of EXCY are isomorphic and that there is an injective map

of "obstruction spaces"

JEP(R,A,8) > 42(8,0,)

res

which maps "“obstructions to obstructions". The tangent space of

Def® : 0,1 o,
ef(Ws@) is grE 3, see (1.4.4), and the tangent space of

B&EY is Aq(gdo ) which by the spectral sequence of (1.2.5) is

precisely Eoéq. Combining one part of the diagram of (1.3.1)

with (1.4.4) we obtain the following commutative diagram
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* JH'(R,B,B) = 2 (g,04)
1‘9*]/ ° ‘
1 1 Tt 2
JH (B,4,4) <> H'(R,A,A) £ 8 (R,B,4) > H7(B,4,A)
! o ! °
' v o , v'/ \l/
27(2,09) <> 17 (gf,09) > 87 (g,£.05) - 47(£,05)

Therefci+ to prove that

0,1 o~ 0,1 _ 41
B3 =B - 471(8,09)

it suffices to prove that

) JH'(R,B,8) %> 41(g,0)
and that
(2) JHT(B,A,4) = AT(£,04)

is an isomorphism (resp. an injection) for i =1 (resp. i = 2).
The isomorphism (1) follows from depth, B>2 since by (1.4.3)
B .

we know that there is an exact sequence

1 1 2
0 > H (R,B,B) = A'(g,0y) —> OH,mB(R,B,B) -
and that

2 1 1 ,ay
OHmB(R,B,B) o (R,B,HmB(B)) = O.

Moreover (2) follows from oHnal(B,A,A) = 0 by corresponding argu-

ments. Now to prove that there is an injection

OH2(R,A,A) = cokera p_, <> vokera ,

we consider the diagram (*) above and the definitions of ORap

(Melot) and o (1.3.1), and we easily get a well-defined map

coker Op.py —> cokera .
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This mep is injective by (1) and the injection of (2), and it
maps "obstructions to obstructions" since the morphisms
12(8,4,4) > H2(R,A,A) and
o Sk o 1 ek } an
EA(B,A,4) > A%(£,04)

do correspondingly, see (1.4.3) and (1.2.10), and we are done.

Usually we apply (1.4.6) in the following form.

Corollary 1.4.7. Let ({F;,...,F.} be a homogeneous R-regular
sequence such that Iy = (Fqyeee,F,) and let I, =

(Fq’.no,Fr’ Fr+/|,.oo,Ft)g Put fi = degFi fOI‘ all ic If
H'(Iz(£;,)) = 0 for r#1<i<t

and if
JF2(B,A,L) =0,

D(p,q) is non-singular at x = (XSYCP).
This result follows from (1.4.6) and (1.4.3).

Remark 1.4.8. Consider the diagram

.0 .
Def(w aq)) > P‘XCY

Voo

(o] .
Defcpw > HJ:}bX

and suppose ¢ :R —>B is a complete intersection. Then

(o]
[
Def(w,cp) > QX_C_Y

is an isomorphism if oH]i(B,A,A) = O. Correspondingly
. 2
if on(R,A,A) = 0, then

Def® — i
efw H:I'.}'b
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is an isomorphism. This follows mainly from
1 2
0 ~> H'(R,A,r) - H°(11X) -> H_(R,A,A) =
H2(R,A,A) -> A%(gf,0,) —> HO(R,A,A) —>
o 35y &L,V otm\ Tt
sinae OHE(R,A,A) - Aa(gf,OX) maps

"ohstiuctions to obstructions" (1.4.3). Moreover

(5 OHE(R,A,A) =0 and OHI?I(R’A’A) =0
or : :
(8)  H(R,A,A) =0 and _H(R,A,A) =0

implies that Hilb® is non-singular at (X< P) since in
the first case, A2(»gf,ox) = 0, and in the second case,
Hi;}bX = Def?MI is formally smooth. Correspondingly if
Yyt R—=> B 1is a complete intersection, D(p,q) is non-
singular at (XSYSP) provided _H°(R,A,A) =0 and
Jo(B,A,4) =0 or _HE(B,A,A) = 0. Notice that if

I, = (Fy,eee,F) and if

/l
' (2y(£;)) = 0
for 1<i<t, then
H2(R,A,A) = Hom. (I, ,HI(A)) = 0
om- “ o0 RN A m -
by the spectral sequence of (1.4.3). This spectral sequence
is also useful if we want to compute OH]?I(R,A,A) or |
Jo(B,4,4),
In Section 1.% we considered the smoothness of

prq ¢ Byey —> Hidby -
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Correspondingly

o
Y

Def? ->
*Tly,p) > Dot
is formally smooth if y:R~>B is a complete inter-

section. This follows from the surjectivity of qm*.



Chapter 2.

2.1. Gorenstein duality.

Iet R De any local Gorenstein ring of dimension n+1, and let
m be its maximal ideal. If M is an R-module of finite type,

then it Zs well known that the Yoneda pairing
1) HH N (M) x Ext®S1(,R) — ERHV(R)
m R m
induces isomorphisms
oyt B2 ——s Homp (Ext"5* (1,R), BT (R))
vy ¢ BtPSROLRN = Homp (511 0n), 1 (R))

for any integer i€Z, where (~)» means completion with respect

to the m-adic topology. See [H2].

Correspondingly, let k be a field, and let R Dbe a graded
k-algebra of dimension n+1 with irrelevant maximal ideal m.
Usually we will denote by vM the component of degree v of

a graded R-module M. If R is a quotient of a finitely gene-
rated free k-algebra, and if Rm 1s Gorenstein, then there is

an integer p such that the Yoneda pairing

i+1 1iny =
(2 BN x_ H*'(R) Tk

n-i
Ext R (M,R) = -8 m

v=p
is non-singular for any i€Z and v€Z and any graded R-module

M of finite type. Let P = Proj(R). Using that

Hi(P,E(v))':vHi;'(M), i>1 and v€32,

Extg']';‘(M,OI,(v))’ZvExbnil(M,R), i>1 and vE€3,
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- and some exact sequences involving the terms i =0,-1, we find

that (2) is equivalent to the fact that the Yoneda pairing
(3)  H{(P,HOW) x Extg;;(ﬁ(v),ol,(—p» —> H'(P,0p(-p)) ¥ k

is non-gingular for any i€2. The integer p above is therefore
given by wp _ O]P(-'-p) where wyp is the dualizing sheaf on T.
See [A.K., (1.3.5]. |

In particular (1) and (2) tells us how to relate Extlja'(M,R),
resp. VExt%{(M,R) in the graded case, to other known cohomology
groups. The main theorem of this section says that we may in a
similar way relate the groups Extlja'(M,N), Tesp. VExt%(M,N), to
other groups provided M and N are R-modules of finite type
and of finite projective dimension. If M = N is an ideal I
of R and A = R/I, this gives a nice description of Extljé(I,I).

Moreover since we in Section 2.2 will prove that
H*(R,A,4) = Extz(I,I)

for i =1,2 in most cases where dimR-dimA = 2, we will there
deduce useful informations about the cohomologjr group H2(R,A,A).
In particular we have a vanishing criterion for oHE(R,A,A).. In
view of the results of Section 1.4, such as (1.4.7), it is impor-
tant for the study of the Hilbert-~flag scheme to have such vanish-
ing theorems, and as corollaries we will prove that, under some
conditions, D(p,q) and Hilb® are non-singular at (XEYSP)
and (XS TP) respectively where X = Proj(A) and where Y is

some global complete intersection containing X.

In the following let R be a noetherian ring, let mSR be an

ideal, and let M and N be R-modules. Recall that T, (M) = Hg(M)
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is the kernel of the restriction map M-*T(P',ﬁ) where
P' = Spec(R) - V(m), and that H;(-) is the right derived functor
of T (-). See [H2].

FLL

Definiiion 2.1.1. Put
Homm(M,~) = rm°HomR(M,-)°

S Homm(M,-) is a left exact covariant A-linear functor,

aind we let Ext;(M,—) be its right derived functor.

Proposition 2.1.2. Let M be of finite type.

i) There are two spectral sequences given by

]

EP23 = B (Bxt3(1,N))

'Epéq Extg(M,H%(N))

converging to Ext(;)(M,N).

ii) Moreover there is a long exact sequence
~ Ext(M,N) - Ext3 (M,N) »Ext  Q1,N) - Ext™ 7 (,N) -
Pl
which is functorial in both M and N,
See [SGA 2, exp. VI] for proofs and details.

Remark 2.1.3. If R, m, M and N are graded, then we may in a

similar way define _vHi(-) and ‘vExti(M,-). If M is of
" finite type, then

HE(N)

2

i
- N
v:?z (M)
and '

i ~ i
E;ctm(M,N) . v%z vExbm(M,N)
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are isomorphisms. Moreover the spectral sequences of (2.1.2)
preserve the grading,; and if P = Proj(R) - V(m), there is a

long exact sequence
. X i o~ : 41
- vExt;(M,N) - vExtIJ{;(H,N) - ExtoP (M,N(y)) - vExt:lm (M,N) =
We can now state and prove the following duality theorem.

Theorem 2.1.4. Iet (R,m) be a local Gorenstein ring of dimension

n+l, and let M and N be R-modules of finite type and

of finite projective dimension. Then there is an R-linear
map
n s Bt m) - 52 (m)

which composed with the Yoneda pairing
Ext®} (,M) x Ext"; T (M, N) - Ext™L (W, N)

induces a pairing which gives rise to isomorphisms
wi':Extléq(N,M) = HomR(Extéﬁl(M,N),Hngq(R))
b 2 ExtPer (0,8 5> Hom (a1 (w, 1) 52 (R))

for all i€2Z where (-)" means completion with respect

to m.
Proof. We will use the notation (-)V = HomR(-,Hn;j(R)).
Step 1. Let
O~Pr~PP4~...*PO~N~O
be a projective resolution of N Dy free R-modules, and let
'ﬂcoker(Pim - Pi) for 0<i<r

i s
- Pr for i =r.
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So No = N. We claim that there are R-linear maps
Tr; : Eact™ (P, ,P) > BHY®R) for 0<isr emd

7, ot ExtII(N,N,) > BV @) for 0<isr

1

and mooeorer obvious maps such that, for each 1> 0, the diagram

Bt (Pl ’P1+'1 ) i"Ni+'l ) > Exbn;’! (Pi 5Pi)
‘i/ ° L ° ,1, TI‘i
( ) Extnw I(Nl+q ’Pl+/‘ ) _3._4;'1> Extn+’! (N W ,N 4) — Hn+‘l (R)
I a o T r'I}:i.+’!
y'“ i+1 J/ i+1

Extn""(P +19Ps +,,)--lﬂ>H 2 (®)

commutes, and such that the diagram

a
n+1 o n+1
Ext™ ) (N’PO) —> Ext"_ " (N,N)

N
n+1 n+1
Ext m (PO,PO) E> H m (R)

o)

also does. We then define
n+1 n+1
7 Ext m (N,N) — H m (R)
to be the map To.

First we define Tr; as follows. If Tr: HomfR(Pi’Pi) -R is the

usual trace map, then let

n+'\ (

. n+1 _ 1+ n+1

See the first spectral sequence of (2.1.2). Since the diagram

of trace maps and obvious maps
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Homp (P; ,P;  4) ——> Homy (P, ,P;)

l’ ° lTr

I{omR(]?l_|_,I ’P1+1) = R

commutes, the diagram

n+1 n+1
Ext ) (P10P5 4) > Ext™ (Py,P;)
% Mk
( ) l/ ° ) LTri
n+1 n+1
Ext (P1+’\ ’P1+'I) T H m ®)
i+
also does. In particular, if we define T, = Tr_, then (*) com-
mutes for i = r-1 because Nr = Pr‘

Next, we define T. for O<i<r inductively such that (*) and
(**) commute. In fact assume that s 4o is defined, i>-1, and

that (*) holds for i+2 instead of i+1. It follows that the

diagram
n+1 n+1 n+1
Ext (N1+’l ! i+2) Ext (N1+‘1 ’P1+'1) > Ext (N1+’I ’N1+'\)
i/ ° Lsim
n+1 n+1
Ext (P1+’1 ? 1+2) > Ext (P1+'1 ’ 1+'1)

l , LTrlm

Extn+’l (N 1+2) —— Hn+'l (R)
i+2

~

1+2’N

commutes. Since the upper horizontal sequence is exact and since
the vertical sequence to the left is part of a complex, we find

that the dottet arrow in the diagram
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Extn+1(N

1+17M4p) = Bat™h (N

447F54q) = Ima; 4 —> 0

AN lTri+4'Bi+1

N

\

is the zero map. So there is a map T': Ima, 4-°Hn+1(R) which

on Extn” (N,

coincides with Trl+1 8. i+1? 1+1)

141 Now we have

Imo, ,IC-—> ]E:x’an"l (N

|

n-+1
B (R)

1+1’N1+4)

and Hp;ﬂ(R) is injective as an R-module, so there exists an

R-linear map Ti+ : Extn+1(N )= Hn+1(R) extending T'.

492N 4
In particular, the diagram (**) commutes and also (*) if we prove

that the diagram

n+1 n+1
Ext (Pl’N1+1) > Ext™ (Pi,Pi)

| i

Extn+1(N S Hn;j(R)

1+1’N1+1)
i+

commutes. This, however, follows from (***) since

Ext™ (P, ,P > Extn““" (®;,N

l+1) 344

is surjective, and this surjectivity follows from the last spectral

sequence of (2.1.2).

Step 2. We claim that the Yoneda pairings composed with Trj and 1w,
Extit (@, M) xExtPoian,p.) — Ext? (P, ,P.) I3, g (R)
Bl St R T m m

Ext M) Bt M) - BN, I B(R)

1) This injection can be shown to be an isomorphism.



- 71 -

give rise to commutative diagrams

Extlg'-'(N,M) - Ext;ll':l(Po,M) - Extll':l(P,l,M)

P

4 s v s Vv
Ext"p 0L,MY = Ext"p1(0L,P )Y = Ext"D(M,P5)

Indeed, to see that the diagram to the right is commutative, we

observe that there is a commutative diagram of Yoneda pairings

i+ n-i n+1
A A A
l K ° |
Extl;l’l" (B, »M) x Ext"5 T (M,P,) —> Ex’cn;:l (B, \Pq)
J } ]

i+ n-i n+1
Ext™r (P, ,M) xExt"5 (M,B_) = Ext™ (P ,P,)

where 1 means equality, the proof of which is straightforward,
using for instance [A.K.,IV,(1.2)]. Now we use (***) of step 1
for i = 0, and we conclude as expected. The commutativity of

the diagram to the left is similarly treated, we need to use (**)

of step 1.

Step 3. First we observe that ¢; is an isomorphism for any i

if we can prove that

1 .
o; 2 Extly(N,M) —> Extan(M,N)V

also is. To see that ®; is an isomorphism, start with M = R.

If i>n, then

Extll‘;"(N,R) - Extlﬁn(N,Hn;"(R)) -0
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by the injectivity of Hn;ﬂ(R). If i<n, then both groups vanish
trivially. For i = n, we need to prove that the pairing induces

an isomorphism
o = o (W) ¢ Ext™I(W,R) = I;omR(N,Hn;" (R)) —> Homy (N,E™ (R)).

However, by step 2, we have a commutative diagram and exact hori-

zontal sequences

0 — HomR(n,Hn;" (R)) —> HomR(PO,Hn;;" (R)) —> HomR(P,‘,Hn;‘ (R))
icpn(m . l‘Pn(Po) ° chn(P,\)

0 —> Homg (N,H2*1(R)) - Homy (P, ,H* 1 (R)) —> Homy (P4, B (R)).

It will therefore be sufficient to prove that ¢ (P;) are iso-
morphisms for i = 0,1, If R.C>'Pi ig a direct factor in Pi’

then the arguments of step 2 show that the diagram
n+4 n+1
HomR(Pi’H,m (R)) =>> Hom(R,H o (R))
Je@;) : | en®
Homg (P, ,H™ (R)) —>> Hom(R,H™ (R))
is commutative. Moreover, the horizontal arroWs are split, and so

it will be sufficient to show that ¢ (R) is an isomorphism.

This, however, follows from the usual Gorenstein duality,

We have now proved that % is an isomorphism in case M =R
for any i€Z, and it follows easily that N is an isomorphism

if M is R-free. For the general case, let

0 > Mo -_ FO - M-=>0

be exact where Fo is R-free, and suppose inductively that the
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cpi's concerning Mo and FO are isomorphisms for all 1,_:€ Z.
Since the Yoneda pairing is 6-functorial, see [A.K.,IV,(1.1)],

there are commutative diagrams

- i . i . i . i+1 .
Ext (N,M ) Ext (N,F,) Ext (N,M) Ext' (N,M)

l ° !/ ° j/cpl_/] ° ]/
n+i=i A\ n+1=i V., n+1-1i V. n-i 2
- Ext™ T (M, M) = Ext g (F M)~ Extt o (ML,N) Y = Ext (M ,N)

and exact horizontal sequences, and P ig an isomorphism for

all i€2 by the five-lemma, as required,

Remark 2.1.5. Clearly a similar theorem holds in the graded case

too. With assumptions as in (2), i.e. that R is a quo-
tient of a finitely generated free k-algebra and that R -
is Gorenstein, in which case we say that the cone of P =
Proj(R) ié Gorenstein, we may prove that if M and N is
of finite type and of finite projective dimension as graded
R-modules, then there is a map

&

. n+1
m: _ ExtT (N,N) — o

=P

which composed with the Yoneda pairing

) x| ExttTI N > __Ext™(0,W)

V=D P

induces a pairing which is non-singular for every integer i

and vy. In particular

.0

CPi -

i+ ~ n-i v
FxtTy (M) &> Bxt ot (1)

-
0

Extnﬁi(M,N) iy vExti;l" (w,m)Y

where now (-—)V = Homk(-,k).
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For later applications we state and prove the following result.

Corollary 2.1.6. ILet R = k[Xo’Xﬂ’Xz’}%] be a polynomial ring
over k, let XCE ]Plz= Proj(R) be a closed subscheme with

minimal cone A = R/I, and let

rB N I‘2 M I','
0 —ai?qR(-nBi) —ai?qR(—nzi) —>i§1R(—n,]i) > I >0

be a graded resolution of I. If we define
T4 1 Ty 4 '
gy (V) = .691H (Iy(ng; +v)) —->.$4H (Tx(ns + V)
1= 1=

to be the map induced by the transpose of the matrix M

appearing in the resolution of I, then
ExtS(I,I)Y = Ext(I,I) = ker @, (~v-4)
v R —y=L m+? A °
In particular if

E'(Ig(ng;-4)) =0 for 15isry,
then
2 -
Ext2(1,I) = 0.

Note that since A is the minimal cone of X& ]PE:, depthmA 21,
and since

deA + dept%A = dimR = 4,

it follows that pdpI<2. So there is always a resolution of I
as in (2.1.6).

Proof. According to (2.1.5)

2 V ~ 2
and by (2.1.21)
2/t _ 2
Bt (I,I) = _v_4HomR(I,Hm(I)).
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Now applying _v_4HomR(—,Hi(I)) to the resolution of I, and
using that

‘ cc
ORI e O
we find

_y_yHomy (T,HA(T)) = ker @, (~v-4)

as required.

2.2, Relationship between cohomology groups of algebras and

Ext-groups in codimension 2.

et R —->>R/I = A be a surjective ring-homomorphism, and let M
be an A-module. 'Recall that a common way of relating cohomology

groups of algebras to Ext-groups goes via the spectral sequence
Extg(ﬂq(R,A,A) M)

which converges to HP'Y(R,A,M). See [An,(16.1)] for details.
It follows that

B'(R,A,M) = Hom, (I/I%,M) = Homg(I,M)

which is easy to see anyway. Moreover if R —>> A is locally a
complete intersection outside an ideal m of A and if

depthmA_>_’l, the spectral sequence above proves that

B2(R,A,4) = Ext, (1/1°,4).

Clearly one may also try to compare Hi(R,A,A) with Extiﬁﬂ(I,A)
and also with Ext%(I,I) for i =1,2. If we work in the co-
dimension 2 case, i.e. if dimR-dimA = 2, it turns out that

the comparison of Hi(R,A,A) with Ext%(I,I) is quite natural,

and the main theorem of this section shows that they are isomorphic,

i.e. we have
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Theorem 2.2.1. Let XS TP be generically a complete intersection

of projective schemes over a field k, and suppose that P
is non-singular along X “and that there is an émbedding;

P _EIPI;‘C whose minimal cone R is Cohen Macaulay. Moreover
suppose that X 1is equidimensional and Cohen Macaulay, and
that dimIP -dimX =2 and dimP>3%. If A is the mini-
mal cone of XS]P§ , then

vI.{l(R,A,A) o~ vExb%{(I,I)
for i =1,2. Moreover R = HomR(I,I).

As applications we use in the end of this section the main theorem
above for 1 =2 and v = 0 to study curves in projective 3-space.
We deduce a vanishing criterion for H[/l (y_x) and also another result
implying the non-singularity of Hilb®? at (XS IPE)Q Even more
interesting are, perhaps, the corresponding results for D(p,q)

since they usually apply to a larger class of examples. Finally

to illustrate, several exampnles of curves of low degree and genus

are considered.

To prove the theorem above, we need the following lemma,

Temma 2.2.2. Let R~-R/I = A be a morphism of noetherian rings,
and let M be an A-module of finite type. Then there is

a natural injective morphism
2 1
H=(R,A,M) & ExtR(I,M).

Moreover if there is an ideal mSA such that depthmM_?_’l,

then the morphism above induces an isomorphism

HO (H2(R,A,M)) 2> BO(Exty (I,1)).
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Proof. Choose a surjective R-linear map ¢ :P—~I1 where P is
APP- AP =P is
given by f(XAy) = x¢(y) - ¥(x)y, then let K = imf SP. Since

a free R-module, and let E = ker¥. If f

ECSkerVy = E, there is a commutative diagram

0O =>E-—>P-—>TI-0

Vb

O~E/K-P/K -1 - 0
consisting of exact horizontal sequences. Recall that

H2(R,A,M) = coker{Homy, (P/K,M) - HomR(E/K,M)]

by [8GA 7, exp.VI]. Now since HomR(P/K,M) = HomR(P,M), we

“easlly deduce an exact sequence

0 —> HZ(R,A,M) —> Extg(I,M) —> Homg (K,M).
Hence

0 —> HO(H2(R,4,M)) —> HO(Exty(I,M)) —> B2 (Homy (K,M))
1s exact and since depth MM>1,
Hp (Homp, (K,M)) = Homp (K,Hp (1)) = 0,
and we are done.
The key lemma of the proof of the theorem is this.

Iemma 2.2.3. Let ¢:R-R/I = A be a surjective morphism of

noetherian rings such that depthIR = 2, and let mEA be

an ideal. Assume that depth R> 3% and that A 1is
o (m) ~ ¢
of finite projective dimension over R - ) for all prime
| ®
ideals ¢ € Spec(A)-V(m) such that depthR = 2.
o ()

Then there is an isomorphism

H(R,A,A) o> Exbg{(I,I)
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and an injection

1O (B2(R,4,4)) &> HO(Ext2(I,I)).
Furthermore if depthmA >4 and depthcp_,l . R2 4,
BO(B2(R,4,4)) &> HO(Ext4(I,1))
is an isomorphism.
ggggg; We proceed in several steps.

Step 1. We claim that
HomR(I,I) 22> HomR(I,R) <= HomR(R,R) =R

are isomorphisms. In fact the depth conditibn depthIRfi2 is
equivalent to Extﬁ(R/I,R) =0 for i = 0,1, so

R = HomR(R,R) - HomR(I,R)
is an isomorphism. Since
HomR(I »DE HomR(I ,R) <= R

and since HomR(I,I) contains the identity, we are done.

Step 2. We claim that
Ext(I,R) — Exty(I,4)

is injective. Indeed let P' = Spec(R)-V(m') where n' = m-q(m)

and let X' = Spec(4) -V(m) and consider the commutative diagram

Extp (I,R) > Excty (I,4)
J/ ° l

O(pt 1 o~ O/pr - 1 o~ ‘
H(P',Ext P'(I’OP')) - H (P ’EXtOP,(I’OX'))°

It will be sufficient to show that the vertical arrow to the left
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and the lower horizontal arrow are injections, i.e. we need only

show |

(*) Hg;(Ext;(I,R)) =0
and

(**) Ext;(I,R),?D - Ext;(I,A)P

injective for all prime ideals ¢ €P'., To see (*), we use one of

the spectral sequéences of (2.1.2), and we deduce that
Ext],(I,R) = HC, (Exta(I,R)) —> HS, (Hom,(I,R))
m' " m' R ? m' T\t
is exact. Since depthm.Rf_ %, it follows that

Ext;'l.(I,R) =0

by the other spectral sequence of (2.1.2). Moreover by step 1
H2, (Hom, (I,R)) = H2,(R) = O
m' \OTR L = Sm’ =

and (*) follows. Now we concentrate on (**). If depttha >3,
then H;ZB&p(EXt];(I’R)‘P') = O by the proof of (*). So essentially
by the commutative diagram above, it suffices to show (**) for all
prime ideals l;'b' § @ o It is therefore enough to show (**) when
depthR,?b_<_2° Now if A, =0, then Ip= R and (**) follows.
And if Asé # 0, then ’P?-I and using depth;R = 2, we have that
depth ch 2 2. ©Since

pdA{’5+ depthAr’br- depthRy = 2

we deduce thet pdI,<1. If pdLs = O, then Exty(I,R)y = O
and if deqﬁ = 1, then (**) looks like

1 1 ~ 1
Ext :yRg) —=> Ext , Z Exby (Ty,Ry) @A
R TprRe) —> Extp (Lo Ag) R T Fp) B hss

and (**) 4is an isomorphism since Ex-bg{(I,R) = Ebe(A,R) is an
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A-module. And the claim follows.

Step 3. We claim that

5'(R,4,4) = Ext](I,I)

and moreover that
HO (82 (R, 4,4)) <> HO(Ext5(T,1))

is injective. Indeed there is a long exact sequence
Homp, (T,T) &> Homg,(I,R) = Homg (I,4) » Exty(I,I) = Ext(T,R) &> Exty(I,A)
and it follows that

H'(R,4,4) = Homg(I,A) &> Extg(I,I)
are isomorphic by step 1 and 2. Moreover the sequence
(***) 0 —> Extp(I,R) — Ext](I,4) = Ext2(1,I)
is exact, so by (*) and (2.2.2), we deduce injections
(#***)  HO(H2(R,A,A)) <> HO(Exty(I,4)) > HO(ExtE(I,I))

as required.

Step 4. It will be sufficient to show that the injections of
(****) are isomorphisms. In fact depth A>1, and the injection
to the left is an isomorphism by (2.2.2). To see that the injec-
tion to the right is an isomorphism, we continue the long exact

sequence of (***), and so we see that it suffices to prove that

Hy . (Bxt3(I,R)) = O
and that
HO\ (Ext5(T,1)) —> HD .\ (Ext{(I,R))
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(o]
is the zero-map. In fact Ethcxi'(I’R) = 0, and it follows easily
that

By (Bxtp(1,R)) = Hy, (Homp(T,R)) = Epi(R)

is injective. Hence H;.(Extg{(I,R)) = 0 because depthm.R_?_LL.

Moreover we also get that
HO, (Exta(I,R)) &> H2, (Bxty (I,R))

is injective. Since the diagram of differensials of spectral

sequences
1, (Bxt5(1,1)) —> B, (Bxt3(I,R))

b ° I

H2, (Bxtq(I,1)) = H2, (Bxti (I,R))

commutes and since the morphism Ext;{(I,R) - Ext;{(I,A) is
injective by step 2,i.6. Ext%(I,I) — Extll(I,R) is the zero

morphism, we are done.

Proof of (2.2.1). We apply (2.2.3) to the graded homomorphism

®:R=A = R/I of the cones of XSEP, and let m be the irre-
levant maximal ideal of A. Since R is Cohen Macaulay,
dimP~-dimX = depthiR, and the conditions of (2.2.3) are easily
verified. Therefore there are graded-preserving isomorphisms
1 ~ 1
HO(H2(R,4,4)) = HO(Ext2(I,1)).

Now X is Cohen Macaulay and equidimensional, P is non-singular

along X, and the codimension of X in P is 2, so

pd :-E = qe
O]P X



- 82 -~

It follows that the sheaf on

2 2
Extp(I,I) = ExtO]P (Iz:Iy) = O

and therefore that
HO (Bxtg(1,1)) = Ext3(I,I).

So it will be sufficient to show that the sheaf HZ(R,4,A) = O
on P. Since A 1is generically a complete intersection in R,
one knows that

H2(R,A,A)g = O

for all graded prime ideals ¢S A where dimA¢ = 0. Now if
H2(R,A,A) # 0, then there exists a graded prime ideal % SA such
that

HE(R,A,A)‘P £ 0
and such that

H2(R,A,A)q5. =0

for all graded prime ideals ¢' Z¢. Since dimAypy>1 and since
the conditions of the first part of (2.2.3) are clearly satisfied

for the morphism R -> A {75 y we find that

o)
0 # H2(R,A,4) = 32%32(3,1;,1;)20) <> Extg(I,D¢p »

and because pdl = 1, we have a contradiction.

"l (¢p)

Corollary 2.2.4. Let XSSP, R and A be as in the theorem

(2.2.1). If the cone A is Cohen Macaulay and if A is

of finite projective dimension over R, then
H2(R,A,A) = O
v 439 =

for any v€2,
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Thig follows from
depthIR = dimR ~-dim A = deA,
50 pdI = 1, and from the theorem (2.2.1).

Corollary 2.2.5. Let f:XCSP be as in (2.2.1).

Theﬁ the sheaf on X
A3(£,09) = O,

and this sheaf, defined in (1.2.3%), is isomorphic to

He (R ,EJ,A) . Moreover

42(2,04(v)) = H' (Hy(v))

for all v €ag.

Proof. It follows from the last part of the proof of (2.2.1)
that H2(R,/E,A) = 0, and from the definition (1.2.3) that
~S
gz(f,ox) = H2(R,A,A), By the spectral sequence of (1.2.3), we find

A2(£,04(v)) = H'(X,Ng(v))

as required.

Remark 2.2.6. Let XE]P_C_IPII‘;T and R~-A = R/I satisfy the condi~-

tions of (2.2.1), except for XS P being generically a com-

plete intersection. If n=3imIP, then there are isomorphisms
~ 1
Ny = -E—XJ:-OP (lxslx) )
i—" : i < 2 < -
H (Ex(\)>) EXtO]P (lX’;E'X(V)) for 4_1_1’1 ’]’

HO(0p(v)) = Homy, , (Ly»Zx(¥)):

HY(0p(v)) = ExtSP (ZysIg(¥))
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f € ° i ~ = =
or any v<2 In fact since depthIXOI’,x deX,x 2

for any x€X, it follows that
HomO]P (1,I1) = HomO]P (I’O]P) <= Op
as in step 1 of the proof of (2.2.3), and that

1 % ~ o
Exl:O]P (1,0p) = ExbO]P (T,09)

by step 2 of (2.2.3). Moreover as in step 3,

ny =Bt (5,300,

Since there is a spectral sequence
(P, Exl:qu (T, I)N

which converges to Exté°>(f,f(v)), the claims above follow
P
if we can prove that the morphism d2 4 appearing in the exact
,-
sequence
0 ~> Exbg']:(l,l(\))) — g? 2(:[E’,E}cl:/10F (I,Iv))) '—2""1>
n ~~ n ~
H'@®,Homy (I,I(v))) = Exl:O]P (I,I(v)) ~ O,
P R

is zero. This is easy to see if ]P;]PI; and v>-n because

H“GP,HomO]P (T,I(v))) = B@,0p(v)) = 0

and a little bit more complicated if otherwise, and we just

indicate why. Indeed to prove that HnCIP,HomO]P(I,I(V)))

and Extrol]P ('f,f(v)) have the same k-dimension, we deduce
by the spectral sequence above that Extg;: (f,-) = 0.
~ v
Therefore EXtS]P (ZIZ,—)V is left~exact where (-) =Homk(-,k),
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and since I—IomO (—,f@ “’]P) is left exact too where Wp is
P

the dualizing sheaf on 1P, we find that
Hom, (I(v),f®mP): Extq (T,I(v))Y,
P P
and we conclude as expected.

Now we congider curves in IP%{ such that XCE P = ]Pi satisfies

the conditions of the theorem (2.2.1), and the results below
appear as corollaries of this and of the duality theorem of the
preceding section, and of the theory of Section 1.4. If XS =]P13{
is a curve, we let R = k[Xo’X’I’Xz’X5] be a polynomial ring over
k, and we let A = R/I be the minimal cone of X in . More-
over there is a minimal resolution of I as in (2.1.6), and the
ny; are therefore unique. Then we have a morphism cpA(\)) as
defined in (2.1.6). For the rest of this paper we will use the

following definition of a curve in ]Piz.

Definition 2.2.7. A curve X of ]Plz is a closed subscheme of

]Plz which is Cohen Macaulay and equidimensional of dimen-

sion 1. Moreover to any such curve X we define the

mumbers s(X), e =e(X) and c = c(X) by

s(X) = min n,y,
1=si<r,

Hq(OX(e))#-O and Hq(OX(v)) 0O for wv>e,

It

H'(Ig(e)) #0 and H'(Iz(v)) = 0 for v>c

provided H' (Ix(v)) does not vanish for all vE€Z.

Otherwise ¢ = -2¢. Furthermore let
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I',‘ r r

: , . 5
59 -z hJ(EX(nqi))—izq 9 (Ty(n,4)) A ha(lx(nai))’ and

§ = 8261

Note that by the sequence

0> Iy > 0p—> 0y =0

we easily deduce H2(£X(v)) = H/'l(OX(v))a s0

2

52 = £ 1’ (0g(n4g3)) - X hq(ox(nzi)) +Z hq(OX(nBi))°

Moreover splitting the minimal resolution of EX

% Ty Ty
0 — 1' Op (-nBi) — ? Op (-nzi) - ? Op (_n’li) - I, = 0
into two short exact sequences and taking cohomology after twist-
ing by v, we have by duality on ]Plz that
c(X) = max n31-4
and by max D44 <max Doy that
< =
e(X) <max L 4,
4 <
Furthermore in case max Nz; SmaX Ny we have
e(X) = max n2i-4
which implies c¢(X)<e(X). Note also that
min n,; <min nyy <min Dzg

since the resolution is minimal.

With these preparations in mind we now turn to the corollaries.
First by using the duality theorem of the preceding section, we
have in view of (2.1.6) the following description of the second

cohomology groups of algebras H2(R,A,A).
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Proposition 2.2.8. If XSSP = ]PIBc is a curve which is generically

a complete intersection in 1P, then
H2(R,A,4)Y = ker @, (~v=4) =  H2(R,A,A)
v 15y A —y=l g N °

In particular if H (Iy(ng;-4)) =0 for all i, 15iZr,,

then
OH2(R,A,A) = 0.

Using spectral sequences we have that
Ext2(I,I) = H(R,A,A)
“(I,1) = H (R4,

because Hﬁ(I) = HQQ(A), and now (2.2.8) follows from (2.1.6) and
(2.2.1). See also (1.4,3)

We may use (2.2.8) to obtain a vanishing criterion for ] (_BIX),
or more generally to compute its k-dimension. If YEP is a
global complete intersection containing X, we may describe the

cohomology group Az(g,od) = cokera of (1.3.2) correspondingly.

res
Note that if we apply oHomR("’Hi(I)) to the minimal resolution of I

appearing in (2.1.6), we find that

Extm(I,HE(I)) = 0 for i>1
provided c(X) <min n,;» and in this case
r
Hom (T,52(1)) = B B (T (n )

Then we have

Corollary 2.2.9. 4)Let f: XEP = ]P]Z be a curve which is generi-

cally a complete intersection, and suppose

c(X) <min n,; » and
1<isrs

Hq(_ZLX(n,]i—l.L)) =0 ;‘or '1_<_ijr,1.
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Then

B'(Ny) = A°(£,04) => Hom(I,H (1)),
and its k-dimension is
1 _ a2

ii) Moreover let Y = V(F4,..4,F)SP for r<2 be a global
complete intersection whose minimal cone is B, let IB/A =
ker(B-R/I), and suppose that each F; 1is either a minimal
generator for I or that Hq(_I_X(fi)) = 0 for f; = degF;.
Then |

42(d,0,)

)
res = oHomR(IB/A’Hm(I))
and the morphism

T
v+ BO(,) »igqﬂ“ (Zyg(£5))

of (1.3.1C) is surjective. Moreover

2 . 2 2 I 14
ares—dlmkcokerl = § -iiqh <OX(fi))’

and if e(X) <min Nos and if those Fs which are not
minimal generators of I satisfy f;> e(X), then

coker 12 = 0,

Proof. Indeed by (2.1.6), ExtS(I,I) = O, and since pdIZ 2,
we deduce by the exact sequence: of (2.1.3) that

2 o~ 3
Moreover using (2.2.5) and (2.2.6)
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and by the second spectral sequences of (2.1.21i)
JExt2(I,I) = Homy(I,H(I))
because c(X) <min ny;- Thus
B (N,) = A9(f,0.) = Hom,(I,H2(I))
=X X o) RY""m °

By the next lemma (2.2.11) and by the exact sequence (**) of its
proof we get that

: 5 : 2 -
dlmoExtm(I,I)-dlmoExtm(I,I) = 68,
Thus

dideomR(I,Hz(I)) = 6-+dimoHomR(I,Hi(I)),

and since

r
1
Fomp(TLEN(D) = & B (Ty(nq;))

and c¢(X) <min n,;, we deduce by the definition (2.2.7) of 57
that

dimOHomR(I,Hﬁ(I)) = 87,
So
n'(y) = 8+8" = 62

as required.
Next we prove that Y is surjective. For this we consider

0 —> OHomR(IB/A,HEI(I)) - OHomR(I,Hg(I)) - oHom(IB,Hi(I))
*) s . 1

Tq 1 r 4
FH @yingg)) = S H Ty(2;))

where I = ker(R- B), and by the assumption on the generators

of IB’ we deduce that
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T,

?H’*(IXm,, ) —> .mx (Ig(£5))
is surjective, and so the morphism
2 2 2 T ol
oExto(I,I) = Homp(I,HZ(I)) —> Homp(Ig,H-(I)) = i%\dH (Tye(£50)

also is. Moreover by dExtﬁ(I,I) = 0 and by the exact sequence
of (2.1.3)

o] 1 2
HO(p) = Bxtg Ly Iy) —> Bt (LI
is surjective, and since the morphism ¥y is the composition

Ny) = Exta(I,I) — @H"(I (£:))
i=1

of the morphisms we have just considered, y is surjective. It

follows by (1.3.1C) that

0 —> 42(4,0,) | >A2(fo)3—1-2-> c:tE:H"(o (£.))
d’res X 121 X i

is exact. Now we have a commutative disgram

> 12
A<(f, OX) S f?!H (OX(f ))
oHomg (T,E2(T)) —> Homp (I5,H2(1))
and the kernels are therefore isomorphic, i.e.
Az(d 0 )res oHomR(IB/A;Hg(I))'

Moreover the dimension formula for ages--dimcokerl2 follows
easily. Finally to prove that l2 is surjective, we use the

same arguments as in (*), and we are done.

Note that under the condition c(X) <min nz;, we may by the proof
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above see that

l > 2
h (NX) 8
and that equality holds iff

- 2
is surjective and

oExt%(I,Hﬁ(I)) - 0.

Moreover, again by the proof above, we may see that 1‘2 is sur-
jective if
< -
c(X) <min Dz

< .
e(X) <min Doy
and those Fi which are not minimal generators of I satisfy

fi> e(X).

Now we give some examples of curves over an algebraically closed
field k where we use (2.2.9) to prove that H (¥y) = 0. Since
this is always true for smooth curves (reduced is enough) having

e(X) 20, we consider curves where e(X)2>1.

Examples 2.2.10. i) We consider the Hilbert scheme H(9,8) of
curves of degree d = 9 and arithmetic genus g = 8. With-
out going into the details, we Jjust state that there are
smooth connected curves having n’ (Ix(2)) =1 and
B (Ig(») =0 otherwise. Thus c(X) = 2 and so max ng; =

¢(X)+4 = 6. Since 2a>2g-2, H'(0y(2)) =0 by [M1,

Lect 11], and it follows that e(X)<1. We have already

seen that c(X)>e(X) implies max n51>max n,;, and since

. . > s
max n"i 49
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Thus
H'(Iy(ng;=4)) = 0 for all 12iZz,.
Moreover it is trivial to see that
c(X) <min N,y
and so by (2.2.9),
E'(,) = O.

Note that, in this case, the minimal resolution of I is

easily found. Indeed by Riemann-Roch

X(Izx()) = x(Op(¥)) = x(0x()) = (V32 = (v-7).

-

Therefore X(Ix(3)) = h°(Ix(3)) = 0, i.e.
min n,; >4

and since we already have seen max Na4 <4,

<i<
ng; =4 for all 12iZr,.

In the same way

n,; =5 for all 1=i<w,,

6 for all 1<i<r

nBi

z°

i

Moreover x(_IE_X(LL)) ho(_I_X(ll-)) =6, s0 T, =6, and by

hq(_]_ZX(2)) =1, ryz=1. The minimal resolution of I will

therefore be of the form
0 —> R(-6) = R(~5)®® - R(-2)®® ~ T - 0.
Since x(Ix(1)) =2, e(X) is in fact 1.

ii) There are smooth connected curves of degree d =9

and genus g = 8 having hq(lx(2)) =1’ (Ix(3)) =1
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and hq(_I_X(v)) = 0 otherwise. Now c(X) = 3, so max n5i='7,
and since c(X)>e(X), it follows that max n’li-<- 5.

Therefore

H'(Iy(ng; =4)) = 0 for all i€[1,r,]

Moreover x(_I_X(B)) = ho(_I_X(B)) -1 (_I_X(Za)) = 0, and we con-

clude min n,; = 3, so c(X) <min n, It follows that

i°
H(NL) =
(—-X) =0

for such curves by(2.2.9).

iii) If we denote by H(d,g)g the open subscheme of H(d,g)
of smooth connected curves of degree d and genus g, we
claim that H(8,6)S is smooth of dimension 44 = 32.

Indeed for any curve XS P of H(8,6)S it will be suffi-
cient to show that H' (Ng) = O. Now |

x(Tg()) = (37) - (Bv-5),

o x(Ix(1) =1, x(Ix(2) = -1 and x(Iz(3) = 1.
Moreover by 2d>2g-2, e(X)<1, and in fact equal to 1
by x(_I_X(q)) = qo

First note that there is no such curves lying on a smooth

conique, nor on a sgingular one since the equations

Yta, =8

(41 (ay-1) = 6

have no solutions among the positive integers. See (1.3.10)

and [H1, IV,(6.4.1cd)]. Thus

n°(Zx(2)) = 0, n'(IZ(@) = 1.
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Next _
Xx(Ix(3)) = h%(Iz(3)) -0 (1;(3)) =

and we claim that h%(Zy(3)) = 1. Indeed if K%(Iy(3))2>2,
we link X to another curve X' by a complete intersection Y
of tﬁo surfaces of degree 3. Since the curve X' is of
degree 1 and arithmetic genus -1 by (2.3.3), X' does not

exist. BSo

/‘
n%(I (3)) = 1, B (Ig(3)) =

Now using a result of Castelmuovo, see (2,ii) of Section 3.3,

we get that

E'(Ig(v)) ®HE2(0p(1)) =>> E'(Zg(v+1))

is surjective for all v>e(X)+2 = 3. Thus any curve X
of H(8,6)S satisfies c(X) = 2, and it follows that
WAX Dyj = 6, and by c(X)>e(X) that maxn,; = <4, Therefore

B (Iy(ng; -4) = 0

for all i, and if we use min LBY >

i min N, = 5, then

< -
c(X) <min LI
We conclude by (2.2.9) that
B'(,) =
as required.
Furthermore the resolution of I for any XSP of H(8, 6)S
is easily seen to be of the form
0 => R(~6) => R(=5)P? —» R(~4)®*@®R(-3) => I —> O

by corresponding arguments as in (i).
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Next we apply (2.2.8) together with (1.4.6) or (1.4.8B) to prove
another result implying that HildP or D(p,q) is non-singular
at the points involved. We then seek for conditions for the
vanishing of _H2(R,A,A) and _HZ(R,A,A), resp. Ho(B,A,A)
and OI-I2(R,A,A) where B is as in (1.4.6), simultaneously. We

will need

Lemma 2.2.11. If XCP =]P£ is a curve of degree d, then

x(Fyg(v)) = 2dy +4d. R

Moreover if XS P is generically a complete intersection

and if we let
ni(y) = dimvHi(R,A,A), and

: Tq T2 T3 .
69(v) = T hJ(_I_X(n,liw))-izqha(_x_x(naiw)) +i§qh3(gx(n5i+v)),

i=1

then
B (v) = 12(v) = x(Wy(v)) + 82(v) ~ 87 (V)
for v2-3. In particular
n1(0) -1n2(0) = 4d + 8

with &6 as in (2.2.7).
Proof. First we prove that
hll(v) - hz(v) = 2dv + 44 + 62(\)) - 61(\))

for v2>-3. We apply vHomR(—,I) to the resolution of I, and
we find '
dim ExtO(T,1) - dim Extn(T,T) + dimvExtg(I,I) -
(*) .
o 0 19) .
2 1 (Iy(ng;+9)) = T 07 (Iy(ny; +v)) + £ 00 (Iyx(ng; +v)).

1) Simpler proofs are available under some conditions on X.
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Therefore by (2.2.1),
¥ (0p(v) = (1 (v) =1%(v)) =

E x(Ig(ny;+9)) = £ x(Tglngg +v)) + T x(Tg(ngg+v)) + 87(v) = 65(v)

for vZ-%. If we use

9 Ts Tz
Y fae~=3 nDA.+3 n,. =0
1 1i p 21 p 31

which follows easily from the fact that x(0yx(v)) =

x(0p(v)) = Zx(0p(-ny; +V)) + £x(0p(-ny5+v)) = T x(Op(-nz;+V))

is a polynomial in y of degree 1, and if we use
X(Zg(v)) = x(Op(M)) = X(0g(v)) = x(Op(¥)) = (@v+1-g)

then
x(0pv)) - @1(v) -n2(v)) =
X (Oplq;3+v)) - B (Op (np;+v)) + 2 (Op (nai+v).) —dutg=1+87(v) - 85(v)
Now by |
X(Ig(v')) = Bx(0p (-myq+v")) = Ex(Op (=npy+v")) + B (Op (~nz+v"))
for v' = -v-4 and by duality on P = P} , we get

X (Ly(-v=)) = =B (Op (ny;4v)) + B (Op (p5+v)) = I (Op (mzz+)).
On the other hand
X(Zg(-v-4)) = x(Op (~v=)) = x(Oy(=v=4)) = x(Op(¥)) + (vah)a-1+g~

~ Combining, we have the required formula for hq(v)-hg(v).

By (2.1.3) there is an exact sequence
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0 —=> Exta(I,I) ~> Bxty (Iv,Io(v)) —> Ext2(T I) —>
. v R ’ Lo =X =X v v m
(**) P
2 2 3
JxER(I,I) — Exto (TgIg(v)) = Ext (I,I) — O,
and  Ext (I,I) venish for large v by (2.1.2i). Using this

and (*) for large v and also (2.2.6), we obtain
x (Op(Vv)) - x (Mg(v)) =
EX (Zg(ag3+v)) = BX (Tylng; +v)) + IX (Tg(nggsv))

We may now proceed as in the first part of the proof, and we find

the required formula for x(Ny(v)), and the proof is complete.
If we consider (**) of the proof above for v = O, it follows that
6 = aim Ext (I,I) - din Ext2(I,I), and
. 3 <17
dim Ext_(I,I) <h (Ny).

In particular
5 <h1(Xy),

and we have equality iff

Ext2(I,I) = 0 and H'(Ny) & Ext (I,I)

o m ? —X o 'm?
which is equivalent to

Ext2(I,I) = 0 and Exta(I,I) = O

o) mE? o “"RMNT? ’
again by (**). However using spectral sequences

EXtL(T,I) = HS(R,A,A) = ker e, (0) ,

and this together with (2.2.1), (2.2.8) and (1.4.8B) leads to

Proposition 2.2.12. ILet XC& ]PE be a curve which is generically

a complete intersection, let A = R/I be the minimal cone
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of XC& ]Pg and let ¢:R=A Dbe the natural surjection.

Then b’ (Ny)> 5 and the following conditions are equivalent
i) nl(x,) = &
=X
ii)  H2(R,A,A) = O and H2(R,A,A) = O
iii)  #,(0) and 'cpA(-AL) are injective.
Furthermore they are satisfied if
. 1 ] 1 y -
iv) H (;X(nﬁi)) =0 and H (lx(nﬁi—4>) =0
for 1Zi<r,. Now if ome of the equivalent conditions

above holds, then

O ~ r:
De_:E'cp = H],‘}bX

and H = HilbP(®>) is non-singular at (XSP7) and

Reviewing the examples of (2.2.10) we see that the curves of (i)
and (iii) satisfy the conditidns of (2.2.121i) because, in both
cases, & =0 and h'l(_l\lx) = 0, while the curves of (ii) have
8§ = -1. Note that the curves of (ii) do not satisfy the isomor-

phism De:E‘:?J = Hilby of the conclusion either. Indeed under the
assumption HZ(R,A,A) = O,

Defg = Hilby
is equivalent to hq(y_X) = 8. We have one way by (2.2.12), and
for the converse, we deduce by the isomorphism Def?p = H:;;be |

an isomorphism of tangent spaces
JHT(R,A,4) = HO(N,).
Since there is an exact sequence

0 = H'(R,A,8) = HO(Xy) —> _H2(R,A,A) = _HZ(R,A,A)
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by (1.4.8), we get that oHﬁ(R,A,A) = 0, and so we have the condi-
tions of (2.2.12ii) which is equivalent to hq(.lj_x) = § as re-
quired. In view of the result which now follows, the curves of

(ii) do not form an open subset of the Hilbert scheme.

Proposition 2.2.1%3. ILet V bde a reduced irreducible component

of Hilbp(]Plz) over an algebraically closed field k. Then
there is a non-empty open smooth subscheme U of Hilbp,

- contained in V, such that for any closed point (XSP) ¢ U,

O ~ 1ys
Defcp - HJ:J'bX'

Moreover for any XS of U satisfying thé conditions
of (2.2.8) we have

dimV = 44 + 6 + dimy g, (<4).

Proof. Let U be the open subscheme of V whose closed points
(XS P) satisfy

RO (L (v)) S B (Zgr (W)

for all closed points (X'CP) €V and all v€Z. Indeed U is
open by the semi-continuity theorem [H1, III,(2.8)], and by
shrinking U we may also suppose that U is open in HilbP

and furthermore smooth since V is integral over an algebraically

closed field. Now fix XS P of U, and let S = Spec(C)€obl.

We will define an inverse of
0 .
Defcp(S) - HlNle(S),
so let (XSE PxS) € Hile(S) be given. By the exact sequence

0 — ’I'XS —> Opyg—> OXS - 0,
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and the corresponding sequence deduced from XS TP , we obtain a

commutative diagram
0 —> H°(;XS(»-)) —> H2(0p,g(V)) = Ag(v) = 0
b ° 2
0 = H(Izx(v)) — H°(0p(V)) —> A(V) =0

‘where by definition As(v) and A(v) are the cokernels. So |

A = @(v) 1is the minimal cone of XS P. Now

Ag(V) 8k = A(v)

if the map
HO(Iy (V) 8k = B(Ly(v))

is surjective, and Aq(v) 1is cC-free if this map is injective.
Thus
O ~ 11z
Def@-— Hilby
follows from the isomorphism

H°(;Xs(v))gk = 22 (Zy(v)) -

This, however, follows from a theorem of Grauert [H1, III,(12.9)]
since U is integral, and from base change theorem [M1, Lect 71.

See also (1.3.14).

Finally to prove the dimension formula for V, we have by the |
isomorphism Def;': H%}bx an isomorphism of tangent spaces which
by (2.2.1) and (2.2.6) is

41

1 ~
oExtR(I,I) = Extolp

(_:_[_X ,lx) °

Using the exact sequence (**) of the proof of (2.2.11) and the

discussion after the proof,
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n(Ny) = dim Ext2(I,I) - dim Ext2(I,I) + dim Ext2(I,I)

as required.

Roughly speaking (2.2.12) is therefore a criterion for proving that
a sufficiently general curve of a component is a non-singular
point of HilbP, i.e. for proving that components are reduced.

Now we will use the theorem (1.4.6) tq obtain a criterion which

gives
o) ~ -
DeL(y,p) = Rxcy

and D(p,q) non-singular at (XSYSP). This should apply to
components of D(p,q) for proving that they are reduced, and the
conditions we obtain should not be that special if YC P is
nicely chosen. Indeed it is natural to think about closed fami-
lies of the Hilbert scheme such as those defined by, say
h°(_I_X(s))_>_1 for a given s, as the image of some component of

the Hilbert-flag scheme D(p;s)q)via the first projection

pT, D(p;s) —> HilvP.
Now let XS P= I’E be a curve which is generically a complete
‘intersection, let g:Y = V(F,',...,Fr) <> for 1<r<2 be a
global complete intersection containing X, and let f:X< Y
be the inclusion. We consider the exact sequence of (1.3.1C).
Since g is a global complete intersection, it follows by (1.2.3)

that

A g Ty m) =P EO(Ty (£:))
e:lyy) =B E Ty y(f1)),

1, L EoA
A (gsf*ox) "‘_@1H (OX(fi))’

1) FPor the notation in general, see (1.3.11),
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and by (1.3%.8) that

Tr .
cokern’ = $ H (Ig(£;)).
i=1

In view of (2.2.5)
42(gf,04) = H (X)),

and the exact sequence of (1.3.1C) looks like

I
1= -—

LA 2 1 12 X .1

BE (1)) = 27(@,0p) g, = H'(Hp) 15 B (04010,
If we let

x(d) = al - ages+dimcoker 12 .
then T

X(@) = x(@p) + T 0Ly y(25)) =01 (Ty(e;)) +11(0g(25)))

Lemma 2.2.14. ILet X be a curve which is generically a complete

intersection in P = ]P'%, and let Y ‘=@V(F,|,...,Fr) for

1<r<2 %be a global complete intersection containing X

. _ - : 2 .
with f; = degF;. Then x(d) = a -aj  +dimcokerl® is

given by
@) T 0%(Zy o (£;0) + £ ¥(E;)
d) = 4d+ T 1°(Ty o (£:)) + £ y(£,
©= =l
where v(v) i»hq(ox(v))-hq(_I_X(v)_). Moreover if T = 1 then

f.+3
X(D = (4-fa+ (5 d+g-2,

and if r =2 and f,<f then

2 9
f,]+3 f2+3 f2-f,]+3 .
(4-£,4-15)d + ( 3 )+ (5 )= 5 )+2g-4 for f£,<f,,
X(_d_) = £ +3 '
(#-2£)a + 2C 5 ) +2g-6 for f,=f,.
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Proof. Since Y is a global complete intersection, H) (_ZEY(fi)) =0,

and the sequence
| o} o} o
0 = HO(Zy(£;)) = HO(Iy(£;)) > BO(Iy py(£5)) = O
is therefore exact. Thus for any i,
(T pp(£3)) =1 (T (£5)) + 1 (0g(£)) = x(Ty(£5)) = nO(Ty(£;)),
and by Riemann-Roch

f.+

. +5
X(;[_X(fi)) = X(O]P (fi))—x(ox(fi)) - 15 ) - (dfi+1—g).

Now if o = 1, then ho(_I_Y(fq)) = 1, and if r = 2, there is an

exact sequence
We find ETh°(Zy(f;)) =4 in the case f, = f,, and otherwise
2 f-£,+3
0 _ 1.0 _ _ (21
izqh (Iy(£5)) = n™(0p (£, f,‘))+ 2 = ( 3 )+ 2.
Combining, we find the formulas, as required.

The preceding lemma allows us to prove

Proposition 2.2.15. Let XEYE]P;{ correspond to surjections

Ry B2 A of minimal cones. Then with assumptions as
in (2.2.14)

2 > (£:)
a >5-3% Y(£L,
res—" ;59 i’?

and we have equality iff
2¢ - 2 _ a2
on(B,A,A) = 0, oH (R,A,A) = O and cokerl- =0.

Moreover if equality holds, then

(o] ~
Def(‘y 9CP) ]'ZX_C_Y
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and D = D(p,q) is non-singular at x = (XSYCSP). Furthermore

in vnis case

r r
AUmOp o = 4d+6 +i>:1h°(_];X/Y(fi)) = x(Q) + 6-151\((1‘1),

and if pr,(D) is the scheme-theoretic image of the projection

pr, : D(p,q) —> Hilb®, then

dim O

Prq(D) 9Pr1(x) =4d+b.

Proof. To begin with we establish some inequalities. Indeed if

. o)
H(w,cp) is the hull of Dei‘(q’,cp), then
. - /‘
<
because Def%q,,cp)c» RXEY is injective. And if Ecéq = grEoéq is

defined by the spectral sequence of (1.4.4), we easily deduce an

exact sequence
0 - H'(R,B,I.,) —> B2 > ®'(R,A,A) = 0O
o *TITB/A 2 o "y
where IB/A = ker(B~A). Since R-B is a complete intersection,

r
JH'(R,B,I, ) =§1H° (Tg y(£5))-

Now by (1.4.5), Eoé/l is the tangent space of Def%‘V ©) and
?

0,1 2 .
' o < .
Recall that h°(0) = dim H°(R,A,A). Combining, we find

n1(0) = 1%(0) + EhO(Ty sy (£;)) <dimHe, ) <din0p o <

) 1«42 i o
a fa_  +4d+Lh (_I_X/Y(fi))+2y(fi),

where the last ineguality follows from (2.2.14).
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Since h1(0)-h2(0) = 43+ 8 by (2.2.11), we deduce

L

ares__b-EY(fi).

Now using (1.4,5) and (1.4.6) we find that if
%2(B,AA) = O, HO(R.A,A) = O and coker1® = O
cn Nyt =V o LR ) = CoKer = Uy

then all the inequalities of (*) are eqﬁalities. Thus

2

Moreover by (1.4.6), Def(()w,cp) = Dyoy and D(p,q) is non-singu-

lar at (XCYCP). Finally dimOy is easily found, and also

' X

. A . D o)
dlmOprq (D),pr,l (x) because OpI'q (D),pr,l (%) is the hull Qf efwa
aon o~ o 0o 3

see (1.4.8) and recall that P-XC_:_Y <= Def(y oy > Defy, is formally
smooth and that Defgw «> Hilby is injective,

Conversely suppose a:%-es = § - Ey(fi). It follows that &all the

inequalities of (*) are equalities. In particular coker 12 = 0,

and Defc(’ o) = Dyoy is an isomorphism of formally smooth functors,
. c .

SO

gimHe, 5= ainE%3" = 17(0) - ThO(ZTy py(£;))

Now one of the equalities of (*) implies that h9(0) = O, and it
will therefore be sufficient to show |

H2(B,A,A) = O

on L il | = L4
If we consider the proof of (1.4.6), we find by using the isomor-

. (0] ~~ . . . 1 ~ /l
phism Defw,tp) ~ QXEY which implies Eoé = A (g_,og), and by
using OHE(R,A,A) = O that
1 1
ol (B,AA) => A (f,OX)

(B, 4,4) &> 42(£,09)
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is surjective, resp. injective. Recall that f:X &> Y is The

inclusion. Then by (1.4.3) HS

o m(B,A,A) = O as required.

Finally we illustrate by considering examples over an algebraic-

ally c‘:‘.;.i-osed field, and in these examples we let Y = V(F)2X be

a surface of the least possible degree, i.e. degF = s(X). Now

reviewinz the examples of (2.2.10), we easily find that

0
o Bed,3) = 0 end 'OHE(R,A,A) = 0 in all three cases. Another

example already treated in the literature is this, see [G.P.,S841.

Example 2.2.16. Following [G.P.] the Hilbert scheme H(8,5)g of
smnoth connected curves of degree 8 and genus 5 is normal
and integral of dimension 44 = 32, and there are five clas-

ses of curves to consider.

(4) 0~R(-6)%2 = R(-5)® ~R(-1)¥ =1 -0

which is thé "generic" one, so hll(OX(’l)) = 0,

(8) 0=R(~7) ~R(-6)*2 @ R(-5)% ~ R(-4)®? 0 R(-3) ~ I~ 0

where 1'(0g(1)) = 1,.

(€) 0~R(~7) »R(-6)® @ R(-5)®2 ~R(-5) @ R(~4)P@R(-3)~ I~ 0
where hll(OX(’\)) = 0,

(D) Same resolution as in (C), but h'(0gx(1)) = 1,

(E) 0~R(-8)®2 4+ R(~7)® = r(-6)®?@R(-2)~I~0

where hq(OX(’I)) = 0 and where Y is non-singular.

Now by Riemann-Roch

X(@xg(v)) = (VF7) - (8v-4)
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so X(Ig(M) =0, i.e. B'(Zz(1)) = b7(0g(M). To use
(2,2.15) we will first show that

2
S (B,A,L) = 0

in 211 five cases. To see this, let s = s(X) = n,q, So by
(1.4.3) it will be sufficient to show that H (Iy(nq;)) = O
for 22ifr;. By c(X) = max n5i-4 and by considering

the resolutions, we conclude easily.

Next we prove that oHE(R,A,A) = 0 except for the case (D).
Indeed using (2.2.8), we find that _H°(R,A,A) vanishes for
the families (A) and (B), and also for (C) because h'(Ix(1) =O.
For (D) we find

dim HY(R,A,4) <1,

Moreover in the last case (E) it is not easy to use (2.2.8).

However by (1.3.10), A2(_@_,O = cokera = O, and by

d)res

(1.4.6), OH2(R,A,A) &> cokera is injective because
Jo(B,A,A) = 0. So _H(R,A,A) = O for (E) as required.

Thus (2.2.15) applies to all five families, except for the

family (D), with a5, = 0, and by (2.2.15) and (2.2.14)
(g + 33 = 38 for (A)
d+g+18 = 31 for (B)
dim0p o = X(d) =
’ d+g+18 = 31 for (C)
L.2d+g+8 = 29 for (E)

Moreover it can be shown that the families (4), (B), (C)
and (E) form open subsets of D(8,5;s):|) Note also that

. _as . A
dlmoprq(D),pr,l(x) dim OD,x except for the family (A),

1) Let D(d,g3s) = D(p,s) where p is the polynomial p(v) = dv+i-g.
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in which case pr, is smooth by (1.3.4) because i (}_X(LL))-_-‘O.
Since ho(_I_X/Y(lL)) = 6 in this case, the family (4) is open
in H(8,5)S of dimension 32,

"his coincides with [G,P]. Indeed they also say that the
Taxdiy (D) is the intersection of the closures of the fami-
I1iez (B) and (C) in H(8,5)S, and so also in D(8,5;3)S
where D(8,5;5)S§_D(8,5;3) consists of points (XSYCSP)
with X smooth and connected. This implies that all curves
beleneing to (D) are singular points of D(8,533), and since

De? = p th. S
“i0) QXEY ’ Def(w,cp) can not be formally smoo o
dim H°(R,A,4) = 1,

and we shall soon see that

2

ares = dimcokera = 1

as well, Indeed we first prove that H(S8, B)S is smooth by
proving that smooth non-plane curves having H/| (OX(’I)) =0

; - . | .

or Wy = OX(’I) satisfy H (_IE_X) = 0. To see this, let 08y,
resp 919 /X be the sheaf of derivations on X, resp deriva-
tions on P restricted to X, and consider the exact

sequences

0 —=>bx > bp;x—= 08>0,
0 ~> Oy —> OX(’I)694 - e]P/X—'> 0.
By taking cohomology we need only show
~H'(0g) = H'(05(1)®

surjective, If H'(04(1)) = 0, we are done, and if wy = 04(1),
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then by duality we must prove that

o o o
H (OX) i H (Oﬂy(l)) - H (OX(l))

is injective. This is, however, obvious because X is
non-plane. Finally we have already seen that (1.3.1C)

yields an exact sequence

l2

HOOL) LEN(I, () »a%(d,0) o —»H () ~=H'(0,(s))

res

Thus for (D)

2 1 -
aresjhtx(EX(S)).- 1,
and since A2(9°Og)res can not vanish,
a2 =1



