Free resolutions, ghost terms and the Hilbert scheme

Jan O. Kleppe

Oslo and Akershus University College of Applied Sciences

Workshop: Syzygies in Berlin, 27.-31. May 2013

Introduction

In this talk

- $R = k[x_0, x_1, x_2, x_3]$ polynom. ring, $k = \overline{k}$, $\mathfrak{m} = (x_0, x_1, x_2, x_3)$
- " $C \subseteq \mathbb{P}^3$ a curve" means "C locally CM of equidimension 1" with sheaf ideal \mathcal{I}_C , homogeneous ideal

$$I(\mathcal{C}) := H^0_*(\mathcal{I}_{\mathcal{C}}) := \oplus_{\nu} H^0(\mathcal{I}_{\mathcal{C}}(\nu)) ,$$

and let $M := H^1_*(\mathcal{I}_C)$ be the (Hartshorne)-Rao module.

The Hilbert scheme H(d,g) is, as a set of closed points, equal to

$$\mathsf{H}(d,g)=\{\;(\mathcal{C})\mid \mathcal{C}\subset \mathbb{P}^3 ext{ curve of deg }\mathcal{C}=d, ext{ genus }\mathcal{C}=g\}$$

Let $H(d,g)_S$ be the open subscheme of smooth connected curves.

The main goal of this talk is to study H(d,g) at (C) via a minimal *R*-free resolution of *I*, by e. g.

• deforming C to a C' in various ways by making consecutive free summands in a minimal free resolution of I(C) disappear in a free resolution of I(C') (i.e. "killing" ghost terms).

For a diameter-1 curve C (i.e., $M_v \neq 0$ for only one v) we will

- show a one-to-one correspondence between the set of irred. components of H(d,g) ∋ (C) and a set of min. 5-tuples specializing to a 5-tuple of graded Betti numbers of C
- see a specific description of the singular locus of the Hilbert scheme of diam ≤ 1 curves in terms of closures of Betti strata.

graded Betti numbers

Since $I(C) = H^0_*(\mathcal{I}_C)$ we have depth_m $I \ge 2$, hence I has a minimal free resolution of the following form

$$0 \to \oplus_i R(-i)^{\beta_{3,i}} \to \oplus_i R(-i)^{\beta_{2,i}} \to \oplus_i R(-i)^{\beta_{1,i}} \to I \to 0.$$
 (1)

The numbers

$$\beta_{j,i} = \beta_{j,i}(C)$$

are the graded Betti numbers of I(C). We say

- *C* is arithmetically CM or ACM if R/I is Cohen-Macaulay or equivalently, depth_m I = 3 or all $\beta_{3,i} = 0$, i.e. the Rao module $M := H^1_*(\mathcal{I}_C) \cong H^2_\mathfrak{m}(I)$ vanishes.
- If ACM, the min.res. is given by the Hilbert-Burch matrix and H(d,g) is described by works of Peskine-Szpiro and Ellingsrud

Now we recall Rao's theorem concerning the form of a minimal free resolution of I = I(C). Let

$$0 \to L_4 \xrightarrow{\sigma} L_3 \to L_2 \to L_1 \xrightarrow{\tau} L_0 \to M \to 0$$
(2)

be the minimal resolution of $M = H^1_*(\mathcal{I}_C)$. Then (1) and

$$0 \to L_4 \xrightarrow{\sigma \oplus 0} L_3 \oplus F_2 \longrightarrow F_1 \to I \to 0$$
(3)

are isomorphic [Rao, Thm. 2.5] ! Here the composition of $L_4 \rightarrow L_3 \oplus F_2$ with the natural projection $L_3 \oplus F_2 \rightarrow F_2$ is zero. We may write (3) as a so-called *E-resolution* of *I* (cf. [MDP]):

$$0 \to E \oplus F_2 \to F_1 \to I \to 0$$
, $E := \operatorname{coker} \sigma$. (4)

Rao's theorem

For a **diameter-1 curve** *C* with $r = \dim H^1_*(\mathcal{I}_C) = h^1(\mathcal{I}_C(c))$ $(M_v = 0 \text{ for all } v \neq c)$, we have the minimal free resolution:

 $0 \rightarrow R(-c-4)^r \xrightarrow{\sigma} R(-c-3)^{4r} \rightarrow R(-c-2)^{6r} \rightarrow R(-c-1)^{4r} \rightarrow R(-c)^r \rightarrow M \rightarrow 0$

which is "r times" the Koszul resolution of

$$k(-c) \cong R/(x_0, x_1, x_2, x_3)(-c) =: M_{[c]}.$$

If r = 1 then the matrix of σ is the transpose of (x_0, x_1, x_2, x_3) .

Putting this into the resolution of *I*, we get for a diam. 1 curve:

$$0 \to R(-c-4)^r \xrightarrow{\sigma \oplus 0} R(-c-3)^{4r} \oplus F_2 \longrightarrow F_1 \to I \to 0$$
 (5)

Example. $\exists X \text{ of } H(18, 39)_S \text{ with } c = 4 \text{ and min. resolution:}$

$$0
ightarrow R(-8)
ightarrow R(-7)^4 \oplus R(-8)
ightarrow R(-6)^4 \oplus R(-4)
ightarrow I(X)
ightarrow 0$$
 .

Compare it with the Rao form (5). Here R(-8) is a **ghost term**.

I will explain the main results (from [K12]) of my talk by recalling

Theorem (K06; Ann. Inst. Fourier, 56 no. 5, 2006)

 $C \subset \mathbb{P}^3$ a curve whose Rao module $M \cong M^r_{[c]} \neq 0$ (so $r = \beta_{3,c+4}$). Then C is obstructed (i.e H(d,g) is singular at (C)) if and only if

 $\beta_{1,c} \cdot \beta_{2,c+4} \neq 0 \quad \text{or} \quad \beta_{1,c+4} \cdot \beta_{2,c+4} \neq 0 \quad \text{or} \quad \beta_{1,c} \cdot \beta_{2,c} \neq 0 \ .$

Moreover if C is unobstructed, the dimension of H(d,g) at (C) is

$$\dim_{(C)} H(d,g) = 4d + \delta^2(0) + r(\beta_{1,c+4} + \beta_{2,c})$$
, and

$$\delta^2(0) = \sum_i \beta_{1,i} \cdot h^2(\mathcal{I}_{\mathcal{C}}(i)) - \sum_i \beta_{2,i} \cdot h^2(\mathcal{I}_{\mathcal{C}}(i)) + \sum_i \beta_{3,i} \cdot h^2(\mathcal{I}_{\mathcal{C}}(i))$$

Example: Obstructed curve in H(33, 117)_S with diam .1, c = 5: $R(-9) \hookrightarrow R(-10)^2 \oplus R(-9) \oplus R(-8)^4 \to R(-9) \oplus R(-8) \oplus R(-7)^5 \to I \to 0$

5-tuples of graded Betti numbers

For a given diameter-1 curve $\mathcal{C}\subseteq\mathbb{P}^3$, we consider the 5-tuple

$$\underline{\beta}(C)_5 := (\beta_{1,c+4}, \beta_{1,c}, \beta_{2,c+4}, \beta_{2,c}, \beta_{3,c+4}).$$

Remark The thm. says: *C* is unobstructed iff there are at least two consecutive zero's in the first 4 coordinates or $\beta_{3,c+4} = 0$.

Last Example: $C \in H(33, 117)_S$ satisfied: $\underline{\beta}(C)_5 = (1, 0, 1, 0, 1)$

On such 5-tuples we let **admissible** operations be possibly repeated use of vector-subtractions by: $\underline{q}_c := (0, 1, 0, 1, 0),$ $\underline{q}_{c+4} := (1, 0, 1, 0, 0), \underline{p}_1 := (0, 0, 1, 0, 1),$ and $\underline{p}_2 = (0, 1, 0, 0, 1),$ provided the resulting 5-tuple is **non-negative** in every coordinate. **Example**: For $\underline{\beta}(C)_5 = (1, 0, 1, 0, 1), C \in H(33, 117)_S$, we have $\underline{\beta}(C)_5 - q_{c+4} = (0, 0, 0, 0, 1)$ and $\underline{\beta}(C)_5 - p_1 = (1, 0, 0, 0, 0);$ the resulting 5-tuples are called **minimal**. a) The curve $C \in H(33,117)_S$ with $\underline{\beta}(C)_5 = (1,0,1,0,1)$:

$$\begin{array}{c} (Q(c+4)) & (0,0,0,0,1) \\ (1,0,1,0,1) & 2 \text{ admissible} \\ (P1) & (1,0,0,0,0) \end{array}$$
2 admissible 5-tuples, both minimal

b) $\exists C \in H(32, 109)_S$ with 5-tuple $\underline{\beta}(C)_5 = (0, 1, 1, 0, 2)$:

$$(P2) (0, 0, 1, 0, 1) (P1) (0, 1, 1, 0, 2) (0, 0, 0, 0, 0) (P1) (0, 1, 0, 0, 1) (P2)$$

3 admissible 5-tuples, only the final one is minimal

Theorem (Main theorem 1)

Let $C \subseteq \mathbb{P}^3$ be a curve of diameter one. Then every admissible 5-tuple corresponds to a generization C' (i.e. a deformation to a more general curve) whose 5-tuple equals the admissible one. Moreover

 $\{\text{minimal } \underline{\beta}_5' | \underline{\beta}_5' \rightsquigarrow \underline{\beta}(C)_5\} \stackrel{1-1}{\longleftrightarrow} \{\text{irred. comp. } V \subset \mathsf{H}(d,g) | V \ni (C)\}.$

Here V maps to the 5-tuple of its generic curve and all components V are generically smooth.

Generizations killing ghost terms in the Rao form

Consider the Rao form of a min. resolution:

$$0 \to L_4 \xrightarrow{\sigma \oplus 0} L_3 \oplus F_2 \longrightarrow F_1 \to I(C) \to 0$$

where $0 \to L_4 \xrightarrow{\sigma} L_3 \to .. \to M \to 0$ is a min. res. of M = M(C).

Theorem

Let $C \subseteq \mathbb{P}^3$ be **any curve** with minimal free resolution as above. If F_1 and F_2 have a common free summand;

$$F_2 = F'_2 \oplus R(-i), \quad F_1 = F'_1 \oplus R(-i),$$

then there is a generization C' (of type Qi) of C in H(d,g) with const. postulation and const. Rao module and with min. resolution

$$0 \to L_4 \xrightarrow{\sigma \oplus 0} L_3 \oplus F'_2 \to F'_1 \to I(C') \to 0 \,.$$

Proof Let $M(\sigma)$ be the matrix of σ . As in [MDP], in the resolution

$$0 \to L_4 \xrightarrow{\begin{bmatrix} \mathcal{M}(\sigma) \\ 0 \\ 0 \end{bmatrix}} L_3 \oplus F'_2 \oplus R(-i) \xrightarrow{\begin{bmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & 0 \end{bmatrix}} F'_1 \oplus R(-i) \to I(C)$$

we replace the 0 in the rightmost corner with a parameter λ . Since

$$\begin{bmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & \lambda \end{bmatrix} \begin{bmatrix} \mathcal{M}(\sigma) \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} ,$$

the cokernel of the deformed (i.e. changed) matrix defines a flat family of homogeneous ideals over an open in $\mathbb{A}^1_k \ni 0$.

Remark If C' is a generic curve of an irred. comp. of H(d,g) containing C of diam. 1 with c = c(C) and $\beta'_{i,i} = \beta_{i,j}(C')$, then

$$\beta_{1,c+3}' \cdot \left(\beta_{2,c+3}' - 4\beta_{3,c+4}'\right) = 0 \ , \ \ \beta_{1,i}' \cdot \beta_{2,i}' = 0 \ \ \text{for any} \ i \neq c+3 \,,$$

Example

Taking two general skew lines, we link twice via Cl's of type (5, 2) and (5, 4), and we get a curve X, generic (by [K88], Prop. 3.8) in H(12, 18), with min. res. and a ghost term R(-5) in degree c + 3: $0 \rightarrow R(-6) \rightarrow R(-7) \oplus R(-5)^4 \rightarrow R(-5) \oplus R(-4)^4 \rightarrow I(X) \rightarrow 0$.

Theorem (Main theorem 2)

Let C' be any generization of diam. 1 curve C in H(d,g) satisfying $\beta'_{1,c+3} \cdot (\beta'_{2,c+3} - 4\beta'_{3,c+4}) = 0$, $\beta'_{1,i} \cdot \beta'_{2,i} = 0$ for any $i \in \{c+1, c+2\}$ Then C' is a generization of C in H(d,g) generated by (PQ).

The generizations P1 and P2:

Suppose C admits a Buchsbaum component $M_{[t]}$, i.e.

$$M(C) \cong M' \oplus M_{[t]}$$
 as R – modules.

Remark If M' is a direct sum of other Buchsbaum components of possibly various degrees (resp. of the same degree t, i.e. $M \simeq M_{[t]}^r$), then C is a Buchsbaum curve (resp. of diameter one).

The generization P1:

Denoting
$$(\sigma', \sigma_{[t]}) := \begin{pmatrix} \sigma' & 0 \\ 0 & \sigma_{[t]} \end{pmatrix}$$
, then $M \cong M' \oplus M_{[t]}$ has the min. res.:
 $0 \to P_4 \oplus R(-t-4) \xrightarrow{(\sigma', \sigma_{[t]})} P_3 \oplus R(-t-3)^4 \to P_2 \oplus R(-t-2)^6 \to \dots \to M \to 0$
where $0 \to P_4 \xrightarrow{\sigma'} P_3 \to P_2 \xrightarrow{\tau_2} P_1 \xrightarrow{\tau_1} P_0 \to M' \to 0$ is a min. res.
 $0 \to R(-t-4) \xrightarrow{\sigma_{[t]}} R(-t-3)^4 \to R(-t-2)^6 \to R(-t-1)^4 \xrightarrow{\tau_{[t]}} R(-t) \to M_{[t]} \to 0$

Combining with Rao's theorem, we get the min. resolution:

$$0 \to P_4 \oplus R(-t-4) \xrightarrow{(\sigma',\sigma_{[t]})\oplus 0} P_3 \oplus R(-t-3)^4 \oplus F_2 \to F_1 \to I \to 0 \,.$$

Generizations preserving only postulation in the Rao form

Proposition (The generization P1)

Let $C\subseteq \mathbb{P}^3$ a curve admitting an iso. $M(C)\cong M'\oplus M_{[t]}$ and

$$0 \to P_4 \oplus R(-t-4) \xrightarrow{(\sigma',\sigma_{[t]}) \oplus 0 \oplus 0} P_3 \oplus R(-t-3)^4 \oplus Q_2 \oplus R(-t-4) \xrightarrow{\beta} F_1 \to I(C)$$

Then there is a generization C' (of type P1) of C in H(d,g) with constant postulation such that I(C') has a free resolution:

$$0 \to P_4 \xrightarrow{\sigma' \oplus 0 \oplus 0} P_3 \oplus R(-t-3)^4 \oplus Q_2 \to F_1 \to I(C') \to 0\,,$$

and such that $M(C') \cong M'$ as graded *R*-modules. The resolution is minimal except possibly in degree t + 3 where some of the summands of $R(-t - 3)^4$ may cancel against free summands of F_1 (and type Q(t + 3) generizations may apply). **Proof** Look (as in [MDP], page 189) at the min. res. of I = I(C):

$$P_4 \oplus R(-t-4) \xrightarrow{(\sigma',\sigma_{[t]})\oplus 0\oplus 0} P_3 \oplus R(-t-3)^4 \oplus Q_2 \oplus R(-t-4) \xrightarrow{\beta} F_1 \to I$$

where $\lambda = 0$ in

$$\begin{bmatrix} p_3 & h(\lambda) & q_2 & y \end{bmatrix} \begin{bmatrix} M(\sigma') & 0 \\ 0 & M(\sigma_{[t]}) \\ 0 & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 0, 0 \end{bmatrix}, \text{ and } M(\sigma_{[t]}) = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Write the column $y = (y_j)$ as $y_j = \sum_{i=0}^3 a_{j,i}x_i$ and the 4 columns $h(\lambda)$ as $h(\lambda) := (h'_0, h'_1, h'_2, h'_3)$ where $h'_i = (h_{j,i} - \lambda \cdot a_{j,i})$. Then coker β defines a flat family of ideals over an open in $\mathbb{A}^1_k \ni 0$.

Remark (a generalization) Suppose $M(C) \cong M' \oplus M_{CI}$, $M_{CI} = R/(f_0, f_1, f_2, f_3)$ a CI, and $0 \to P_4 \oplus R(-d) \xrightarrow{(\sigma', \sigma_{CI}) \oplus 0 \oplus 0} P_3 \oplus R(-d_i)^4 \oplus Q_2 \oplus R(-d) \to$ If each coordinate of y satisfies $y_j \in (f_0, f_1, f_2, f_3)$, then R(-d) is removable through a deformation.

Generizations NOT preserving postulation

Example [Ser] We get a generization C' of type P1 of C:

$$0 \rightarrow R(-8) \rightarrow R(-8) \oplus R(-7)^4 \rightarrow R(-6)^4 \oplus R(-4) \rightarrow I(C) \rightarrow 0,$$

by deleting R(-8). (C) sits in the intersection of two irred. comp. of H(18, 39)_S. The generic curve X of the other comp. satisfies

$$0
ightarrow R(-8) \oplus R(-6)^2
ightarrow R(-5)^4
ightarrow I(X)
ightarrow 0$$
.

Comparing, we get $\beta_{1,5}(C) = \beta_{2,6}(C) = 0$ while $\beta_{1,5}(X) = 4$, $\beta_{2,6}(X) = 2$, i.e. $\beta_{1,5}$ and $\beta_{2,6}$ are not (upper) semi-continuous.

However, the triple $(h^0(\mathcal{I}_Z(4)), h^1(\mathcal{I}_Z(4)), h^1(\mathcal{O}_Z(4)))$ equals (1,0,0) for Z = C' and (0,0,1) for Z = X, so (X) and (C') sits in different irred. comp. of H(18,39)_S by the semi-cont. of $h^i(\mathcal{I}_Z(v))$.

Generizations NOT preserving postulation in the Rao form

Proposition (The generization P2)

C a space curve admitting a graded R-module isomorphism $M(C) \cong M' \oplus M_{[t]}$. If $F_1 \cong Q_1 \oplus R(-t)$ in the min. res.: $0 \to P_4 \oplus R(-t-4) \xrightarrow{(\sigma',\sigma_{[t]})\oplus 0} P_3 \oplus R(-t-3)^4 \oplus F_2 \to F_1 \to I(C) \to 0$,

and if P_2 does not contain a summand R(-t), then there is a generization C' (of type P2) of C in H(d,g) with constant specialization and constant M' such that I(C') has the resolution:

 $0 \to P_4 \xrightarrow{\sigma' \oplus 0 \oplus 0} P_3 \oplus F_2 \oplus R(-t-2)^6 \to Q_1 \oplus R(-t-1)^4 \to I(C') \to 0.$

The resolution is min. except possibly in degree t + 1 and t + 2where type Qi generizations for $i \in \{t + 1, t + 2\}$ may apply

Proof. P2 for C is proved using P1 to the linked curve!

Liaison and a theorem of Peskine-Szpiro-Ferrand et al

How do we find the min. resolution of the linked curve. Considering $\mathcal{I}_{C/Y} := \mathcal{I}_C / \mathcal{I}_Y$ as the sheaf ideal of C in Y, we recall

Definition

Two curves C and D in \mathbb{P}^3 are said to be (algebraically) *Cl-linked* if there exists a complete intersection curve (a Cl) Y such that

$$\mathcal{I}_C/\mathcal{I}_Y \cong \mathcal{H}om_{\mathcal{O}_{\mathbb{P}}}(\mathcal{O}_D, \mathcal{O}_Y) \quad \text{and} \quad \mathcal{I}_D/\mathcal{I}_Y \cong \mathcal{H}om_{\mathcal{O}_{\mathbb{P}}}(\mathcal{O}_C, \mathcal{O}_Y).$$

The dualizing sheaf a Cl $Y \supset C$ of type (f,g) satisfies $\omega_Y \cong \mathcal{O}_Y(f+g-4)$, so

$$\mathcal{I}_{C/Y} \cong \omega_D(4-f-g) \cong \mathcal{E}xt^2(\mathcal{O}_D,\mathcal{O}_\mathbb{P})(-f-g)$$

 $\begin{array}{l} D \ \text{lCM equidim codim } 2 \ \Rightarrow \mathcal{E}xt^2(\mathcal{E}xt^2(\mathcal{O}_D,\mathcal{O}_\mathbb{P}),\mathcal{O}_\mathbb{P}) \cong \mathcal{O}_D, \ \text{whence} \\ Ext^2_R(I(\mathcal{C})/I(\mathcal{Y})(f+g),R) \cong \operatorname{Ext}^2_{\mathcal{O}_\mathbb{P},*}(\mathcal{I}_{\mathcal{C}/\mathcal{Y}}(f+g),\mathcal{O}_\mathbb{P}) \cong H^0_*(\mathcal{O}_D). \end{array}$

We give the main ideas of the proof through an example:

Example Take the minimal resolution of a curve $C \in H(6,3)_S$:

$$0 o R(-6) \stackrel{\sigma}{\longrightarrow} R(-5)^4 o R(-4)^3 \oplus R(-2) o I(\mathcal{C}) o 0$$
 .

i.e. as I(C) in last Prop. with M' = 0 (i.e all $P_i = 0$) and t = 2.

We claim there is a generization "cancelling R(-6) (together with $R(-5)^4$) and R(-2)" at the cost of an increase in Betti numbers in deg. 3 and 4.

Indeed link C to D via a CI of type (f, g) containing C, taking f = g = 4 to simplify. The E-resolution is :

$$\mathsf{0} o E o \mathsf{R}(-4)^3 \oplus \mathsf{R}(-2) o \mathsf{I}(\mathsf{C}) o \mathsf{0} \;, \qquad E := \operatorname{coker} \sigma \;.$$

21/32

Using the mapping cone:

we get a resolution of I(C)/I(Y). Taking *R*-duals, $\text{Hom}_{R}(-, R)$, and using $I(D) = \text{ker}(R \rightarrow H^{0}_{*}(\mathcal{O}_{D}))$, we get the exact

$$0 \to R(-6) \oplus R(-4) \to E^{\vee}(-8) \to I(D) \to 0$$
(6)

having removed 2 redundant terms (to make the res. min.). Using

$$0 \rightarrow R(2) \rightarrow R(3)^4 \rightarrow R(4)^6 \rightarrow E^{\vee} \rightarrow 0$$
.

and the mapping cone construction, we get:

$$0
ightarrow R(-6)
ightarrow R(-5)^4 \oplus R(-6)
ightarrow R(-4)^5
ightarrow I(D)
ightarrow 0$$
 .

This resolution has the form as in Prop. P1 with M' = 0 and t = 2.

By that Prop. there is a generization D' cancelling R(-6), so D' is ACM. Linking "back" via a general Cl Y' of type (4, 4):

we get a res. of I(D')/I(Y') whose dual yields a curve C' with res.,

$$0 \rightarrow R(-4)^3 \rightarrow R(-3)^4 \rightarrow I(C') \rightarrow 0 \,.$$

By [K88], Prop. 3.7, C' is a generization of the curve C.

Proof. P2 for C is proved using P1 onto the linked curve! Indeed if we link C to D via a CI of type (f, g), then c(D) = f + g - 4 - c,

$$\beta_{j,v}(C) = \beta_{3-j,c+c(D)+4-v}(D)$$
, for $v \notin \{c+1, c+2, c+3\}$

for j = 1 and 2. Thus

$$\underline{p}_2(C)$$
 correspond to $\underline{p}_1(D)$

For this and the change for $v \in \{c + 1, c + 2, c + 3\}$, see Example.

To prove main theorem 2 we need this semi-continuity result.

Proposition

C a diameter-1 curve. If $v \notin \{c + 1, c + 2, c + 3\}$, then the Betti numbers $\beta_{1,v}$ and $\beta_{2,v}$ are upper semi-continuous. In particular the 5-tuple ($\beta_{1,c+4}, \beta_{1,c}, \beta_{2,c+4}, \beta_{2,c}, \beta_{3,c+4}$) is upper semi-continuous, *i.e.* each of these 5 numbers do not increase under generization.

Proof, main ideas We use the so-called Ω -resolutions of a Buchsbaum curve. Here Ω is defined by the exact sequences

$$0 \rightarrow \textit{R}(-4) \rightarrow \textit{R}(-3)^4 \rightarrow \textit{R}(-2)^6 \rightarrow \Omega \rightarrow 0$$

deduced from the Koszul resolution of $M_{[0]}$. Then we prove

$$h^1(\mathcal{I}_C\otimes\widetilde{\Omega}(v))=eta_{1,v}\;,\quad ext{for}\;\;v
otin\{c+1,c+2,c+3\}.$$

Hence $\beta_{1,v}$ is semi-continuous since $h^1(\mathcal{I}_C \otimes \widetilde{\Omega}(v))$ is. Moreover if we link C to D via a Cl of type (f, g), we conclude the proof by

 $\beta_{2,\nu}(C) = \beta_{1,c+c(D)+4-\nu}(D) , \quad \text{for } \nu \notin \{c+1,c+2,c+3\} \quad \Box$

Definition

C a diam. 1 curve. A generization *C'* of *C* in H(d, g) that is given by repeatedly using some of the generizations of type (P1), (P2) and (Qj) for $j \in \mathbb{N}$ and trivial generizations in some order, is called a generization in H(d, g) generated by (PQ).

The notion of **trivial generization** is needed to move around inside a *Betti stratum* H(β). We easily get it through the proof of the **irreducibility** of H(β). Indeed (cf. [Bo], Thm. 2.2)

Proof of irred. (in diam. 1 case) Two curves $D_1, D_2 \in H(\underline{\beta})$ have exactly the same summands in their *E*-resolutions, but the maps $\varphi_{D_i} : E \oplus F_2 \to F_1$ are different. The **irred.** family given by

$$\varphi_t := t\varphi_{D_1} + (1-t)\varphi_{D_2} \in \mathsf{Hom}(E \oplus F_2, F_1), \ t \in \mathbb{A}^1_k,$$

is flat in open set $U \subset \mathbb{A}^1_k$ containing 0 and 1, and $U \subset H(\underline{\beta})$. **Definition** The generic element \tilde{D} of \mathbb{A}^1_k is called a trivial generization of D_1 (or of D_2). Obviously, $(\tilde{D}) \in H(\underline{\beta})$.

Theorem (Main theorem 2)

Let $C \subseteq \mathbb{P}^3$ be a Buchsbaum curve of diameter one and let C' be any generization of C in H(d,g). Then C', after possibly removing ghost terms from I(C') of type Q_v for $v \in \{c + 1, c + 2, c + 3\}$, is a generization of C in H(d,g) generated by (PQ). **Proof** Let $\gamma_C(v) := h^0(\mathcal{I}_C(v))$ and $\Delta \gamma(c) := \gamma_C(c) - \gamma_{C'}(c)$. Let

$$\chi(\mathcal{I}_{\mathcal{C}}(v)) = h^0(\mathcal{I}_{\mathcal{C}}(v)) - h^1(\mathcal{I}_{\mathcal{C}}(v)) + h^2(\mathcal{I}_{\mathcal{C}}(v))$$

Due to $\chi(\mathcal{I}_{C'}(v)) = \chi(\mathcal{I}_{C}(v))$ and the semi-cont. of the 5-tuple, we prove $\beta_{1,c} \ge \Delta \gamma(c) \ge 0$ and $\beta_{3,c+4} \ge \Delta \gamma(c)$, whence we can use the operation (P2) $\Delta \gamma(c)$ times to get a generization C_{P2} , such that $\gamma_{C_{P2}}(c) = \gamma_{C'}(c)$ and $h^1(\mathcal{O}_{C_{P2}}(c)) = h^1(\mathcal{O}_{C}(c))$.

Next we use (P1) $\Delta\sigma(c) := h^1(\mathcal{O}_C(c)) - h^1(\mathcal{O}_{C'}(c))$ times to get the existence of a generization C_P of C_{P2} , furnished by (P1), without changing the postulation $\gamma_{C'}$ and such that $h^1(\mathcal{O}_{C_P}(c)) = h^1(\mathcal{O}_{C'}(c))$. This is possible because $\beta_{2,c+4} \geq \Delta\sigma(c) \geq 0$ and $\beta_{3,c+4} - \Delta\gamma(c) \geq \Delta\sigma(c)$.

Thus we have two curves C_P and C' such that $h^i(\mathcal{I}_{C_P}(v) = h^i(\mathcal{I}_{C'}(v))$ for i = 0, 1, 2 and $\forall v$. Then we use (Qi) to get curves in the same Betti stratum, and then a trivial generization

Our final main result determines the singular locus of the open subscheme, H(d, g; c), of H(d, g) whose k-points are given by

$$\{(\mathcal{C})\in\mathsf{H}(d,g)|\ H^1(\mathcal{I}_{\mathcal{C}}(v))=0\ ext{for every}\ v
eq c\}\,,\ \ c\in\mathbb{Z}$$

Note that the main Theorem 1 really deals with H(d, g; c(C)).

We define the **Betti stratum**, $H(\underline{\beta})$, of H(d, g, c) to consist of all C satisfying $\beta_{j,i}(C) = \beta_{j,i} \forall i, j$. We write $H(\underline{\beta})$ as $H(\underline{\beta}_5)$ if

$$\beta_{1,c+3} \cdot (\beta_{2,c+3} - 4\beta_{3,c+4}) = 0, \ \beta_{1,i} \cdot \beta_{2,i} = 0 \ \text{ for } i \notin \{c, c+3, c+4\}.$$

Note that the closure $V(\underline{\beta}_5)_B := \overline{H}(\underline{\beta}_5) \cap H(d,g;c)$ is irreducible, cf. [B]. Let C be a generic curve of a Betti stratum $V(\beta_5)_B$.

Example a) [W, BKM] $C \in H(33, 117)_S$ with $\underline{\beta}(C)_5 = (1, 0, 1, 0, 1)$:

$$(Q(c+4)) (0,0,0,0,1) (1,0,1,0,1) (P1) (1,0,0,0,0)$$

2 minimal 5-tuples and their corresponding curves are unobstructed,

while the "subminimal" $\beta(C)_5$ correspond to C which is obstructed.

b)
$$\exists C \in H(32, 109)_S$$
 with 5-tuple $\underline{\beta}(C)_5 = (0, 1, 1, 0, 2)$:

(P2) (0,0,1,0,1) (P1) (0,1,1,0,2) (0,0,0,0,0) (P1) (0,1,0,0,1) (P2)The final one is minimal, but also the "subminimal" ones correspond

to unobstructed curves. C, however, is obstructed.

Definition If
$$Y := V(\underline{\beta}_5)_B$$
 is an irred. comp. of $H(d, g; c)$, we let
 $V(\underline{\beta}_5 + \underline{q}_J)_B := \begin{cases} V(\underline{\beta}_5 + \underline{q}_c)_B \cup V(\underline{\beta}_5 + \underline{q}_{c+4})_B, & \text{if diam } M(C) = 1 \\ \emptyset & \text{if } C \text{ is ACM}. \end{cases}$

Moreover for i = 1 and 2,

$$V(\underline{\beta}_5 + \underline{p}_i + \underline{q}_J)_B := V(\underline{\beta}_5 + \underline{p}_i + \underline{q}_c)_B \cup V(\underline{\beta}_5 + \underline{p}_i + \underline{q}_{c+4})_B.$$

Below +, resp. * means a positive, resp. non-neg. integer, and SingY is the part of the sing. locus of H(d, g; c) contained in Y.

Theorem (Main theorem 3: The singular locus)

$$\begin{split} & \text{If } V(\underline{\beta}_{5})_{B} \text{ is an irred. comp. of } \mathsf{H}(d,g;c), \text{ then } \underline{\beta}_{5} \text{ is as in } (i) - (v); \\ & (i) \quad \text{if } \underline{\beta}_{5} \text{ is equal to } (+,0,0,+,*) \text{ or } (0,+,+,0,0), \text{ then} \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{1})_{B} \cup V(\underline{\beta}_{5} + \underline{p}_{2})_{B} \cup V(\underline{\beta}_{5} + \underline{q}_{J})_{B}, \\ & (ii) \quad \text{if } \underline{\beta}_{5} = (0,0,0,+,*) \text{ or } (0,0,+,*,0), \text{ then} \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{2})_{B} \cup V(\underline{\beta}_{5} + \underline{q}_{J})_{B}, \\ & (iii) \quad \text{if } \underline{\beta}_{5} = (+,0,0,0,*) \text{ or } (*,+,0,0,0), \text{ then} \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{1})_{B} \cup V(\underline{\beta}_{5} + \underline{q}_{J})_{B}, \\ & (iv) \quad \text{if } \underline{\beta}_{5} = (0,0,0,0,+), \text{ then} \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{1} + \underline{p}_{2})_{B} \cup V(\underline{\beta}_{5} + \underline{q}_{J})_{B}. \\ & (v) \quad \text{if } \underline{\beta}_{5} = (0,0,0,0,0), \text{ then } \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{1} + \underline{p}_{2})_{B} \cup V(\underline{\beta}_{5} + \underline{q}_{J})_{B}. \\ & (v) \quad \text{if } \underline{\beta}_{5} = (0,0,0,0,0), \text{ then } \\ & \text{Sing } V(\underline{\beta}_{5})_{B} = V(\underline{\beta}_{5} + \underline{p}_{1} + \underline{q}_{J})_{B} \cup V(\underline{\beta}_{5} + \underline{p}_{2} + \underline{q}_{J})_{B}. \\ \end{array}$$

Proof Main thm 2 and the unobstr. thm for diam.1 curves For the existence of diam. 1 curves, see [C] and [W]. Thanks for listening ! [Bo] Bolondi. Irred. fam. fixed cohom. Arch. der Math., 53 (1989) [BKM] Bolondi, Kleppe, Miro-Roig. Compositio Math., 77 (1991) [BM] G. Bolondi, J. Migliore. Math. Ann. 277 (1987), 585-603. [C] Chang. Filtered Bertini.... J. reine angew. Math. 397, (1989) [K88] Kleppe Proc. Trento, Springer Lect. Notes Math. 1389 (1989) [K12] Kleppe. Ann. Inst. Fourier 62 no. 6 (2012), p. 2099-2130 [MDP] Martin-Deschamps, Perrin. Asterisque, 184-185 (1990) [Rao] P. Rao. Liaison Among Curves. Invent. Math. 50 (1979) [Ser] Sernesi. Sem. di variabili Complesse, Bologna (1981), 223-231 [W] C. Walter. London Math. Soc. Lect. Note Ser. 179 (1992)