Free resolutions, ghost terms and the Hilbert scheme

Jan O. Kleppe

Oslo and Akershus University College of Applied Sciences
Workshop: Syzygies in Berlin, 27.-31. May 2013

Introduction

In this talk

- $R=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ polynom. ring, $k=\bar{k}, \mathfrak{m}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$
- " $C \subseteq \mathbb{P}^{3}$ a curve" means " C locally $C M$ of equidimension 1 " with sheaf ideal \mathcal{I}_{C}, homogeneous ideal

$$
I(C):=H_{*}^{0}\left(\mathcal{I}_{C}\right):=\oplus_{v} H^{0}\left(\mathcal{I}_{C}(v)\right),
$$

and let $M:=H_{*}^{1}\left(\mathcal{I}_{C}\right)$ be the (Hartshorne)-Rao module.
The Hilbert scheme $\mathrm{H}(d, g)$ is, as a set of closed points, equal to

$$
\mathrm{H}(d, g)=\left\{(C) \mid C \subset \mathbb{P}^{3} \text { curve of } \operatorname{deg} C=d, \text { genus } C=g\right\}
$$

Let $\mathrm{H}(d, g)_{S}$ be the open subscheme of smooth connected curves.

The main goal of this talk is to study $\mathrm{H}(d, g)$ at (C) via a minimal R-free resolution of I, by e. g.

- deforming C to a C^{\prime} in various ways by making consecutive free summands in a minimal free resolution of $I(C)$ disappear in a free resolution of $I\left(C^{\prime}\right)$ (i.e. "killing" ghost terms).

For a diameter-1 curve C (i.e., $M_{v} \neq 0$ for only one v) we will

- show a one-to-one correspondence between the set of irred. components of $\mathrm{H}(d, g) \ni(C)$ and a set of min. 5-tuples specializing to a 5-tuple of graded Betti numbers of C
- see a specific description of the singular locus of the Hilbert scheme of diam ≤ 1 curves in terms of closures of Betti strata.

graded Betti numbers

Since $I(C)=H_{*}^{0}\left(\mathcal{I}_{C}\right)$ we have depth ${ }_{\mathfrak{m}} I \geq 2$, hence I has a minimal free resolution of the following form

$$
\begin{equation*}
0 \rightarrow \oplus_{i} R(-i)^{\beta_{3, i}} \rightarrow \oplus_{i} R(-i)^{\beta_{2, i}} \rightarrow \oplus_{i} R(-i)^{\beta_{1, i}} \rightarrow I \rightarrow 0 . \tag{1}
\end{equation*}
$$

The numbers

$$
\beta_{j, i}=\beta_{j, i}(C)
$$

are the graded Betti numbers of $I(C)$. We say

- C is arithmetically CM or ACM if R / I is Cohen-Macaulay or equivalently, depth ${ }_{\mathfrak{m}} I=3$ or all $\beta_{3, i}=0$, i.e. the Rao module $M:=H_{*}^{1}\left(\mathcal{I}_{C}\right) \cong H_{\mathfrak{m}}^{2}(I) \quad$ vanishes.
- If $A C M$, the min.res. is given by the Hilbert-Burch matrix and $\mathrm{H}(\mathrm{d}, \mathrm{g})$ is described by works of Peskine-Szpiro and Ellingsrud

Rao's theorem

Now we recall Rao's theorem concerning the form of a minimal free resolution of $I=I(C)$. Let

$$
\begin{equation*}
0 \rightarrow L_{4} \xrightarrow{\sigma} L_{3} \rightarrow L_{2} \rightarrow L_{1} \xrightarrow{\tau} L_{0} \rightarrow M \rightarrow 0 \tag{2}
\end{equation*}
$$

be the minimal resolution of $M=H_{*}^{1}\left(\mathcal{I}_{C}\right)$. Then (1) and

$$
\begin{equation*}
0 \rightarrow L_{4} \xrightarrow{\sigma \oplus 0} L_{3} \oplus F_{2} \longrightarrow F_{1} \rightarrow I \rightarrow 0 \tag{3}
\end{equation*}
$$

are isomorphic [Rao, Thm. 2.5] ! Here the composition of $L_{4} \rightarrow L_{3} \oplus F_{2}$ with the natural projection $L_{3} \oplus F_{2} \rightarrow F_{2}$ is zero.
We may write (3) as a so-called E-resolution of I (cf. [MDP]):

$$
\begin{equation*}
0 \rightarrow E \oplus F_{2} \rightarrow F_{1} \rightarrow I \rightarrow 0, \quad E:=\text { coker } \sigma \tag{4}
\end{equation*}
$$

Rao's theorem

For a diameter- 1 curve C with $r=\operatorname{dim} H_{*}^{1}\left(\mathcal{I}_{C}\right)=h^{1}\left(\mathcal{I}_{C}(c)\right)$ ($M_{v}=0$ for all $v \neq c$), we have the minimal free resolution:
$0 \rightarrow R(-c-4)^{r} \xrightarrow{\sigma} R(-c-3)^{4 r} \rightarrow R(-c-2)^{6 r} \rightarrow R(-c-1)^{4 r} \rightarrow R(-c)^{r} \rightarrow M \rightarrow 0$
which is " r times" the Koszul resolution of

$$
k(-c) \cong R /\left(x_{0}, x_{1}, x_{2}, x_{3}\right)(-c)=: M_{[c]} .
$$

If $r=1$ then the matrix of σ is the transpose of $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
Putting this into the resolution of I, we get for a diam. 1 curve:

$$
\begin{equation*}
0 \rightarrow R(-c-4)^{r} \xrightarrow{\sigma \oplus 0} R(-c-3)^{4 r} \oplus F_{2} \longrightarrow F_{1} \rightarrow I \rightarrow 0 \tag{5}
\end{equation*}
$$

Example. $\exists X$ of $\mathrm{H}(18,39) s$ with $c=4$ and min. resolution:
$0 \rightarrow R(-8) \rightarrow R(-7)^{4} \oplus R(-8) \rightarrow R(-6)^{4} \oplus R(-4) \rightarrow I(X) \rightarrow 0$.
Compare it with the Rao form (5). Here $R(-8)$ is a ghost term.

I will explain the main results (from [K12]) of my talk by recalling

Theorem (K06; Ann. Inst. Fourier, 56 no. 5, 2006)

$C \subset \mathbb{P}^{3}$ a curve whose Rao module $M \cong M_{[c]}^{r} \neq 0$ (so $r=\beta_{3, c+4}$). Then C is obstructed (i.e $\mathrm{H}(d, g)$ is singular at (C)) if and only if

$$
\beta_{1, c} \cdot \beta_{2, c+4} \neq 0 \quad \text { or } \quad \beta_{1, c+4} \cdot \beta_{2, c+4} \neq 0 \quad \text { or } \quad \beta_{1, c} \cdot \beta_{2, c} \neq 0 .
$$

Moreover if C is unobstructed, the dimension of $\mathrm{H}(d, g)$ at (C) is

$$
\begin{gathered}
\operatorname{dim}_{(C)} H(d, g)=4 d+\delta^{2}(0)+r\left(\beta_{1, c+4}+\beta_{2, c}\right), \text { and } \\
\delta^{2}(0)=\sum_{i} \beta_{1, i} \cdot h^{2}\left(\mathcal{I}_{C}(i)\right)-\sum_{i} \beta_{2, i} \cdot h^{2}\left(\mathcal{I}_{C}(i)\right)+\sum_{i} \beta_{3, i} \cdot h^{2}\left(\mathcal{I}_{C}(i)\right)
\end{gathered}
$$

Example: Obstructed curve in $\mathrm{H}(33,117)_{s}$ with diam.1, $c=5$: $R(-9) \hookrightarrow R(-10)^{2} \oplus R(-9) \oplus R(-8)^{4} \rightarrow R(-9) \oplus R(-8) \oplus R(-7)^{5} \rightarrow I \rightarrow 0$

5-tuples of graded Betti numbers

For a given diameter-1 curve $C \subseteq \mathbb{P}^{3}$, we consider the 5-tuple

$$
\underline{\beta}(C)_{5}:=\left(\beta_{1, c+4}, \beta_{1, c}, \beta_{2, c+4}, \beta_{2, c}, \beta_{3, c+4}\right) .
$$

Remark The thm. says: C is unobstructed iff there are at least two consecutive zero's in the first 4 coordinates or $\beta_{3, c+4}=0$.

Last Example: $C \in \mathrm{H}(33,117)_{s}$ satisfied: $\underline{\beta}(C)_{5}=(1,0,1,0,1)$
On such 5-tuples we let admissible operations be possibly repeated use of vector-subtractions by: $\quad \underline{q}_{c}:=(0,1,0,1,0)$, $\underline{q}_{c+4}:=(1,0,1,0,0), \underline{p}_{1}:=(0,0,1,0,1)$, and $\underline{p}_{2}=(0,1,0,0,1)$, provided the resulting 5 -tuple is non-negative in every coordinate.
Example: For $\underline{\beta}(C)_{5}=(1,0,1,0,1), C \in H(33,117)_{s}$, we have $\underline{\beta}(C)_{5}-q_{c+4}=(0,0,0,0,1)$ and $\underline{\beta}(C)_{5}-p_{1}=(1,0,0,0,0)$; the resulting 5 -tuples are called minimal.
a) The curve $C \in H(33,117)_{S}$ with $\underline{\beta}(C)_{5}=(1,0,1,0,1)$:

$$
\begin{gathered}
\begin{array}{c}
(Q(c+4)) \\
(1,0,1,0,1) \\
(P 1)
\end{array} \\
(1,0,0,0,0,1) \\
(1,0,0)
\end{gathered}
$$

2 admissible 5-tuples, both minimal
b) $\exists C \in \mathrm{H}(32,109)_{S}$ with 5-tuple $\underline{\beta}(C)_{5}=(0,1,1,0,2)$:

($0,1,1,0,2$)
(0, 0, 0, 0, 0)

3 admissible 5-tuples, only the final one is minimal

Theorem (Main theorem 1)

Let $C \subseteq \mathbb{P}^{3}$ be a curve of diameter one. Then every admissible 5 -tuple corresponds to a generization C^{\prime} (i.e. a deformation to a more general curve) whose 5-tuple equals the admissible one. Moreover $\left\{\right.$ minimal $\left.\underline{\beta}_{5}^{\prime} \mid \underline{\beta}_{5}^{\prime} \rightsquigarrow \underline{\beta}(C)_{5}\right\} \stackrel{1-1}{\longleftrightarrow}\{$ irred. comp. $V \subset \mathrm{H}(d, g) \mid V \ni(C)\}$.

Here V maps to the 5-tuple of its generic curve and all components V are generically smooth.

Generizations killing ghost terms in the Rao form

Consider the Rao form of a min. resolution:

$$
0 \rightarrow L_{4} \xrightarrow{\sigma \oplus 0} L_{3} \oplus F_{2} \longrightarrow F_{1} \rightarrow I(C) \rightarrow 0
$$

where $0 \rightarrow L_{4} \xrightarrow{\sigma} L_{3} \rightarrow . . \rightarrow M \rightarrow 0$ is a min. res. of $M=M(C)$.

Theorem

Let $C \subseteq \mathbb{P}^{3}$ be any curve with minimal free resolution as above. If F_{1} and F_{2} have a common free summand;

$$
F_{2}=F_{2}^{\prime} \oplus R(-i), \quad F_{1}=F_{1}^{\prime} \oplus R(-i)
$$

then there is a generization C^{\prime} (of type Qi) of C in $\mathrm{H}(d, g)$ with const. postulation and const. Rao module and with min. resolution

$$
0 \rightarrow L_{4} \xrightarrow{\sigma \oplus 0} L_{3} \oplus F_{2}^{\prime} \rightarrow F_{1}^{\prime} \rightarrow I\left(C^{\prime}\right) \rightarrow 0
$$

Proof Let $M(\sigma)$ be the matrix of σ. As in [MDP], in the resolution
$0 \rightarrow L_{4} \xrightarrow{\left[\begin{array}{c}M(\sigma) \\ 0 \\ 0\end{array}\right]} L_{3} \oplus F_{2}^{\prime} \oplus R(-i) \xrightarrow{\left[\begin{array}{lll}Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & 0\end{array}\right]} F_{1}^{\prime} \oplus R(-i) \rightarrow I(C)$
we replace the 0 in the rightmost corner with a parameter λ. Since

$$
\left[\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{21} & Z_{22} & \lambda
\end{array}\right]\left[\begin{array}{c}
M(\sigma) \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the cokernel of the deformed (i.e. changed) matrix defines a flat family of homogeneous ideals over an open in $\mathbb{A}_{k}^{1} \ni 0$.

Remark If C^{\prime} is a generic curve of an irred. comp. of $\mathrm{H}(d, g)$ containing C of diam. 1 with $c=c(C)$ and $\beta_{i, j}^{\prime}=\beta_{i, j}\left(C^{\prime}\right)$, then

$$
\beta_{1, c+3}^{\prime} \cdot\left(\beta_{2, c+3}^{\prime}-4 \beta_{3, c+4}^{\prime}\right)=0, \quad \beta_{1, i}^{\prime} \cdot \beta_{2, i}^{\prime}=0 \text { for any } i \neq c+3
$$

Example

Taking two general skew lines, we link twice via Cl's of type $(5,2)$ and (5,4), and we get a curve X, generic (by [K88], Prop. 3.8) in $\mathrm{H}(12,18)$, with min . res. and a ghost term $R(-5)$ in degree $c+3$: $0 \rightarrow R(-6) \rightarrow R(-7) \oplus R(-5)^{4} \rightarrow R(-5) \oplus R(-4)^{4} \rightarrow I(X) \rightarrow 0$.

Theorem (Main theorem 2)

Let C^{\prime} be any generization of diam. 1 curve C in $H(d, g)$ satisfying $\beta_{1, c+3}^{\prime} \cdot\left(\beta_{2, c+3}^{\prime}-4 \beta_{3, c+4}^{\prime}\right)=0, \beta_{1, i}^{\prime} \cdot \beta_{2, i}^{\prime}=0$ for any $i \in\{c+1, c+2\}$ Then C^{\prime} is a generization of C in $\mathrm{H}(d, g)$ generated by (PQ).

The generizations P1 and P2:

Suppose C admits a Buchsbaum component $M_{[t]}$, i.e.

$$
M(C) \cong M^{\prime} \oplus M_{[t]} \quad \text { as } \quad R \text {-modules }
$$

Remark If M^{\prime} is a direct sum of other Buchsbaum components of possibly various degrees (resp. of the same degree t, i.e. $M \simeq M_{[t]}^{r}$), then C is a Buchsbaum curve (resp. of diameter one).

The generization P 1 :

Denoting $\left(\sigma^{\prime}, \sigma_{[t]}\right):=\left(\begin{array}{cc}\sigma^{\prime} & 0 \\ 0 & \sigma_{[t]}\end{array}\right)$, then $M \cong M^{\prime} \oplus M_{[t]}$ has the min. res.:
$0 \rightarrow P_{4} \oplus R(-t-4) \xrightarrow{\left(\sigma^{\prime}, \sigma_{[t]}\right)} P_{\mathbf{3}} \oplus R(-t-3)^{4} \rightarrow P_{\mathbf{2}} \oplus R(-t-2)^{6} \rightarrow \ldots \rightarrow M \rightarrow 0$
where $0 \rightarrow P_{4} \xrightarrow{\sigma^{\prime}} P_{3} \rightarrow P_{2} \xrightarrow{\tau_{2}} P_{1} \xrightarrow{\tau_{1}} P_{0} \rightarrow M^{\prime} \rightarrow 0$ is a min. res.
$0 \rightarrow R(-t-4) \xrightarrow{\sigma_{[t]}} R(-t-3)^{4} \rightarrow R(-t-2)^{6} \rightarrow R(-t-1)^{4} \xrightarrow{\tau_{[t]}} R(-t) \rightarrow M_{[t]} \rightarrow 0$

Combining with Rao's theorem, we get the min. resolution:
$0 \rightarrow P_{4} \oplus R(-t-4) \xrightarrow{\left(\sigma^{\prime}, \sigma_{[t]}\right) \oplus 0} P_{3} \oplus R(-t-3)^{4} \oplus F_{2} \rightarrow F_{1} \rightarrow I \rightarrow 0$.

Generizations preserving only postulation in the Rao form

Proposition (The generization P1)

Let $C \subseteq \mathbb{P}^{3}$ a curve admitting an iso. $M(C) \cong M^{\prime} \oplus M_{[t]}$ and
$0 \rightarrow P_{4} \oplus R(-t-4) \xrightarrow{\left(\sigma^{\prime}, \sigma_{[t]}\right) \oplus 0 \oplus 0} P_{3} \oplus R(-t-3)^{4} \oplus Q_{2} \oplus R(-t-4) \xrightarrow{\beta} F_{1} \rightarrow I(C)$
Then there is a generization C^{\prime} (of type $P 1$) of C in $\mathrm{H}(d, g)$ with constant postulation such that $I\left(C^{\prime}\right)$ has a free resolution:

$$
0 \rightarrow P_{4} \xrightarrow{\sigma^{\prime} \oplus 0 \oplus 0} P_{3} \oplus R(-t-3)^{4} \oplus Q_{2} \rightarrow F_{1} \rightarrow I\left(C^{\prime}\right) \rightarrow 0,
$$

and such that $M\left(C^{\prime}\right) \cong M^{\prime}$ as graded R-modules. The resolution is minimal except possibly in degree $t+3$ where some of the summands of $R(-t-3)^{4}$ may cancel against free summands of F_{1} (and type $Q(t+3)$ generizations may apply).

Proof Look (as in [MDP], page 189) at the min. res. of $I=I(C)$:
$P_{4} \oplus R(-t-4) \xrightarrow{\left(\sigma^{\prime}, \sigma_{[t]}\right) \oplus 0 \oplus 0} P_{3} \oplus R(-t-3)^{4} \oplus Q_{2} \oplus R(-t-4) \xrightarrow{\beta} F_{1} \rightarrow I$
where $\lambda=0$ in
$\left[\begin{array}{llll}p_{3} & h(\lambda) & q_{2} & y\end{array}\right]\left[\begin{array}{cc}M\left(\sigma^{\prime}\right) & 0 \\ 0 & M\left(\sigma_{[t]}\right) \\ 0 & 0 \\ 0 & \lambda\end{array}\right]=[0,0], \quad$ and $M\left(\sigma_{[t]}\right)=\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
Write the column $y=\left(y_{j}\right)$ as $y_{j}=\sum_{i=0}^{3} a_{j, i} x_{i}$ and the 4 columns $h(\lambda)$ as $h(\lambda):=\left(h_{0}^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)$ where $h_{i}^{\prime}=\left(h_{j, i}-\lambda \cdot a_{j, i}\right)$. Then coker β defines a flat family of ideals over an open in $\mathbb{A}_{k}^{1} \ni 0$.
Remark (a generalization)
Suppose $M(C) \cong M^{\prime} \oplus M_{C l}, M_{C I}=R /\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ a $C l$, and $0 \rightarrow P_{4} \oplus R(-d) \xrightarrow{\left(\sigma^{\prime}, \sigma_{C l}\right) \oplus 0 \oplus 0} P_{3} \oplus R\left(-d_{i}\right)^{4} \oplus Q_{2} \oplus R(-d) \rightarrow$ If each coordinate of y satisfies $y_{j} \in\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$, then $R(-d)$ is removable through a deformation.

Generizations NOT preserving postulation

Example [Ser] We get a generization C^{\prime} of type P1 of C :
$0 \rightarrow R(-8) \rightarrow R(-8) \oplus R(-7)^{4} \rightarrow R(-6)^{4} \oplus R(-4) \rightarrow I(C) \rightarrow 0$,
by deleting $R(-8)$. (C) sits in the intersection of two irred. comp. of $\mathrm{H}(18,39)$ s. The generic curve X of the other comp. satisfies

$$
0 \rightarrow R(-8) \oplus R(-6)^{2} \rightarrow R(-5)^{4} \rightarrow I(X) \rightarrow 0 .
$$

Comparing, we get $\beta_{1,5}(C)=\beta_{2,6}(C)=0$ while $\beta_{1,5}(X)=4$, $\beta_{2,6}(X)=2$, i.e. $\beta_{1,5}$ and $\beta_{2,6}$ are not (upper) semi-continuous.

However, the triple $\left(h^{0}\left(\mathcal{I}_{Z}(4)\right), h^{1}\left(\mathcal{I}_{Z}(4)\right), h^{1}\left(\mathcal{O}_{Z}(4)\right)\right)$ equals $(1,0,0)$ for $Z=C^{\prime}$ and $(0,0,1)$ for $Z=X$, so (X) and $\left(C^{\prime}\right)$ sits in different irred. comp. of $\mathrm{H}(18,39)_{s}$ by the semi-cont. of $h^{i}\left(\mathcal{I}_{Z}(v)\right)$.

Generizations NOT preserving postulation in the Rao form

Proposition (The generization P2)

C a space curve admitting a graded R-module isomorphism $M(C) \cong M^{\prime} \oplus M_{[t]}$. If $F_{1} \cong Q_{1} \oplus R(-t)$ in the min. res.:
$0 \rightarrow P_{4} \oplus R(-t-4) \xrightarrow{\left(\sigma^{\prime}, \sigma_{[t]}\right) \oplus 0} P_{3} \oplus R(-t-3)^{4} \oplus F_{2} \rightarrow F_{1} \rightarrow I(C) \rightarrow 0$,
and if P_{2} does not contain a summand $R(-t)$, then there is a generization C^{\prime} (of type $P 2$) of C in $\mathrm{H}(d, g)$ with constant specialization and constant M^{\prime} such that $I\left(C^{\prime}\right)$ has the resolution: $0 \rightarrow P_{4} \xrightarrow{\sigma^{\prime} \oplus 0 \oplus 0} P_{3} \oplus F_{2} \oplus R(-t-2)^{6} \rightarrow Q_{1} \oplus R(-t-1)^{4} \rightarrow I\left(C^{\prime}\right) \rightarrow 0$.

The resolution is min. except possibly in degree $t+1$ and $t+2$ where type Qi generizations for $i \in\{t+1, t+2\}$ may apply

Proof. P2 for C is proved using P1 to the linked curve!

Liaison and a theorem of Peskine-Szpiro-Ferrand et al

How do we find the min. resolution of the linked curve. Considering $\mathcal{I}_{C / Y}:=\mathcal{I}_{C} / \mathcal{I}_{Y}$ as the sheaf ideal of C in Y, we recall

Definition

Two curves C and D in \mathbb{P}^{3} are said to be (algebraically) CI-linked if there exists a complete intersection curve $(\mathrm{a} \mathrm{Cl}) Y$ such that

$$
\mathcal{I}_{C} / \mathcal{I}_{Y} \cong \mathcal{H o m}_{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{O}_{D}, \mathcal{O}_{Y}\right) \quad \text { and } \quad \mathcal{I}_{D} / \mathcal{I}_{Y} \cong \mathcal{H o m}_{\mathcal{O}_{\mathbb{P}}}\left(\mathcal{O}_{C}, \mathcal{O}_{Y}\right)
$$

The dualizing sheaf a $\mathrm{Cl} Y \supset C$ of type (f, g) satisfies $\omega_{Y} \cong \mathcal{O}_{Y}(f+g-4)$, so

$$
\mathcal{I}_{C / Y} \cong \omega_{D}(4-f-g) \cong \mathcal{E} x t^{2}\left(\mathcal{O}_{D}, \mathcal{O}_{\mathbb{P}}\right)(-f-g)
$$

D lCM equidim codim $2 \Rightarrow \mathcal{E} x t^{2}\left(\mathcal{E} x t^{2}\left(\mathcal{O}_{D}, \mathcal{O}_{\mathbb{P}}\right), \mathcal{O}_{\mathbb{P}}\right) \cong \mathcal{O}_{D}$, whence
$\operatorname{Ext}_{R}^{2}(I(C) / I(Y)(f+g), R) \cong \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}}, *}^{2}\left(\mathcal{I}_{C / Y}(f+g), \mathcal{O}_{\mathbb{P}}\right) \cong H_{*}^{0}\left(\mathcal{O}_{D}\right)$.

We give the main ideas of the proof through an example:
Example Take the minimal resolution of a curve $C \in H(6,3)_{S}$:

$$
0 \rightarrow R(-6) \xrightarrow{\sigma} R(-5)^{4} \rightarrow R(-4)^{3} \oplus R(-2) \rightarrow I(C) \rightarrow 0 .
$$

i.e. as $I(C)$ in last Prop. with $M^{\prime}=0$ (i.e all $P_{i}=0$) and $t=2$.

We claim there is a generization "cancelling $R(-6)$ (together with $\left.R(-5)^{4}\right)$ and $R(-2)$ " at the cost of an increase in Betti numbers in deg. 3 and 4.

Indeed link C to D via a Cl of type (f, g) containing C, taking $f=g=4$ to simplify. The E-resolution is :

$$
0 \rightarrow E \rightarrow R(-4)^{3} \oplus R(-2) \rightarrow I(C) \rightarrow 0, \quad E:=\operatorname{coker} \sigma
$$

Using the mapping cone:

$$
\begin{aligned}
& 0 \longrightarrow R(-8) \longrightarrow R(-4)^{2} \longrightarrow \quad I(Y) \longrightarrow 0 \\
& 0 \longrightarrow E \rightarrow R(-4)^{3} \oplus R(-2) \rightarrow I(C) \longrightarrow 0
\end{aligned}
$$

we get a resolution of $I(C) / I(Y)$. Taking R-duals, $\operatorname{Hom}_{R}(-, R)$, and using $I(D)=\operatorname{ker}\left(R \rightarrow H_{*}^{0}\left(\mathcal{O}_{D}\right)\right)$, we get the exact

$$
\begin{equation*}
0 \rightarrow R(-6) \oplus R(-4) \rightarrow E^{\vee}(-8) \rightarrow I(D) \rightarrow 0 \tag{6}
\end{equation*}
$$

having removed 2 redundant terms (to make the res. min.). Using

$$
0 \rightarrow R(2) \rightarrow R(3)^{4} \rightarrow R(4)^{6} \rightarrow E^{\vee} \rightarrow 0
$$

and the mapping cone construction, we get:

$$
0 \rightarrow R(-6) \rightarrow R(-5)^{4} \oplus R(-6) \rightarrow R(-4)^{5} \rightarrow I(D) \rightarrow 0 .
$$

This resolution has the form as in Prop. P1 with $M^{\prime}=0$ and $t=2$.

By that Prop. there is a generization D^{\prime} cancelling $R(-6)$, so D^{\prime} is ACM. Linking "back" via a general $\mathrm{Cl} Y^{\prime}$ of type $(4,4)$:

$$
\begin{array}{cccccc}
0 \longrightarrow R(-8) & \longrightarrow & R(-4)^{2} & \longrightarrow & I\left(Y^{\prime}\right) \longrightarrow 0 \\
& \downarrow & \circ & \downarrow & \circ & \downarrow \\
0 \longrightarrow R(-5)^{4} & \longrightarrow & R(-4)^{5} & \longrightarrow & I\left(D^{\prime}\right) \longrightarrow 0
\end{array}
$$

we get a res. of $I\left(D^{\prime}\right) / I\left(Y^{\prime}\right)$ whose dual yields a curve C^{\prime} with res.,

$$
0 \rightarrow R(-4)^{3} \rightarrow R(-3)^{4} \rightarrow I\left(C^{\prime}\right) \rightarrow 0 .
$$

By [K88], Prop. 3.7, C^{\prime} is a generization of the curve C.
Proof. P 2 for C is proved using P 1 onto the linked curve! Indeed if we link C to D via a $C l$ of type (f, g), then $c(D)=f+g-4-c$,

$$
\beta_{j, v}(C)=\beta_{3-j, c+c(D)+4-v}(D), \text { for } v \notin\{c+1, c+2, c+3\}
$$

for $j=1$ and 2. Thus

$$
\underline{p}_{2}(C) \text { correspond to } \underline{p}_{1}(D)
$$

For this and the change for $v \in\{c+1, c+2, c+3\}$, see Example.

To prove main theorem 2 we need this semi-continuity result.

Proposition

C a diameter- 1 curve. If $v \notin\{c+1, c+2, c+3\}$, then the Betti numbers $\beta_{1, v}$ and $\beta_{2, v}$ are upper semi-continuous. In particular the 5-tuple ($\beta_{1, c+4}, \beta_{1, c}, \beta_{2, c+4}, \beta_{2, c}, \beta_{3, c+4}$) is upper semi-continuous, i.e. each of these 5 numbers do not increase under generization.

Proof, main ideas We use the so-called Ω-resolutions of a Buchsbaum curve. Here Ω is defined by the exact sequences

$$
0 \rightarrow R(-4) \rightarrow R(-3)^{4} \rightarrow R(-2)^{6} \rightarrow \Omega \rightarrow 0
$$

deduced from the Koszul resolution of $M_{[0]}$. Then we prove

$$
h^{1}\left(\mathcal{I}_{C} \otimes \widetilde{\Omega}(v)\right)=\beta_{1, v}, \quad \text { for } \quad v \notin\{c+1, c+2, c+3\}
$$

Hence $\beta_{1, v}$ is semi-continuous since $h^{1}\left(\mathcal{I}_{C} \otimes \widetilde{\Omega}(v)\right)$ is. Moreover if we link C to D via a $C l$ of type (f, g), we conclude the proof by

$$
\beta_{2, v}(C)=\beta_{1, c+c(D)+4-v}(D), \text { for } v \notin\{c+1, c+2, c+3\}
$$

Definition

C a diam. 1 curve. A generization C^{\prime} of C in $\mathrm{H}(d, g)$ that is given by repeatedly using some of the generizations of type (P1), (P2) and (Qj) for $j \in \mathbb{N}$ and trivial generizations in some order, is called a generization in $\mathrm{H}(d, g)$ generated by (PQ).

The notion of trivial generization is needed to move around inside a Betti stratum $\mathrm{H}(\underline{\beta})$. We easily get it through the proof of the irreducibility of $\mathrm{H}(\underline{\beta})$. Indeed (cf. [Bo], Thm. 2.2)

Proof of irred. (in diam. 1 case) Two curves $D_{1}, D_{2} \in \mathrm{H}(\underline{\beta})$ have exactly the same summands in their E-resolutions, but the maps $\varphi_{D_{i}}: E \oplus F_{2} \rightarrow F_{1}$ are different. The irred. family given by

$$
\varphi_{t}:=t \varphi_{D_{1}}+(1-t) \varphi_{D_{2}} \in \operatorname{Hom}\left(E \oplus F_{2}, F_{1}\right), t \in \mathbb{A}_{k}^{1}
$$

is flat in open set $U \subset \mathbb{A}_{k}^{1}$ containing 0 and 1 , and $U \subset \mathrm{H}(\underline{\beta})$.
Definition The generic element \tilde{D} of \mathbb{A}_{k}^{1} is called a trivial generization of D_{1} (or of D_{2}). Obviously, $(\tilde{D}) \in \mathrm{H}(\underline{\beta})$.

Theorem (Main theorem 2)

Let $C \subseteq \mathbb{P}^{3}$ be a Buchsbaum curve of diameter one and let C^{\prime} be any generization of C in $\mathrm{H}(d, g)$. Then C^{\prime}, after possibly removing ghost terms from $I\left(C^{\prime}\right)$ of type Q_{v} for $v \in\{c+1, c+2, c+3\}$, is a generization of C in $\mathrm{H}(d, g)$ generated by (PQ).

Proof Let $\gamma_{C}(v):=h^{0}\left(\mathcal{I}_{C}(v)\right)$ and $\Delta \gamma(c):=\gamma_{C}(c)-\gamma_{C^{\prime}}(c)$. Let

$$
\chi\left(\mathcal{I}_{C}(v)\right)=h^{0}\left(\mathcal{I}_{C}(v)\right)-h^{1}\left(\mathcal{I}_{C}(v)\right)+h^{2}\left(\mathcal{I}_{C}(v)\right)
$$

Due to $\chi\left(\mathcal{I}_{C^{\prime}}(v)\right)=\chi\left(\mathcal{I}_{C}(v)\right)$ and the semi-cont. of the 5-tuple, we prove $\beta_{1, c} \geq \Delta \gamma(c) \geq 0$ and $\beta_{3, c+4} \geq \Delta \gamma(c)$, whence we can use the operation (P2) $\Delta \gamma(c)$ times to get a generization $C_{P 2}$, such that $\gamma_{C_{P 2}}(c)=\gamma_{C^{\prime}}(c)$ and $h^{1}\left(\mathcal{O}_{C_{P 2}}(c)\right)=h^{1}\left(\mathcal{O}_{C}(c)\right)$.
Next we use (P1) $\Delta \sigma(c):=h^{1}\left(\mathcal{O}_{C}(c)\right)-h^{1}\left(\mathcal{O}_{C^{\prime}}(c)\right)$ times to get the existence of a generization C_{P} of $C_{P 2}$, furnished by (P 1), without changing the postulation $\gamma_{C^{\prime}}$ and such that $h^{1}\left(\mathcal{O}_{C_{P}}(c)\right)=h^{1}\left(\mathcal{O}_{C^{\prime}}(c)\right)$. This is possible because $\beta_{2, c+4} \geq \Delta \sigma(c) \geq 0$ and $\beta_{3, c+4}-\Delta \gamma(c) \geq \Delta \sigma(c)$.
Thus we have two curves C_{P} and C^{\prime} such that $h^{i}\left(\mathcal{I}_{C_{P}}(v)=\right.$ $h^{i}\left(\mathcal{I}_{C^{\prime}}(v)\right)$ for $i=0,1,2$ and $\forall v$. Then we use (Qi) to get curves in the same Betti stratum, and then a trivial generization

Our final main result determines the singular locus of the open subscheme, $\mathrm{H}(d, g ; c)$, of $\mathrm{H}(d, g)$ whose k-points are given by

$$
\left\{(C) \in \mathrm{H}(d, g) \mid H^{1}\left(\mathcal{I}_{C}(v)\right)=0 \text { for every } v \neq c\right\}, \quad c \in \mathbb{Z}
$$

Note that the main Theorem 1 really deals with $\mathrm{H}(d, g ; c(C))$.
We define the Betti stratum, $\mathrm{H}(\underline{\beta})$, of $\mathrm{H}(d, g, c)$ to consist of all C satisfying $\beta_{j, i}(C)=\beta_{j, i} \forall i, j$. We write $\mathrm{H}(\underline{\beta})$ as $\mathrm{H}\left(\underline{\beta}_{5}\right)$ if $\beta_{1, c+3} \cdot\left(\beta_{2, c+3}-4 \beta_{3, c+4}\right)=0, \beta_{1, i} \cdot \beta_{2, i}=0$ for $i \notin\{c, c+3, c+4\}$.

Note that the closure $V\left(\underline{\beta}_{5}\right)_{B}:=\overline{\mathrm{H}}\left(\underline{\beta}_{5}\right) \cap \mathrm{H}(d, g ; c)$ is irreducible, cf. [B]. Let C be a generic curve of a Betti stratum $V\left(\underline{\beta}_{5}\right)_{B}$.

Example a) [W, BKM] $C \in \mathrm{H}(33,117)_{s}$ with $\underline{\beta}(C)_{5}=(1,0,1,0,1)$:

$$
\begin{aligned}
& \begin{array}{c}
(Q(c+4)) \\
(1,0,1,0,1)
\end{array}(0,0,0,0,1) \\
&(P 1)
\end{aligned}(1,0,0,0,0)
$$

2 minimal 5-tuples and their corresponding curves are unobstructed,
while the "subminimal" $\underline{\beta}(C)_{5}$ correspond to C which is obstructed.
b) $\exists C \in \mathrm{H}(32,109)_{S}$ with 5-tuple $\underline{\beta}(C)_{5}=(0,1,1,0,2)$:

($0,1,1,0,2$)
$(P 1)-(0,1,0,0,1)$

The final one is minimal, but also the "subminimal" ones correspond
to unobstructed curves. C, however, is obstructed.

Definition If $Y:=V\left(\underline{\beta}_{5}\right)_{B}$ is an irred. comp. of $\mathrm{H}(d, g ; c)$, we let
$V\left(\underline{\beta}_{5}+\underline{q}_{J}\right)_{B}:= \begin{cases}V\left(\underline{\beta}_{5}+\underline{q}_{C}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{q}_{c+4}\right)_{B}, & \text { if } \operatorname{diam} M(C)=1 \\ \varnothing & \text { if } C \text { is ACM } .\end{cases}$
Moreover for $i=1$ and 2 ,

$$
V\left(\underline{\beta}_{5}+\underline{p}_{i}+\underline{q}_{J}\right)_{B}:=V\left(\underline{\beta}_{5}+\underline{p}_{i}+\underline{q}_{c}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{p}_{i}+\underline{q}_{c+4}\right)_{B} .
$$

Below + , resp. $*$ means a positive, resp. non-neg. integer, and Sing Y is the part of the sing. locus of $\mathrm{H}(d, g ; c)$ contained in Y.

Theorem (Main theorem 3: The singular locus)

If $V\left(\underline{\beta}_{5}\right)_{B}$ is an irred. comp. of $\mathrm{H}(d, g ; c)$, then $\underline{\beta}_{5}$ is as in (i)-(v);
(i) if $\underline{\beta}_{5}$ is equal to $(+, 0,0,+, *)$ or $(0,+,+, 0,0)$, then

$$
\text { Sing } V\left(\underline{\beta}_{5}\right)_{B}=V\left(\underline{\beta}_{5}+\underline{p}_{1}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{p}_{2}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{q}_{J}\right)_{B} \text {, }
$$

(ii) if $\underline{\beta}_{5}=(0,0,0,+, *)$ or $(0,0,+, *, 0)$, then

Sing $V\left(\underline{\beta}_{5}\right)_{B}=V\left(\underline{\beta}_{5}+\underline{p}_{2}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{q}_{J}\right)_{B}$,
(iii) if $\underline{\beta}_{5}=(+, 0,0,0, *)$ or $(*,+, 0,0,0)$, then

Sing $V\left(\underline{\beta}_{5}\right)_{B}=V\left(\underline{\beta}_{5}+\underline{p}_{1}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{q}_{J}\right)_{B}$,
(iv) if $\underline{\beta}_{5}=(0,0,0,0,+)$, then

Sing $V\left(\underline{\beta}_{5}\right)_{B}=V\left(\underline{\beta}_{5}+\underline{p}_{1}+\underline{p}_{2}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{q}_{J}\right)_{B}$.
(v) if $\underline{\beta}_{5}=(0,0,0,0,0)$, then Sing $V\left(\underline{\beta}_{5}\right)_{B}=$

$$
V\left(\underline{\beta}_{5}+\underline{p}_{1}+\underline{p}_{2}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{p}_{1}+\underline{q}_{J}\right)_{B} \cup V\left(\underline{\beta}_{5}+\underline{p}_{2}+\underline{q}_{J}\right)_{B} .
$$

Proof Main thm 2 and the unobstr. thm for diam. 1 curves
For the existence of diam. 1 curves, see [C] and [W].
Thanks for listening !
[Bo] Bolondi. Irred. fam..fixed cohom. Arch. der Math., 53 (1989)
[BKM] Bolondi, Kleppe, Miro-Roig. Compositio Math., 77 (1991)
[BM] G. Bolondi, J. Migliore. Math. Ann. 277 (1987), 585-603.
[C] Chang. Filtered Bertini.... J. reine angew. Math. 397, (1989)
[K88] Kleppe Proc. Trento, Springer Lect. Notes Math. 1389 (1989)
[K12] Kleppe. Ann. Inst. Fourier 62 no. 6 (2012), p. 2099-2130 [MDP] Martin-Deschamps, Perrin. Asterisque, 184-185 (1990) [Rao] P. Rao. Liaison Among Curves. Invent. Math. 50 (1979) [Ser] Sernesi. Sem. di variabili Complesse, Bologna (1981), 223-231 [W] C. Walter. London Math. Soc. Lect. Note Ser. 179 (1992)

