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Abstract
This paper studies space curves C of degree d and arithmetic genus g, with homogeneous ideal I
and Rao moduleM = H1

∗(Ĩ), whose main results deal with curves which satisfy 0Ext2R(M,M) = 0
(e.g. of diameter, diamM ≤ 2, which means that M is non-vanishing in at most two consecutive
degrees). For such curves C we find necessary and sufficient conditions for unobstructedness, and
we compute the dimension of the Hilbert scheme, H(d, g), at (C) under the sufficient conditions.
In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructed-
ness of C turns out to be equivalent to the vanishing of certain graded Betti numbers of the free
graded minimal resolution of I. We give classes of obstructed curves C for which we partially
compute the equations of the singularity of H(d, g) at (C). Moreover by taking suitable defor-
mations we show how to kill certain repeated direct free factors ("ghost-terms") in the minimal
resolution of the ideal of the general curve. For Buchsbaum curves of diameter at most 2, we
simplify in this way the minimal resolution further, allowing us to see when a singular point of
H(d, g) sits in the intersection of several, or lies in a unique irreducible component of H(d, g). It
follows that the graded Betti numbers mentioned above of a generic curve vanish, and that any
irreducible component of H(d, g) is reduced (generically smooth) in the diameter 1 case.
AMS Subject Classification. 14C05, 14H50, 14B10, 14B15, 13D10, 13D02, 13D07, 13C40.
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1 Introduction and Main Results

The Hilbert scheme of space curves of degree d and arithmetic genus g, H(d, g), has received much
attention over the last years after Grothendieck showed its existence [15]. At so-called special curves
it has turned out that the structure of H(d, g) is difficult to describe in detail, and questions related
to irreducibility and number of components, dimension and smoothness have been hard to solve. For
particular classes of space curves, some results are known. In 1975 Ellingsrud [9] managed to prove
that the open subset of H(d, g) of arithmetically Cohen-Macaulay curves (with a fixed resolution of
the sheaf ideal IC) is smooth and irreducible, and he computed the dimension of the corresponding
component. A generalization of this result in the direction of smoothness and dimension was already
given in [20] (see Theorem 1.1(i) below) while the irreducibility was nicely generalized by Bolondi
[2]. Later, Martin-Deschamps and Perrin gave a stratification Hγ,ρ of H(d, g) obtained by deforming
space curves with constant cohomology [26]. Their results lead immediately to (iii) in the following

Theorem 1.1. Let C be a curve in P3 of degree d and arithmetic genus g, let I = H0
∗(IC) :=

⊕H0(IC(v)), M = H1
∗(IC) and E = H1

∗(OC) and suppose at least one of the following conditions:

(i) vHomR(I,M) = 0 for v = 0 and v = −4 ,
(ii) vHomR(M,E) = 0 for v = 0 and v = −4 , or
(iii) 0HomR(I,M) = 0 , 0HomR(M,E) = 0 and 0Ext2R(M,M) = 0 .

Then H(d, g) is smooth at (C), i.e. C is unobstructed. Moreover if 0ExtiR(M,M) = 0 for i ≥ 2,
then the dimension of the Hilbert scheme at (C) is

dim(C) H(d, g) = 4d+ 0homR(I, E) + −4homR(I,M) + −4homR(M,E) .



We may drop the condition 0ExtiR(M,M) = 0 for i ≥ 2 in Theorem 1.1 by slightly changing the
dimension formulas (cf. Theorem 2.6 and Remark 2.7). Moreover we remark that once we have a
minimal resolution of IC , we can easily compute 0homR(I, E) (as equal to δ2(0) in Definition 2.1)
while the other 0hom-dimensions are at least easy to find provided C is Buchsbaum (Remark 2.7,
(3.4) and (3.6)). Another result from Section 2 is that if a sufficiently general curve C of an irreducible
component V of Hγ,ρ satisfies the vanishing of the two Hom-groups of Theorem 1.1(iii), then V (up
to possible closure in H(d, g)) is an irreducible component of H(d, g) (Proposition 2.10).

A main goal of this paper is to see when the sufficient conditions of unobstructedness of The-
orem 1.1 are also necessary conditions. Note that it has "classically" been quite hard to prove
obstructedness because one essentially had to compute a neighborhood of (C) in H(d, g) to conclude
([34], [20], [6], [16]). Looking for another approach to prove obstructedness, we consider in Section
3 the cup product and its “images” in 0HomR(I, E), −4HomR(I,M)∨ and −4HomR(M,E)∨ via some
natural maps, close to what Walter and Fløystad do in [39] and [13] (see also [29], [35]). These
“images” correspond to three Yoneda pairings, one of which is the natural morphism

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E) . (1.1)

All three pairings are easy to handle because they are given by taking simple compositions of
homomorphisms, cf. Proposition 3.6 and 3.8. If 0Ext2R(M,M) = 0, it turns out that the non-
vanishing of one of the three pairings is sufficient for obstructedness. In particular, for a Buchsbaum
curve of diameter at most 2, we can, by using a natural decomposition of M , get the non-vanishing
of (1.1) from the non-vanishing of some of the Hom-groups involved. More precisely we have (cf.
Theorem 3.2 for a generalization to e.g. curves with 0Ext2R(M,M) = 0 obtained by Liaison Addition)

Theorem 1.2. Let C be a Buchsbaum curve in P3 of diameter at most 2 and let M ∼= M[c−1]⊕M[c]

be an R-module isomorphism where M[t], for t = c− 1 and c, is the part of M = H1
∗(IC) supported

in degree t. Then C is obstructed if one of the following conditions hold

(a) 0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0 , for t = c or t = c− 1 ,
(b) −4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0 , for t = c or t = c− 1 ,
(c) 0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0 , for t = c or t = c− 1 .

Buchsbaum curves in P3 are rather well understood by studies of Migliore and others (cf. [30] for a
survey of important results as well as for an introduction to Liaison Addition), and Theorem 1.2 takes
some care of its obstructedness properties. Note also that since the main assumption 0Ext2R(M,M) =
0 of Section 3 is liaison-invariant, there may be many more applications of Proposition 3.6 and 3.8.

Our results in Section 3 also allow an effective calculation of (at least the degree 2 terms of) the
equations of the singularities of H(d, g) at some curves whose diameter is 2 or less (as illustrated
in Example 3.12). To get equivalent conditions of unobstructedness and a complete picture of the
equations of the singularities of H(d, g) more generally, we need a more general version of the cup
product and we certainly need to include their higher Massey products (Laudal, [24] and [25]).

If we reformulate Theorem 1.1 by logical negation to necessary conditions of obstructedness
(cf. Proposition 3.1) we get necessary conditions which are quite close (resp. equivalent) to the
sufficient conditions of Theorem 1.1 in the diameter 2 case (resp. in the diameter 1 case). It is easy
to substitute the non-vanishing of the Hom-groups of Theorem 1.2 by the non-triviality of certain
graded Betti numbers in the minimal resolution,

0→
⊕
i

R(−i)β3,i →
⊕
i

R(−i)β2,i →
⊕
i

R(−i)β1,i → I → 0 ,

of I (cf. Corollary 3.3). In the diameter one case, we get the following main result (cf. [26], pp.
185-193 for the case M ∼= k).
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Theorem 1.3. Let C be a curve in P3 whose Hartshorne-Rao module M 6= 0 is of diameter 1. Then
C is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0 .

Moreover if C is unobstructed and M is r-dimensional, then the dimension of the Hilbert scheme
H(d, g) at (C) is

dim(C) H(d, g) = 4d+ 0homR(I, E) + r(β1,c+4 + β2,c).

The Hilbert scheme of constant postulation (or the postulation Hilbert scheme), for which there
are various notations, GradAlg(H), HilbH(P3) or just Hγ in the literature, has received much atten-
tion recently. We prove

Proposition 1.4. In addition to the general assumptions of Theorem 1.3, let M−4 = 0. Then

Hγ is singular at (C) if and only if β1,c+4 · β2,c+4 6= 0 .

Moreover if Hγ is smooth at (C), then dim(C) Hγ = 4d+ 0homR(I, E) + r(β1,c+4 + β2,c − β1,c).

In Section 4 we are concerned with curves which admit a generization (i.e. a deformation to a
“more general curve”) or are generic in Hγ,ρ, Hγ or H(d, g). Inspired by ideas of Martin-Deschamps
and Perrin in [26] we prove some results, telling that we can kill certain repetitions in a minimal
resolution ("ghost-terms") of the ideal I(C), under deformation. Hence curves with such simplified
resolutions exist. One result of particular interest is Theorem 4.1 which considers the form of a
minimal resolution of I(C) given by a Theorem of Rao, cf. (3.1) and (3.2). We prove

Theorem 1.5. If C is a generic curve of Hγ,ρ (or of Hγ or H(d, g)), then C admits a minimal
free resolution of the form

0→ L4
σ⊕0−→ L3 ⊕ F1 → F0 → I(C)→ 0,

where σ : L4 → L3 is given by the leftmost map in the minimal resolution of the Rao module M , cf.
(3.1), and where F1 and F0 are without repetitions (i.e. without common direct free factors).

Restricting to general Buchsbaum curves, we prove, under some conditions, that L4 and F1, and
L4 and F0(−4), have no common direct free factor (Proposition 4.2). We get

Corollary 1.6. Let C be a curve in P3 whose Rao module M 6= 0 is of diameter 1 and concentrated
in degree c.

(a) If C is generic in Hγ,ρ, then Hγ is smooth at (C). Moreover C is obstructed if and only if
β1,c · β2,c+4 6= 0. Furthermore if β1,c = 0 and β2,c+4 = 0, then C is generic in H(d, g).

(b) If C is generic in Hγ, then C is unobstructed. Indeed both H(d, g) and Hγ are smooth at (C).
In particular every irreducible component of H(d, g) whose generic curve C satisfies diamM = 1 is
reduced (i.e. generically smooth).

Moreover we are able to make explicit various generizations of Buchsbaum curves of diameter at
most two, allowing us in many cases to decide whenever an obstructed curve is contained in a unique
component of H(d, g) or not (Proposition 4.6). Finally we show that any Buchsbaum curve whose
Hartshorne-Rao module has diameter 2 or less, admits a generization in H(d, g) to an unobstructed
curve, hence belongs to a reduced irreducible component of H(d, g). We believe that every irreducible
component of H(d, g) whose generic curve C satisfies diamM ≤ 2 is reduced.
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A first version of this paper (containing Theorem 2.6, Theorem 1.3, Theorem 1.5, Corollary 1.6,
Proposition 4.6 and the “cup product part” of Proposition 3.6 and 3.8, see [23], available from my
home-page) was written in the context of the group "Space Curves" of Europroj, and some main
results were lectured at its workshop in May 1995, at the Emile Borel Center, Paris. Later we have
been able to generalize several results (e.g. Theorem 1.2). The author thanks prof. O. A. Laudal at
Oslo and prof. G. Bolondi at Bologna for interesting discussions on the subject.

1.1 Notations and terminology

A curve C in P3 is an equidimensional, locally Cohen-Macaulay subscheme of P := P3 of dimen-
sion one with sheaf ideal IC and normal sheaf NC = HomOP (IC ,OC). If F is a coherent OP-
Module, we let Hi(F) = Hi(P,F), Hi

∗(F) = ⊕v Hi(F(v)) and hi(F) = dim Hi(F), and we de-
note by χ(F) = Σ(−1)ihi(F) the Euler-Poincaré characteristic. Moreover M = M(C) is the
Hartshorne-Rao module H1

∗(IC) or just the Rao module, E = E(C) is the module H1
∗(OC) and

I = I(C) is the homogeneous ideal H0
∗(IC) of C. They are graded modules over the polynomial ring

R = k[X0, X1, X2, X3], where k is supposed to be algebraically closed of characteristic zero. The
postulation γ (resp. deficiency ρ and specialization σ) of C is the function defined over the integers
by γ(v) = γC(v) = h0(IC(v)) (resp. ρ(v) = ρC(v) = h1(IC(v)) and σ(v) = σC(v) = h1(OC(v))). Let

s(C) = min{n|h0(IC(n)) 6= 0} ,
c(C) = max{n|h1(IC(n)) 6= 0} ,
e(C) = max{n|h1(OC(n)) 6= 0} .

Let b(C) = min{n|h1(IC(n)) 6= 0} and let diamM(C) = c(C)− b(C) + 1 be the diameter of M(C)
(or of C). If c(C) < s(C) (resp. e(C) < b(C)), we say C has maximal rank (resp. maximal corank).
A curve C such that m ·M(C) = 0, m = (X0, .., X3), is a Buchsbaum curve. C is unobstructed if
the Hilbert scheme of space curves of degree d and arithmetic genus g, H(d, g), is smooth at the
corresponding point (C) = (C ⊆ P3), otherwise C is obstructed. The open part of H(d, g) of smooth
connected space curves is denoted by H(d, g)S , while Hγ,ρ = H(d, g)γ,ρ (resp. Hγ , resp. Hγ,M ) denotes
the subscheme of H(d, g) of curves with constant cohomology, i.e. γC and ρC do not vary with C,
(resp. constant postulation γ, resp. constant postulation γ and constant Rao module M), cf. [26]
for an introduction. The curve in a sufficiently small open irreducible subset of H(d, g) (small enough
to satisfy all the openness properties which we want to pose) is called a generic curve of H(d, g),
and accordingly, if we state that a generic curve has a certain property, then the curve belongs to an
open irreducible subset of H(d, g) of curves having this property. A generization C ′ ⊆ P3 of C ⊆ P3

in H(d, g) is a generic curve of some irreducible subset of H(d, g) containing (C).
For any graded R-module N of finite type, we have the right derived functors Hi

m(N) and
vExtim(N,−) of Γm(N) = ⊕v ker(Nv → Γ(P, Ñ(v))) and Γm(HomR(N,−))v respectively (cf. [14],
exp. VI). We use small letters for the k-dimension and subscript v for the homogeneous part of
degree v, e.g. vextim(N1, N2) = dim vExtim(N1, N2).

2 Preliminaries. Sufficient conditions for unobstructedness.

In this section we recall the main Theorem on unobstructedness of space curves of this paper (The-
orem 1.1 or Theorem 2.6). Theorem 2.6 is not entirely new. Indeed (i) and (i′) were proved in [20]
under the assumption “C generically a complete intersection” (combining [18], Rem. 3.7 and [21],
(4.10.1) will lead to a proof), while the (iii) and (iii′) part is a rather straightforward consequence
of a theorem of Martin-Deschamps and Perrin which appeared in [26]. However, (ii) and (ii′) seem
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new, even though at least (ii) is easily deduced from (i) by linkage. Indeed linkage preserves unob-
structedness also in the non arithmetically Cohen-Macaulay (ACM) case provided we link carefully
(Proposition 2.5). We will include a proof of Theorem 2.6, also because we need the arguments (e.g.
the technical tools and the exact sequences which appear) later.

Let N , N1 and N2 be graded R-modules of finite type. Then recall that the right derived functors
vExtim(N,−) of vH0

m(HomR(N,−)) are equipped with a spectral sequence ([14], exp. VI)

Ep,q2 = vExtpR(N1,Hq
m(N2))⇒ vExtp+qm (N1, N2) (2.1)

(⇒ means “converging to”) and a duality isomorphism ([22], Thm. 1.1);

vExtim(N2, N1) ∼= −v−4 Ext4−iR (N1, N2)∨ (2.2)

where (−)∨ = Homk(−, k), which generalizes the Gorenstein duality vHi
m(M) ' −vExt4−iR (M,R(−4))∨.

These groups fit into a long exact sequence ([14], exp. VI)

→ vExtim(N1, N2)→ vExtiR(N1, N2)→ ExtiOP (Ñ1, Ñ2(v))→ vExti+1
m (N1, N2)→ (2.3)

which in particular relates the deformation theory of (C ⊆ P3), described by Hi−1(NC) ∼= ExtiOP
(Ĩ , Ĩ(v))

for i = 1, 2 (cf. [20], Rem. 2.2.6 for a proof of this isomorphism), to the deformation theory of the
homogeneous ideal I = I(C), described by 0ExtiR(I, I), in the following exact sequence

vExt1R(I, I) ↪→ H0(NC(v))→ vExt2m(I, I) α−→ vExt2R(I, I)→ H1(NC(v))→ vExt3m(I, I)→ 0 .
(2.4)

LetM = H2
m(I). In this situation C. Walter proved that the map α : vExt2m(I, I) ∼= vHomR(I,H2

m(I))→
vExt2R(I, I) of (2.4) factorizes via vExt2R(M,M) in a natural way ([40], Thm. 2.3), the factorization
is in fact given by a certain edge homomorphism of the spectral sequence (2.1) with N1 = M , N2 = I
and p + q = 4, cf. (2.15), (2.16) and (2.17) where the factorization of this map occurs. Fløystad
furthered the study of α in [13]. Also in [29], (see [29] Sect. 0.e and Sect. 3), they need to understand
α properly to make their calculations.

To compute the dimension of the components of H(d, g), we have found it convenient to introduce
the following invariant, defined in terms of the graded Betti numbers of a minimal resolution of the
homogeneous ideal I of C:

0→
⊕
i

R(−i)β3,i →
⊕
i

R(−i)β2,i →
⊕
i

R(−i)β1,i → I → 0 (2.5)

Definition 2.1. If C is a curve in P3, we let

δj(v) =
∑
i

β1,i · hj(IC(i+ v))−
∑
i

β2,i · hj(IC(i+ v)) +
∑
i

β3,i · hj(IC(i+ v))

Lemma 2.2. Let C be any curve of degree d in P3. Then the following expressions are equal

0ext1R(I, I)− 0ext2R(I, I) = 1− δ0(0) = 4d+ δ2(0)− δ1(0) = 1 + δ2(−4)− δ1(−4)

Remark 2.3. Those familiar with results and notations of [26] will recognize 1 − δ0(0) as δγ and
δ1(−4) as εγ,δ in their terminology. By Lemma 2.2 it follows that the dimension of the Hilbert
scheme Hγ,M of constant postulation and Rao module, which they show is δγ + εγ,δ − 0hom(M,M)
(Thm. 3.8, page 171), is also equal to 1 + δ2(−4)− 0hom(M,M).
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Proof. To see the equality to the left, we apply vHomR(−, I) to the resolution (2.5). Since HomR(I, I) ∼=
R and since the alternating sum of the dimension of the terms in a complex equals the alternating
sum of the dimension of its homology groups, we get

dimRv − vextR1(I, I) + vextR2(I, I) = δ0(v) , v ∈ Z (2.6)

If v = 0 we get the equality of Lemma 2.2 to the left. The equality in the middle follows from [20],
Lemma 2.2.11. We will, however, indicate how we can prove this and the right hand equality by
using (2.2) and (2.3). Indeed by (2.2), vext4−im (I, I) = −v−4extiR(I, I). Hence

vext2m(I, I)− vext3m(I, I) + dimR−v−4 = δ0(−v − 4) , v ∈ Z (2.7)

by (2.6). Combining (2.6) and (2.7) with the exact sequence (2.4), we get(
v + 3

3

)
− χ(NC(v)) = δ0(v) − δ0(−v − 4) , v ∈ Z (2.8)

because dimRv − dimR−v−4 =
(
v+3
3

)
. Therefore it suffices to prove

δ0(−v − 4) = δ1(v)− δ2(v) , v ≥ − 4 (2.9)

Indeed using (2.8) and (2.9) for v = 0 we get the equality of Lemma 2.2 in the middle because
χ(NC) = 4d holds for any curve (cf. Remark 2.4) while (2.9) for v = −4 takes care of the last
equality appearing in Lemma 2.2.

To prove (2.9) we use the spectral sequence (2.1) together with (2.7). Letting M = H2
m(I) and

E = H3
m(I) we get vExt2m(I, I) ∼= vHomR(I,M) and vExt2R(I, E) ∼= vExt5m(I, I) = 0 and an exact

sequence

vExt1R(I,M) ↪→ vExt3m(I, I)→ vHomR(I, E)→ vExt2R(I,M)→ vExt4m(I, I) � vExt1R(I, E)
(2.10)

where we have used that v ≥ −4 implies vHom(I,H4
m(I)) = 0 since H4

m(I) = H4
m(R). As argued for

(2.6), applying vHom(−,M) (resp. vHom(−, E)) to the resolution (2.5), we get

δ1(v) =
2∑
i=0

(−1)i vexti(I,M) , ( resp. δ2(v) =
2∑
i=0

(−1)i vexti(I, E) ) (2.11)

So δ1(v)− δ2(v) equals
∑4

i=2(−1)i vextim(I, I) by (2.10), and since vExt4m(I, I) ∼= −v−4Hom(I, I)∨ ∼=
R∨−v−4 we get (2.9) from (2.7), and the proof of Lemma 2.2 is complete.

Remark 2.4. In [20], Lemma 2.2.11 we proved χ(NC(v)) = 2dv+ 4d for any curve and any integer
v by computing δ0(v) for v >> 0. Indeed using the definition of δ0(v), the sequence 0 → IC →
OP → OC → 0 and

∑
j (−1)j

∑
i i · βj,i = 0, we get by applying Riemann-Roch to χ(OC(i+ v)),

δ0(v) =
∑
j

∑
i

(−1)jβj,i · χ(OP(i+ v))− (dv + 1− g) , v >> 0 (2.12)

while duality on P and (2.5) show that the double sum of (2.12) equals −χ(IC(−v − 4)) =
(
v+3
3

)
+

χ(OC(−v − 4)). We get χ(NC(v)) = 2dv + 4d by combining with (2.8).

Proposition 2.5. Let C and C ′ be curves in P3 which are linked (algebraically) by a complete
intersection of two surfaces of degrees f and g. If

H1(IC(v)) = 0 for v = f, g, f − 4 and g − 4,

then C is unobstructed if and only if C ′ is unobstructed.
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One may find a proof in [21], Prop. 3.2. Proposition 2.5 allows us to complete the proof of the
following main result on unobstructedness. It applies mostly to curves of small diameter, see also
Miró-Roig’s criterion for unobstructedness of Buchsbaum curves of diameter at most 2 ([33]).

Theorem 2.6. If C is any curve in P3 of degree d and arithmetic genus g, satisfying (at least) one
of the following conditions:

(i) vHomR(I,M) = 0 for v = 0 and v = −4
(ii) vHomR(M,E) = 0 for v = 0 and v = −4
(iii) 0HomR(I,M) = 0 , 0HomR(M,E) = 0 and 0Ext2R(M,M) = 0 ,

then C is unobstructed. Moreover, in each case, the dimension of the Hilbert scheme H(d, g) at
(C ⊆ P3) is given by

(i′) dim(C)H(d, g) = 4d+ δ2(0)− δ1(0) , provided (i) holds ,
(ii′) dim(C)H(d, g) = 4d+ δ2(0)− δ1(0) + −4homR(I,M) + 0homR(I,M)− 0ext2R(M,M),

provided (ii) holds,
(iii′) dim(C)H(d, g) = 4d+ δ2(0)− δ1(0) + −4homR(I,M), provided (iii) holds.

Proof. (i) Let A = R/I and let DefI (resp. DefA) be the deformation functor of deforming the
homogeneous ideal I as a graded R-module (resp. A as a graded quotient of R), defined on the
category of local Artin k-algebras with residue field k. Let HilbC be the corresponding deformation
functor of C ⊆ P3 (i.e the local Hilbert functor at C) defined on the same category. To see that C
is unobstructed we just need, thanks to the duality (2.2), to interpret the exact sequence (2.4) in
terms of deformation theory. Recalling that OC,x, x ∈ C is unobstructed since IC,x has projective
dimension one (cf. [9]), we get that H1(NC) contains all obstructions of deforming C ⊆ P3. By (2.1)
and (2.2);

0Ext2m(I, I) ∼= 0Hom(I,M) , and 0Ext2R(I, I) ∼= −4Ext2m(I, I)∨ ∼= −4Hom(I,M)∨ . (2.13)

Using the vanishing of the first group of (2.13), we get DefI ∼= HilbC since (2.4) shows that their
tangent spaces are isomorphic and since we have an injection of their obstruction spaces (similar to
the proof of DefA ∼= HilbC in [18], Rem. 3.7, where the former functor must be isomorphic to the
local Hilbert functor of constant postulation of C because it deforms the graded quotient A flatly,
i.e. has constant Hilbert function), cf. [20], Thm. 2.2.1 and [39], Thm. 2.3 where Walter manages
to get rid of the “generically complete intersection” assumption of [20], § 2.2 by the argument in the
line before (2.13) (see also [13], Prop. 3.13 or [26], VIII, for their tangent spaces). Now DefI is
smooth because 0Ext2R(I, I) vanishes by (2.13). This proves (i), and then (i′) follows at once from
Lemma 2.2.

(iii) One may deduce the unobstructedness of C from results in [26] by combining Thm. 1.5,
page 135 with their tangent space descriptions, pp. 155-166. However, since we need the basic
exact sequences below later (for which we have no complete reference), we give a new proof which
also leads to another result (Proposition 2.10(b)). Indeed for any curve we claim there is an exact
sequence:

0→ Tγ,ρ → 0Ext1R(I, I)
β−→ 0HomR(M,E)→ 0Ext2R(M,M)→ 0Ext2R(I, I)→ (2.14)

where Tγ,ρ is the tangent space of the Hilbert scheme of constant cohomology Hγ,ρ at (C). To prove
it we use the spectral sequence (2.1) and the duality (2.2) twice (Walter’s idea mainly, to see the
factorization of α via 0Ext2R(M,M) in (2.4)), to get an isomorphism, resp. a surjection

0Ext2R(I, I) ∼= −4Ext2m(I, I)∨ ∼= −4Hom(I,M)∨ ∼= 0Ext4m(M, I) (2.15)
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β1 : 0Ext1R(I, I) ∼= −4Ext3m(I, I)∨ � −4Ext1R(I,M)∨ ∼= 0Ext3m(M, I) (2.16)

Now replacing I by M as the first variable in (2.10) or using (2.1) directly, we get

0→ 0Ext1R(M,M)→ 0Ext3m(M, I)
β2−→ 0Hom(M,E)→ 0Ext2R(M,M)→ 0Ext4m(M, I)→ (2.17)

which combined with (2.15) and (2.16) yield (2.14) because the composition β of β1 (arising from
duality used twice) and β2 must be the natural one, i.e. the one which sends an extension of
0Ext1(I, I) (i.e. a short exact sequence) onto the corresponding connecting homomorphism M =
H2

m(I)→ E = H3
m(I). And we get the claim by [26], Prop. 2.1, page 157, which implies kerβ = Tγ,ρ.

To see that C is unobstructed, we get by (2.14) and the vanishing of 0HomR(M,E) an isomor-
phism between the local Hilbert functor of constant cohomology at C and DefI . The latter functor
DefI is isomorphic to Hilb(C) because 0HomR(I,M) = 0 (cf. the proof of (i)), while the former func-
tor is smooth because 0Ext2(M,M) contains in a natural way the obstructions of deforming a curve
in Hγ,ρ (cf. [26], Thm. 1.5, page 135). This leads easily to the conclusion of (iii). Moreover note that
we now get (iii′) from Lemma 2.2 because h0(NC) = 0ext1R(I, I) and 0ext2R(I, I) = −4homR(I,M).

(ii) The unobstructedness of C follows from Proposition 2.5. Indeed if we take a complete
intersection Y ⊇ C of two surfaces of degrees f and g such that the conditions of Proposition 2.5
hold (such Y exists), then the corresponding linked curve C ′ satisfies

vHomR(I(C ′),M(C ′)) ∼= vHomR(M(C), E(C)) for v = 0 and v = −4 (2.18)

because M(C ′) (resp. I(C ′)/I(Y )) is the dual of M(C)(f + g − 4) (resp. E(C)(f + g − 4)) and
vHomR(I(Y ),M(C ′)) = 0 for v = 0,−4 by assumption. Hence we conclude by Proposition 2.5 and
Theorem 2.6(i). It remains to prove the dimension formula in (ii′). For this we claim that the
image of the map α : 0Ext2m(I, I) ∼= 0HomR(I,M) → 0Ext2R(I, I) which appears in (2.4) for v = 0,
is isomorphic to 0Ext2R(M,M). Indeed α factorizes via 0Ext2R(M,M) in a natural way, and the
factorization is given by a certain map of (2.14). Now vHomR(M,E) = 0 for v = 0 and −4 implies
that the maps vExt2R(M,M)→ vExt2R(I, I) of (2.14) are injective for v = 0 and v = −4. Dualizing
one of them (the map for v = −4) we get a surjective composition;

0HomR(I,M) ∼= −4Ext2R(I, I)∨ → −4Ext2R(M,M)∨ ∼= 0Ext2R(M,M) (2.19)

which composed with the other injective map above is precisely α. This proves the claim. Now by
(2.4) and the proven claim;

h0(NC) = 0ext1R(I, I) + dim kerα = 0ext1R(I, I) + 0homR(I,M)− 0ext2R(M,M)

and we get the dimension formula by Lemma 2.2 and we are done.

Remark 2.7. Putting the arguments in the text at (2.10) and (2.11) together (and use that 0Ext4m(I, I) =
0), we get

δ2(0) = 0homR(I, E) . (2.20)

Moreover if
0ExtiR(M,M) = 0 for 2 ≤ i ≤ 4 . (2.21)

then we may put the different expressions of dim(C) H(d, g) of Theorem 2.6 in one common formula;

dim(C) H(d, g) = 4d+ δ2(0) + −4homR(I,M) + −4homR(M,E). (2.22)
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Indeed 0Ext2R(I,M) ∼= −4Ext2m(M, I)∨ ∼= −4Hom(M,M)∨ ∼= 0Ext4R(M,M) = 0, and we have

0Ext1R(I,M) ∼= −4Ext3m(M, I)∨ ∼= −4Hom(M,E)∨

because −4 ExtiR(M,M) ∼= 0 Ext4−iR (M,M)∨ = 0 for i = 1, 2. Hence 0ext3m(I, I) = 0homR(I, E) +
−4hom(M,E) by (2.10). Using (2.13) and that α = 0 in (2.4) for v = 0, we get

h1(NC) = δ2(0) + −4homR(I,M) + −4hom(M,E) , (2.23)

and we conclude easily.

Using (2.23), we can generalize the vanishing result of H1(NC) appearing in [21], Cor. 4.12, to

Corollary 2.8. Let C be any curve in P3, let diamM ≤ 2 and suppose e(C) < s(C). If diamM 6= 0,
suppose also e(C) ≤ c+ 1− diamM and c(C) ≤ s(C). Then

H1(NC) = 0 .

Proof. Since e(C) < s(C), we get δ2(0) = 0 by the definition of δ2(0). Moreover suppose C is not
ACM. Then c(C) ≤ s(C) and (2.5) imply 0ext1R(I,M) = 0. Finally, since we have max{i |β1,i 6=
0} ≤ max{ c(C) + 2, e(C) + 3 } by Castelnuovo-Mumford regularity, we get −4homR(I,M) = 0 by
(2.5) and we conclude by Remark 2.7.

Hence curves of diamM ≤ 2 whose minimal resolution (2.5) is “close enough” to being linear
satisfy H1(NC) = 0. Indeed H1(NC) = 0 for any curve of diameter one or two (resp. diameter zero)
whose Betti numbers satisfy β2,i = 0 for i > min{c + 5 − diamM, s + 3}, β1,i = 0 for i < c (resp.
β2,i = 0 for i > s+ 3). Thus Corollary 2.8 generalizes [32], Prop. 6.1.

Remark 2.9. (2.13), (2.14), (2.15), (2.16) and (2.17) are valid for any curve in P3. Moreover if
M−4 = 0, we get 0Hom(M,H4

m(I)) ∼= 0Ext4m(M,R) = 0 since H4
m(I) ∼= H4

m(R) and one may see that
the spectral sequence which converges to 0Ext4m(M, I) (cf. (2.15), (2.16) and (2.17)) consists of at
most two non-vanishing terms. Hence we can continue the exact sequences (2.17) and (2.14) to the
right with

0Ext4m(M, I) ∼= 0Ext2(I, I)→ 0Ext1R(M,E)→ 0Ext3R(M,M)

The proof of Theorem 2.6 implies also the following result (see (i), mainly the argument from
[18], Rem. 3.7, to get (a) and (iii), mainly (2.14) and the paragraph before (ii), to get (b)). Note that
if C has seminatural cohomology (i.e. maximal rank and maximal corank), then the assumptions of
(a) and (b) obviously hold, and we get Prop. 3.2 of [27], ch. IV, which leads to [27], ch. V, Prop. 2.1
and to the unobstructedness of C in the case diamM ≤ 2 (the latter is also proved in [4]).

Proposition 2.10. Let C be any curve in P3 and let M = H1
∗(IC) and E = H1

∗(OC). Then

(a) 0HomR(I,M) = 0 implies Hγ
∼= H(d, g) as schemes at (C)

(b) 0HomR(M,E) = 0 implies Hγ,ρ
∼= Hγ as schemes at (C) .

Finally, we shall in Section 4 see what happens to the unobstructedness of C when we impose
on C different conditions of being "general enough". One result is already now clear, and it points
out that the condition (iii) of Theorem 2.6 is the most important one for generic curves:

Proposition 2.11. Let C be a curve in P3, and suppose C is generic in the Hilbert scheme H(d, g)
and satisfies 0Ext2R(M,M) = 0. Then C is unobstructed if and only if

0HomR(I,M) = 0 and 0HomR(M,E) = 0 . (2.24)
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Proof. One way is clear from Theorem 2.6. Now suppose C is unobstructed and generic with
postulation γ and deficiency ρ. By generic flatness we see that Hγ,ρ ∼= Hγ

∼= H(d, g) near C from
which we deduce an isomorphism of tangent spaces Tγ,ρ ∼= 0Ext1R(I, I) ∼= H0(NC). We therefore
conclude by the exact sequences (2.14) and (2.4), recalling that α : 0Ext2m(I, I)→ 0Ext2R(I, I), which
appears in (2.4) for v = 0 factorizes via 0Ext2R(M,M), i.e. α = 0.

Remark 2.12. Combining (2.14) and (2.17) we get a surjective map Tγ,ρ → 0Ext1R(M,M) whose
kernel Tγ,M is the tangent space of Hγ,M at (C). Now dualizing the exact sequence of (2.10) (for
v = −4), one proves that the surjective map above fits into the exact sequence

k → 0HomR(M,M)→ −4HomR(I, E)∨ → Tγ,ρ → 0Ext1R(M,M)→ 0 (2.25)

and k → 0HomR(M,M) is injective provided M 6= 0. We can use this surjectivity (and some
considerations on the obstructions involved) to give a new proof of the smoothness of the morphism
from Hγ,ρ to the "scheme" of Rao modules ([26], Thm. 1.5, page 135). Since −4hom(I, E) = δ2(−4),
cf. (2.11), the exact sequence above also leads to the dimension formula of Hγ,M we pointed out in
Remark 2.3.

3 Sufficient conditions for obstructedness

In this section we will prove that the conditions (i), (ii), (iii) of Theorem 2.6 are both necessary
and sufficient for unobstructedness provided M has diameter one. More generally we are, under the
assumption 0Ext2R(M,M) = 0 (resp. diamM = 1), able to make explicit conditions which imply
(resp. are equivalent to) obstructedness. Indeed note that we can immediately reformulate the first
part of Theorem 2.6 as

Proposition 3.1. Let C be a curve in P3, and let 0Ext2R(M,M) = 0. If C is obstructed, then (at
least) one of the following conditions hold

(a) 0HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0 ,

(b) −4HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0 ,

(c) 0HomR(I,M) 6= 0 and −4HomR(M,E) 6= 0 .

If C in addition is Buchsbaum, or more generally if the R-module M contains “a Buchsbaum
component”, by which we mean that M admits a decompositionM = M ′⊕M[t] as R-modules where
the diameter of M[t] is 1 (i.e. the surjection M →M[t] splits as an R-linear map), then we have the
following “converse” of Proposition 3.1.

Theorem 3.2. Let C be a curve in P3, letM = H1
∗(IC) and E = H1

∗(OC) and suppose 0Ext2R(M,M) =
0. Moreover suppose there is an R-module isomorphism M ∼= M ′ ⊕M[t] where the diameter of M[t]

is 1 and M[t] supported in degree t. Then C is obstructed if at least one of the following conditions
hold

(a) 0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0 , or

(b) −4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0 , or

(c) 0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0 .

Note that if we consider curves obtained by applying Liaison Addition to two curves where one
of them is Buchsbaum of diameter 1, then we always have a decomposition of M as in Theorem 3.2
([30], Thm. 3.2.3), see also [28] for some other cases. Moreover observe that if the module L2 below
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has no generators in degree t and t + 4, then the condition 0Ext2R(M,M) = 0 holds if it holds for
M ′, i.e. 0Ext2R(M ′,M ′) = 0 (Remark 3.5). We get Theorem 3.2 immediately from Proposition 3.6
and 3.8 which we prove shortly.

We can state Theorem 3.2 in terms of the non-triviality of certain graded Betti numbers of the
homogeneous ideal I = I(C). To see this, recall that once we have a minimal resolution of the Rao
module M of free graded R-modules,

0→ L4
σ−→ L3 → L2 → L1 → L0 →M → 0 , (3.1)

one may put the unique minimal resolution (2.5) of the homogeneous ideal I, 0 → ⊕iR(−i)β3,i →
⊕iR(−i)β2,i → ⊕iR(−i)β1,i → I → 0, in the following form

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I → 0 , (3.2)

i.e. where the composition of L4 → L3 ⊕ F2 and the natural projection L3 ⊕ F2 → F2 is zero ([37],
Theorem 2.5). Note that any minimal resolution of I of the form (3.2) has well-defined modules F2

and F1. In particular F1 = ⊕iR(−i)β1,i . Moreover applying Hom(−,M) to (3.1) we get a minimal
resolution of Ext4R(M,R) ∼= Ext4R(M ′ ⊕M[t], R) ∼= Ext4R(M ′, R) ⊕M[t](2t + 4) from which we see
that L4 contains R(−t− 4)r as a direct summand where r = dimkM[t]. Put

L4
∼= L′4⊕R(−t− 4)r , F2

∼= P2⊕R(−t− 4)b1 ⊕R(−t)b2 , F1
∼= P1⊕R(−t− 4)a1 ⊕R(−t)a2 (3.3)

where Pi, for i = 1, 2 are supposed to contain no direct factor of degree t and t + 4. So a1 and a2

are exactly the first graded Betti number of I in the degree t + 4 and t respectively, while b1 and
r (resp. b2) are less than or equal to the corresponding Betti number of I in degree t + 4 (resp. t)
because L′4 and L3 might contribute to the graded Betti numbers. If, however, M is of diameter 1
(and M ∼= M[t]), then L′4 = 0 and the generators of L3 sit in degree t + 3. In this case bi and r
are exactly equal to the corresponding graded Betti numbers in the minimal resolution (2.5). Now
Theorem 3.2 translates to

Corollary 3.3. Let C be a curve in P3, let 0Ext2R(M,M) = 0 and suppose M ∼= M ′ ⊕ M[t] as
R-modules where the diameter of M[t] is 1 and supported in degree t. Then C is obstructed if

a2 · b1 6= 0 or a1 · b1 6= 0 or a2 · b2 6= 0 .

This leads to one of the main Theorems of this paper, which solves the problem of characterizing
obstructedness in the diameter 1 case (raised in [8]) completely.

Theorem 3.4. Let C be a curve in P3 whose Rao module M 6= 0 is of diameter 1 and concentrated
in degree c, and let β1,c+4 and β1,c (resp. β2,c+4 and β2,c) be the number of minimal generators (resp.
minimal relations) of I of degree c+ 4 and c respectively. Then C is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0 .

Moreover if C is unobstructed and M is r-dimensional (i.e. r = β3,c+4), then the dimension of
the Hilbert scheme H(d, g) at (C) is

dim(C) H(d, g) = 4d+ δ2(0) + r(β1,c+4 + β2,c).
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Proof (of Corollary 3.3). In the sequel we frequently use the triviality of the module structure of
M[t] (m ·M[t] = 0). Now applying vHomR(−,M[t]) to the minimal resolution (3.2) we have by (3.3),

0homR(I,M[t]) = ra2 and −4homR(I,M[t]) = ra1 . (3.4)

Moreover note that the assumption 0Ext2R(M,M) = 0 implies −4Ext2R(M,M) = 0 by (2.19) and
hence vExt2R(M[t],M) = 0 for v = 0 and −4 by the split R-linear map M → M[t]. By the duality
(2.2) and the spectral sequence (2.1) (which converges to vExt3m(M[t], I)) we therefore get an exact
sequence

0→ vExt1R(M[t],M)→ −v−4Ext1R(I,M[t])
∨ → vHomR(M[t], E)→ 0 (3.5)

for v = 0 and −4. Since vExt1R(M[t],M)∨ ∼= −v−4Ext3R(M,M[t]) by (2.2) and (2.1) and since we have
−v−4Ext3R(M,M[t]) ∼= −v−4HomR(L3,M[t]) by (3.1), we get vExt1R(M[t],M) ∼= −v−4HomR(L3,M[t])∨.
Interpreting −v−4Ext1R(I,M[t]) similarly via the minimal resolution (3.2) of I, we get vHomR(M[t], E) ∼=
−v−4HomR(F2,M[t])∨ for v = 0 and −4 and hence

0homR(M[t], E) = rb1 and −4homR(M[t], E) = rb2 (3.6)

by (3.3) and we conclude easily since r 6= 0.

Remark 3.5. For later use, note that vExt2R(M[t],M))∨ ∼= −v−4Ext2R(M,M[t]) ∼= −v−4HomR(L2,M[t]).
Hence if we assume the latter group to vanish (instead of assuming 0Ext2R(M,M) = 0), we get (3.5)
and (3.6) for this v. In particular if vExt2R(M[t],M) = 0 for v = 0 and −4, then (3.5) and (3.6)
hold, as well as 0Ext2R(M,M) ∼= 0Ext2R(M ′,M ′) because 0Ext2R(M ′,M[t]) ∼= −4Ext2R(M[t],M

′)∨ = 0.

Proof (of Theorem 3.4). Combining Proposition 3.1 and Corollary 3.3 we immediately get the first
part of the Theorem. Moreover since we by Remark 2.7 have

dim(C) H(d, g) = 4d+ δ2(0) + −4homR(I,M) + −4homR(M,E) ,

we conclude by (3.4) and (3.6).

To prove Theorem 3.2 the following key proposition is useful. As Fløystad points out in [13], if
the image of the cup product < λ, λ > ∈ Ext2OP

(IC , IC), λ ∈ Ext1OP
(IC , IC), maps to a non-zero

element ō ∈ 0HomR(I, E) via the right vertical map of (3.7) below, then C is obstructed. He makes
several nice contributions to calculate ō, especially when M is a complete intersection (e.g. [13],
Prop. 2.13, from which Proposition 3.6 is an easy consequence, and [13], §5), see also [29], §3 for
further calculations and Laudal ([25], §2) for the theory of cup and Massey products. In general it
is, however, quite difficult to prove that ō 6= 0, while the non-vanishing of the natural composition

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

is easier to handle. This is the benefit of Proposition 3.6 which we prove by using that α = 0 in
(2.4).

Proposition 3.6. Let C be a curve in P3, let M = H1
∗(IC) and E = H1

∗(OC) and suppose
0Ext2R(M,M) = 0. If the obvious morphism

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

(given by the composition) is non-zero, then C is obstructed. In particular if M admits a decompo-
sition M = M ′ ⊕M[t] as R-modules where the diameter of M[t] is 1, then C is obstructed provided

0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0
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Proof. It is well known (cf. [24]) that if the Yoneda pairing (inducing the cup product)

< −,− > : Ext1OP (IC , IC)× Ext1OP (IC , IC)→ Ext2OP (IC , IC),

given by composition of resolving complexes, satisfies < λ, λ > 6= 0 for some λ, then C is obstructed.
If we let p1 : Ext1OP

(IC , IC)→ 0HomR(I,M) and p2 : Ext1OP
(IC , IC)→ 0HomR(M,E) be the maps

induced by sending an extension onto the corresponding connecting homomorphisms, then <-,->
fits into a commutative diagram

Ext1OP
(IC , IC) × Ext1OP

(IC , IC) −→ Ext2OP
(IC , IC)

↓ p1 ↓ p2 ↓
0HomR(I,M) × 0HomR(M,E) −→ 0HomR(I, E)

(3.7)

where the lower horizontal map is given as in Proposition 3.6. By (2.4), 0Ext1R(I, I) = ker p1,
and p1 is surjective because α = 0 for v = 0. Moreover since the composition 0Ext1R(I, I) ↪→
Ext1(IC , IC)→ 0HomR(M,E) is surjective by the important sequence (2.14), there exists (λ1, λ2) ∈
Ext1(IC , IC) × 0Ext1R(I, I) such that the composed map p2(λ2)p1(λ1) is non-zero by assumption.
Using λ2 ∈ 0Ext1R(I, I) = ker p1, we get

p2(λ1 + λ2)p1(λ1 + λ2) = p2(λ1)p1(λ1) + p2(λ2)p1(λ1)

i.e. either < λ1 + λ2 , λ1 + λ2 > or < λ1 , λ1 > are non-zero, and C is obstructed.
Finally suppose the two last mentioned Hom-groups of Proposition 3.6 are non-vanishing. Then

there exists a map ψ ∈ 0HomR(M[t], E) such that ψ(m) 6= 0 for some m ∈ (M[t])t. Since M[t]

has diameter 1, we get 0HomR(I,M[t]) ∼= 0HomR(R(−t)a2 ,M[t]) ∼= (M[t])
a2
t by (3.2) and (3.3), and

we have a2 > 0. Hence there is a map φ′ ∈ 0HomR(I,M[t]) such that φ′(1, 0, ..., 0) = m where
(1, 0, ..., 0) an a2-tuple. Since 0Hom(I,M) → 0Hom(I,M[t]) is surjective by the existence of the
R-split morphism p : M → M[t] there is an element φ ∈ 0Hom(I,M) which maps to φ′. Since the
composition ψφ′ = ψpφ maps to a non-trivial element of 0HomR(I, E) by construction, we conclude
by the first part of the proof.

Remark 3.7. Let C be a curve in P3 whose Rao module has diameter 1. From (2.4) and (2.14),
cf. the proof above, we see at once that 0HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0 if and only if we
have the following strict inclusions of tangent spaces

Tγ,ρ  0Ext1R(I, I)  H0(NC) (3.8)

where 0Ext1R(I, I) is the tangent space of the Hilbert scheme of constant postulation Hγ at (C). By
Proposition 3.6, C is obstructed if (3.8) holds. If M ∼= k, this conclusion follows also from [26], ch.
X, Prop. 5.9, or from [29].

Along the same lines we are able to generalize a result of Walter [39]. If the diameter of M
is 1 and if 0HomR(I,M) = 0, then Walter proves Proposition 3.8(a) below and he computes the
completion of OH(d,g),(C) in detail. The first part of Proposition 3.6 and 3.8, however, requires only
0Ext2R(M,M) = 0. This vanishing condition, which one may show is invariant under linkage (by
using (4.6)), holds for instance if the diameter of M is less or equal 2, or if M is generic of diameter
3 and the scheme of Rao modules is irreducible (cf. [27]).

Proposition 3.8. Let C be a curve in P3, let M = H1
∗(IC), E = H1

∗(OC) and let 0Ext2R(M,M) = 0.
(a) If the obvious morphism

−4HomR(I,M)× 0HomR(M,E) −→ −4HomR(I, E)
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(given by the composition) is non-zero, then C is obstructed. In particular if M admits a decompo-
sition M = M ′ ⊕M[t] as R-modules where the diameter of M[t] is 1, then C is obstructed provided

−4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0

(b) If the morphism

0HomR(I,M)× −4HomR(M,E) −→ −4HomR(I, E)

(given by the composition) is non-zero, then C is obstructed. In particular if M admits a decompo-
sition M = M ′ ⊕M[t] as R-modules where the diameter of M[t] is 1, then C is obstructed provided

0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0

Proof. Step 1. In Step 1 we give a full proof of (a) under the extra temporary assumption M−4 = 0.
Denote by p′2 the restriction of p2 (see (3.7)) to 0Ext1R(I, I) via the natural inclusion 0Ext1R(I, I) ↪→
Ext1(IC , IC) and consider the commutative diagram

< −,− >0 : 0Ext1R(I, I) × 0Ext1R(I, I) −→ 0Ext2R(I, I)
↑ ↓ p′2 ↓ i
Tγ,ρ × 0HomR(M,E) −→ 0Ext1R(M,E)

(3.9)

where < −,− >0 is the Yoneda pairing. Indeed the restriction of 0Ext1R(I, I) to the subspace Tγ,ρ
in (3.9) makes the lower horizontal arrow well-defined in the commutative diagram above because of
the natural map Tγ,ρ → 0Ext1R(M,M) of Remark 2.12. Due to the exact sequence (2.14), continued
as in Remark 2.9, the map p′2 is surjective and i is injective by the assumption 0Ext2R(M,M) = 0.
Hence the pairing < −,− >0 factorizes via

ϕ′ : Tγ,ρ × 0HomR(M,E) −→ 0Ext2R(I, I) (3.10)

and vanishes if we restrict ϕ′ to −4HomR(I, E)∨×0HomR(M,E) via the map of Remark 2.12. (using
the identity on 0HomR(M,E), because −4HomR(I, E)∨ maps to zero in 0Ext1R(M,M).

To prove (a) it suffices to prove < λ , λ >0 6= 0 for some λ. We do this, we claim that there is
another pairing ϕ 6= 0, which commutes with < −,− >0, and which essentially corresponds to the
restriction of ϕ′ above except for the exchange of variables, i.e.

ϕ : 0HomR(M,E)× −4HomR(I, E)∨ −→ 0Ext2R(I, I) (3.11)

(Since Tγ,M = coker(0HomR(M,M) → −4HomR(I, E)∨) by Remark 2.12, we can continue the
arguments below to see that the map ϕ of (3.11) extends to a somewhat more naturally defined
pairing 0HomR(M,E)× Tγ,M → 0Ext2R(I, I), but this observation does not really effect the proof).
Now, to prove the claim there is, as in (3.7), a commutative diagram

−4Ext2m(I, I) × 0Ext1R(I, I) −→ −4Ext3m(I, I)
↓∼= ↓ p′2 ↓

−4HomR(I,M) × 0HomR(M,E) −→ −4HomR(I, E)

where two of the vertical arrows are given by the spectral sequence (2.1) (cf. (2.10)) and where
the lower pairing is the non-vanishing map of Proposition 3.8. Dualizing, we get the commutative
diagram

0Ext1R(I, I) × −4Ext3m(I, I)∨ −→ −4Ext2m(I, I)∨

↓ p′2 ↑ ↑∼=
0HomR(M,E) × −4HomR(I, E)∨ −→ −4HomR(I,M)∨
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where the non-vanishing lower arrow can be identified with the map ϕ of (3.11). Using the duality
(2.2), we see that ϕ commutes with the Yoneda pairing < −,− >0, and the claim follows easily.

Now since ϕ 6= 0 and p′2 is surjective, there exists (λ2, λ1) ∈ 0HomR(M,E) × −4HomR(I, E)∨

and λ′2 ∈ 0Ext1R(I, I) such that p′2(λ′2) = λ2 and such that < λ′2, λ1 >0 = ϕ(λ2, λ1) 6= 0. Note
that < λ1, λ >0 = 0 for any λ ∈ 0Ext1R(I, I) because < λ1, λ >0 = ϕ′(λ1, p

′
2(λ)) = 0 by (3.10). It

follows that
< λ1 + λ′2, λ1 + λ′2 >0 = < λ′2, λ1 >0 + < λ′2, λ

′
2 >0

i.e. either < λ1 + λ′2, λ1 + λ′2 >0 or < λ′2, λ
′
2 >0 are non-zero. Finally since the map α of (2.4)

factors via 0Ext2R(M,M) for v = 0, it follows that the map 0Ext2R(I, I)→ Ext2(IC , IC) is injective
and maps obstructions to obstructions, i.e. the Yoneda pairing < −,− >0 and the corresponding
pairing < −,− > of (3.7) commute and vanish simultaneously. C is therefore obstructed.

Step 2. To prove (b) we use Step 1 and Proposition 2.5. Indeed let C be a curve as in (b) and
let Y ⊇ C be a complete intersection of two surfaces of degrees f and g such that the conditions of
Proposition 2.5 hold and such that H1(IC(f + g)) = 0, H1(OC(f − 4)) = 0 and H1(OC(g − 4)) = 0
(such Y exists). Then we claim that the corresponding linked curve C ′ satisfies the conditions given
in Step 1. Indeed slightly extending Remark 2.9, we have

0HomR(I(C),M(C)) ∼= 0HomR(M(C ′), E(C ′))

−4HomR(M(C), E(C)) ∼= −4HomR(I(C ′),M(C ′)) (3.12)

−4HomR(I(C), E(C)) ∼= −4HomR(I(C)/I(Y ), E(C)) ∼= −4HomR(I(C ′)/I(Y ), E(C ′))

and we get the claim because −4HomR(I(C ′)/I(Y ), E(C ′)) → −4 HomR(I(C ′), E(C ′)) is injective
and H1(IC(f + g)) ∼= H1(IC′(−4)). It follows that C ′ is obstructed by Step 1, and so is C by
Proposition 2.5. Moreover if M = M ′ ⊕M[t] and the diameter of M[t] is 1, we conclude easily by
arguing as in the very end of the proof of Proposition 3.6.

Step 3. Finally using the same idea as in Step 2, we prove that (b) and Proposition 2.5 imply (a).
Indeed by Proposition 2.5 we can see that (a) and (b) are equivalent by making a suitable linkage,
and the proof is complete.

Focusing on the Hilbert scheme with constant postulation, Hγ , we have the following result, quite
similar to Theorem 3.4.

Proposition 3.9. Let C be a curve in P3 whose Rao moduleM 6= 0 is of diameter 1 and concentrated
in degree c, and let β1,c+4 and β1,c (resp. β2,c+4 and β2,c) be the number of minimal generators (resp.
minimal relations) of degree c+ 4 and c respectively. Suppose also M−4 = 0. Then

Hγ is singular at (C) if and only if β1,c+4 · β2,c+4 6= 0 .

Moreover if Hγ is smooth at (C) and M is r-dimensional (i.e. r = β3,c+4), then

dim(C) Hγ = 4d+ δ2(0) + r(β1,c+4 + β2,c − β1,c) .

Proof. Since the tangent space, resp. the obstructions, of Hγ at C is 0Ext1R(I, I), resp. sit in
0Ext2R(I, I), cf. the proof of (i) in Theorem 2.6, we have by Step 1 of the proof above that Hγ

is not smooth at (C) provided M−4 = 0 and the conditions of Proposition 3.8(a) hold. Hence if
β1,c+4 · β2,c+4 6= 0 , it follows from (3.4) and (3.6) that Hγ is singular at (C) (only for this way
here we need the assumption M−4 = 0). For the converse, suppose β1,c+4 = 0. Then 0Ext2R(I, I) ∼=
−4homR(I,M)∨ = 0 and if β2,c+4 = 0, we get by (3.6) and Proposition 2.10 an isomorphism
between Hγ,ρ and Hγ at (C). The former scheme is smooth because 0Ext2R(M,M) = 0, and we get
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the smoothness of the latter. Finally to see the dimension we use χ(NC) = 4d and (2.4) with α = 0
for v = 0 to get

0ext1R(I, I) = 4d+ h1(NC)− 0homR(I,M) ,

and we conclude by (2.23), (3.4) and (3.6).

Remark 3.10. Corollary 3.3 admits the following generalization. Instead of assuming the R-module
isomorphism M ∼= M ′⊕M[t], we suppose that M contains a minimal generator T of degree t and we
replace ai 6= 0 by the surjectivity of a certain non-trivial map as follows. Let M � M ⊗R k � k(−t)
and η(T ) : vHomR(I,M)→ vHomR(I, k(−t)) be maps induced by T . Note that M � M ⊗R k is not
necessarily a split R-homomorphism. So if Ft−v is a minimal generator of I of degree t−v (inducing
maps R(−t + v) ↪→ I and τ(Ft−v) : vHomR(I, k(−t)) → vHomR(R(−t + v), k(−t)) ∼= k), we just
suppose the surjectivity of the composition τ(Ft−v)η(T ) for v = 0 (resp. −4) instead of a2 6= 0 (resp.
a1 6= 0), to get a generalization of Corollary 3.3. Hence if

τ(Ft)η(T ) is surjective for some minimal generator Ft of I, and b1 6= 0 or b2 6= 0 , OR

if τ(Ft+4)η(T ) is surjective for some minimal generator Ft+4 of I, and b1 6= 0 ,

then C is obstructed. There is no real change in the proof. Indeed looking to the very final part
of Proposition 3.6 and to the proof of Corollary 3.3, noting that we don’t need the surjectivity of
−v−4Ext1R(I, k(−t))∨ → vHomR(k(−t), E) in (3.5) (where we have replaced M[t] by k(−t)), we get
the result. Finally note that it is easy to see that τ(Ft−v)η(T ) is surjective if the row in the matrix
of relations (i.e. the middle arrow) of (2.5) which corresponds to Ft−v, maps Mt to zero. If

min{i > t− v | β2,i 6= 0} > c− t ,

then the entries of this row map Mt onto Mc+j for j > 0, i.e onto zero, and we have the mentioned
surjectivity. This surjectivity holds in particular if t = c (and L4 contains generators of degree c+ 4,
as always).

Remark 3.11. We have by Proposition 3.6 and 3.8 the following three Yoneda pairings

0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

0HomR(I,M)× −4HomR(I, E)∨ −→ −4HomR(M,E)∨

0HomR(M,E)× −4HomR(I, E)∨ −→ −4HomR(I,M)∨

To illustrate, in a diagram, how the right hand sides contribute to H1(NC), we suppose 0ExtiR(M,M) =
0 for i ≥ 2 to simplify. Then recall that 0Ext2R(I,M) = 0 and 0Ext1R(I,M) ∼= −4Hom(M,E)∨ by
Remark 2.7. Now (2.4) (resp. (2.10)) leads to the exactness of the horizontal (resp. vertical, with
injective upper downarrow and surjective lower downarrow) sequence in the diagram

0Ext1R(I,M) ∼= −4Hom(M,E)∨

↓
0 −→ 0Ext2R(I, I) −→ H1(NC) −→ 0Ext3m(I, I) −→ 0

↓∼= ↓
−4HomR(I,M)∨ 0HomR(I, E)
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We will end this section by showing that there exists smooth connected space curves in any
of the three cases (a), (b) and (c) of Theorem 3.2. The case (b) is treated in [39], where Walter
manages to find obstructed curves of maximal rank (see also [3]). These curves make Hγ singular
as well (Proposition 3.9). By linkage we can transfer the result in [39] to the case (c) and we get
the existence of obstructed curves of maximal corank, whose local ring OH(d,g),(C) can be described
exactly as in [39]. However, since we in the next section will see that a sufficiently general curve of
Hγ,ρ does not verify neither (b) nor (c), the case (a) deserves special attention. We shall now see
that there exist many smooth connected curves satisfying the conditions (a).

Example 3.12. We claim that for any triple (r, a2, b1) of positive integers there exists a smooth
connected curve C with minimal resolution as in (3.2) and (3.3) and diamM(C) = 1, such that
s(C) = e(C) = c, h0(IC(c)) = a2, h1(IC(c)) = r, h1(OC(c)) = b1 and a1 = 0, b2 = 0. Hence

0homR(I,M) = ra2 6= 0 and 0homR(M,E) = rb1 6= 0

by (3.4) and (3.6). Since a2 = β1,c and b1 = β2,c+4 the curves are obstructed by Theorem 3.4. To
see the existence, put a = a2 and b = b1. If a = 1, we consider curves with Ω-resolution

0→ OP(−2)3r−1 ⊕OP(−4)b → OP ⊕ Ωr ⊕OP(−3)b−1 → IC(c)→ 0

By Chang’s results ([5] or [39], Thm. 4.1) there exists smooth connected curves having Ω-resolution
as above. Moreover c = 1+b+2r, the degree d =

(
c+4
2

)
−3r−7 and the genus g = (c+1)d−

(
c+4
3

)
+5.

If a > 1, curves with Ω-resolution

0→ OP(−1)a−2 ⊕OP(−2)3r ⊕OP(−4)b → OaP ⊕ Ωr ⊕OP(−3)b−1 → IC(c)→ 0

exist, they are smooth and connected ([5] or [39], Thm. 4.1), c = a+b+2r+1, d =
(
c+4
2

)
−3a−3r−6

and the genus g = (c+1)d−
(
c+4
3

)
+3a+3. We leave the verification of details to the reader, recalling

only the exact sequences we frequently used in the verification;

0→ Ω→ OP(−1)4 → OP → 0 and 0→ OP(−4)→ OP(−3)4 → OP(−2)6 → Ω→ 0 (3.13)

Putting the two sequences together, we get the Koszul resolution of the regular sequence {X0, X1, X2, X3}.
We will analyze these curves a little further, using Laudal’s description of the completion of

OH(d,g),(C) ([24], Thm. 4.2.4). This completion is k[[H0(NC)∨]]/o(H1(NC)∨), where o is a certain
obstruction morphism (giving essentially the cup and Massey products). Now, consulting for instance
the proof of Proposition 3.8, we see that the dual spaces of 0HomR(I,M)∨ and 0HomR(M,E)∨ inject
into H0(NC)∨ and their intersection is empty. This implies

H0(NC)∨ ∼= T∨γ,ρ ⊕ 0HomR(I,M)∨ ⊕ 0HomR(M,E)∨ as k− vectorspaces,

and we can represent k[[H0(NC)∨]] as k[[Y1, ..Ym, Z11, .., Zar,W11, ..,Wrb]], letting Y1, ..Ym, resp.
Z11, .., Zar, resp. W11, ..,Wrb correspond to a basis of T∨γ,ρ, resp. 0HomR(I,M)∨, resp. 0HomR(M,E)∨.
Since a1 = 0, b2 = 0, we get by (3.4) and (3.6);

−4HomR(I,M) = 0 and −4HomR(M,E) = 0 .

By Remark 2.7 and Definition 2.1, h1(NC) = δ2(0) = a2b1, and we can use Proposition 3.8 and its
proof to conclude that, modulo m3

O (mO the maximal ideal of the completion of OH(d,g),(C)), we have

OH(d,g),(C)/m
3
O = k[[Y1, ..Yl, Z11, .., Zar,W11, ..,Wrb]]/a (3.14)
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where the ideal a is generated by the components of the matrix given by the product
Z11 . . . Z1r

Z21 . . . Z2r
...

...
Za1 . . . Zar



W11 . . . W1b

W21 . . . W2b
...

...
Wr1 . . . Wrb

 (3.15)

Note that (3.15) corresponds precisely to the composition given by the pairing of Proposition 3.6! As
in [39], proof of Thm. 0.5, we believe that the Massey products corresponding to (3.15) vanish, i.e.
the right-hand side of (3.14) is exactly the completion of OH(d,g),(C).

The simplest case is (r, a2, b1) = (1, 1, 1), which yields curves C with s(C) = 4, d = 18 and g = 39
(Sernesi’s example [38] or [7]), while the case (r, a2, b1) = (2, 1, 1) yields curves C with s(C) = 6, d =
32 and g = 109. More generally, the curves of the case (r, 1, 1) satisfy h1(NC) = a2b1 = 1, i.e. the
ideal a of (3.14) is generated by the single element

r∑
i=1

Z1i ·Wi 1 (3.16)

For Sernesi’s example (r = 1), we recognize the known fact that this curve sits in the intersection
of two irreducible components of H(d, g), while for r > 1, the irreducibility of (3.16) can be used to
see that C belongs to a unique irreducible component of H(d, g). Other examples of singularities of
H(d, g) which belong to a unique irreducible component are known ([19], Rem. 3b) and [12], Thm.
3.10). In the next section we prove the irreducibility/reducibility by studying in detail the possible
generizations of a Buchsbaum curve.

4 The minimal resolution of a general space curve

In this section we study generizations of space curves C and how suitable generizations will simplify
the minimal resolution of I(C). By a generization we mean a deformation to a “more general curve”,
cf. Subsection 1.1. The general philosophy is that a sufficiently general curve of any irreducible
component of H(d, g) should have as few repeated direct factors "as possible" in consecutive terms
of the minimal resolution. We prove below a general result in this direction (Theorem 4.1) and a
more restricted one (Proposition 4.2) for curves with special Rao modules, using some nice ideas from
[26] where they make explicit some cancellations in the minimal resolution under flat deformation,
in a special case (M ∼= k) which has the potential of being generalized. More recently several
papers have appeared using “consecutive cancellations” to relate graded Betti numbers with the
same Hilbert function (see [36], [31] and its references). Recalling the notations (3.1) and (3.2) from
Rao’s theorem ([37], Thm. 2.5), we show

Theorem 4.1. Let C be a curve in P3 with postulation γ and Rao module M = M(C) and suppose
the homogeneous ideal I(C) has a minimal free resolution of graded R-modules;

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I(C)→ 0 . (4.1)

If there exists a direct free factor F satisfying F2
∼= F ′2 ⊕ F and F1

∼= F ′1 ⊕ F , then there is a
generization C ′ ⊆ P3 of C ⊆ P3 in the Hilbert scheme H(d, g) (in fact in Hγ,M , i.e. with constant
postulation and Rao module) whose homogeneous ideal I(C ′) has a minimal free resolution of the
following form

0→ L4
σ⊕0−→ L3 ⊕ F ′2 → F ′1 → I(C ′)→ 0 .
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Now supposeM = M(C) admits an R-module decompositionM = M ′⊕M[t] where the diameter

ofM[t] is 1 (e.g. C is Buchsbaum). Let 0→ L′4
σ′
−→ L′3 → L′2 → L′1 → L′0 →M ′ → 0 be the minimal

resolution of M ′ and let

0→ R(−t− 4)r
σ[t]−−→ R(−t− 3)4r → ...→ R(−t)r →M[t] → 0

be the corresponding resolution of M[t] (which is “r times” the Koszul resolution of the R-module
k ∼= R/(X0, X1, X2, X3).) By the Horseshoe lemma the minimal resolution of M is the direct sum
of these two resolutions. Looking to (3.3), we get a1 · b1 = 0 and a2 · b2 = 0 for a general curve C
of H(d, g) by Theorem 4.1. Hence the corresponding singularities of H(d, g) given by Corollary 3.3
can not occur for a general C, neither can the remaining class of singularities due to

Proposition 4.2. Let C be a curve in P3 and let M(C) ∼= M ′ ⊕M[t] as R-modules where M[t] is
r-dimensional of diameter 1 and supported in degree t. Moreover suppose the homogeneous ideal
I(C) has a minimal resolution of the following form;

0→ L′4 ⊕R(−t− 4)r
σ′⊕σ[t]⊕0
−−−−−−→ L′3 ⊕R(−t− 3)4r ⊕ F2 → F1 → I(C)→ 0 , (4.2)

where F2
∼= P ′2 ⊕R(−t− 4)b1 and F1

∼= P ′1 ⊕R(−t)a2 and where P ′2 (resp. P ′1) is without direct free
factors generated in degree t+ 4 (resp. t).

(a) Let r · b1 6= 0 and let m1 be a number satisfying 0 ≤ m1 ≤ min{r, b1}. Then there is a
generization C ′ ⊆ P3 of C ⊆ P3 in H(d, g) (in fact in Hγ, i.e. with constant postulation γ) such that
I(C ′) has a free resolution of the following form;

0→ L′4 ⊕R(−t− 4)r−m1 → L′3 ⊕R(−t− 3)4r ⊕ P ′2 ⊕R(−t− 4)b1−m1 → F1 → I(C ′)→ 0 ,

and such that M(C ′) ∼= M ′ ⊕M(C ′)[t] as R-modules for some r −m1 dimensional module M(C ′)[t]
supported in degree t. The resolution is minimal except possibly in degree t + 3 where some of the
common free factors of R(−t − 3)4r and F1 may cancel. Moreover if L′2 does not contain a direct
free factor generated in degree t+ 4, then 0homR(M(C ′)[t], E(C ′)) = (r −m1)(b1 −m1).

(b) Suppose L′2 is without direct free factors generated in degree t. If r · a2 6= 0 and if m2 is a
number satisfying 0 ≤ m2 ≤ min{r, a2}, then there is a generization C ′ ⊆ P3 of C ⊆ P3 in H(d, g)
(with constant specialization) such that I(C ′) has a minimal free resolution of the following form;

0→ L′4 ⊕R(−t− 4)r−m2 → L′3 ⊕G2 → G1 ⊕R(−t)a2−m2 → I(C ′)→ 0

for some R-free modules G2 and G1 where G1 is without direct free factors generated in degree t.
Moreover M(C ′) ∼= M ′ ⊕ M(C ′)[t] as R-modules for some r − m2 dimensional module M(C ′)[t]
supported in degree t, and we have 0homR(I(C ′),M(C ′)[t]) = (r −m2)(a2 −m2).

Once we have proved a key lemma, the proof of Theorem 4.1 is straightforward while the proof of
Proposition 4.2 is a little bit more technical. Note that the assumptions on L′2 in Proposition 4.2(a)
and (b) show that 0Ext2R(M ′,M ′) = 0 ⇒ 0Ext2R(M,M) = 0 (Remark 3.5), indicating that our
results of this section combine nicely with Theorem 3.2. We delay the proof of these results until
the end of this section.

Now combining these two results with Theorem 3.4 in the diameter one case, we get

Corollary 4.3. Let C be a curve in P3 whose Rao module M 6= 0 is of diameter 1 and concentrated
in degree c, and let β1,c+4 and β1,c (resp. β2,c+4 and β2,c) be the number of minimal generators (resp.
minimal relations) of degree c+ 4 and c respectively.
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(a) If C is generic in Hγ,ρ, then Hγ is smooth at (C). Moreover C is obstructed if and only if
β1,c · β2,c+4 6= 0. Furthermore if β1,c = 0 and β2,c+4 = 0, then C is generic in H(d, g).

(b) If C is generic in Hγ, then C is unobstructed. Indeed both H(d, g) and Hγ are smooth at (C).
In particular every irreducible component of H(d, g) whose generic curve C satisfies diamM(C) ≤ 1
is reduced (i.e. generically smooth).

Proof. (a) C is generic in H(d, g) by Proposition 2.10 because 0HomR(M,E) = 0HomR(I,M) = 0
by (3.4) and (3.6). The other statements follow directly from Theorem 3.4, Theorem 4.1 and
Proposition 3.9.

(b) If C is generic in Hγ , then we immediately have β1,c ·β2,c = 0 and r ·β2,c+4 = 0 by Theorem 4.1
and Proposition 4.2. Since r > 0 we see by Theorem 3.4 that H(d, g) (and of course Hγ by (a)) is
smooth at (C). Finally if C is a generic curve of some irreducible component of H(d, g) satisfying
diamM(C) ≤ 1 and γ is the postulation of C, then C is generic in Hγ and we conclude easily.

Corollary 4.3(a) generalizes [3] Prop. 1.1 which tells that a curve C of maximal rank or maximal
corank of diamM(C) = 1, which is generic in Hγ,ρ, is unobstructed.

Even though we can extend the next corollary to Buchsbaum curves satisfying 0Ext2R(M,M) = 0
(i.e. 0HomR(L2,M) = 0), we have chosen to formulate it for the somewhat more natural set of
Buchsbaum curves C of diamM(C) ≤ 2. Note that Buchsbaum curves of maximal rank satisfy
diamM(C) ≤ 2 ([30], Cor. 3.1.4, [8], Cor. 2.8), and Corollary 4.3 and 4.4 (and [33]) give answers to
the problems on unobstructedness of Buchsbaum curves raised by Ellia and Fiorentini in [8].

Corollary 4.4. Let C be a Buchsbaum curve of diamM(C) ≤ 2. Then there exists a generization
C ′ of C in H(d, g) such that C ′ is Buchsbaum (or ACM with L4 = 0) and such that the modules of
the three sets

{F2, F1} , {L4, F2} and {L4, F1(−4)}

in its minimal resolution, 0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I(C ′)→ 0, are without common direct free

factors. Hence 0HomR(I(C ′),M(C ′)) = 0HomR(M(C ′), E(C ′)) = 0 and H(d, g) is smooth at (C ′).

Proof. Firstly note that since the module structure of M of any Buchsbaum curve is trivial, we get
from the resolution (4.1) that 0HomR(I,M) ∼= 0HomR(F1,M). Since M ∼= ker H3

∗(σ̃ ⊕ 0), it follows
that the latter group vanishes if and only if L4 and F1(−4) are without common direct free factors.
Moreover by arguing as in the proof of Corollary 3.3 we get −4HomR(F2,M)∨ ∼= 0HomR(M,E)
which vanishes if and only if L4 and F2 are without common direct free factors.

Now, by Theorem 4.1, {F2, F1} have no common direct free factors, and writing M(C) ∼= M[c]⊕
M[c−1] as R-modules, we can successively apply Proposition 4.2 to M[c] and M[c−1]. Indeed the
(a) part of Proposition 4.2 with M[t] = M[c] and m1 = min{r, b1} shows that {L4, F2} for some
generization of C are without common direct free factors of degree c + 4. Then we proceed by (b)
to see that {L4, F1(−4)} for some further generization of C are without common direct free factors
of degree c + 4. Similarly we use Proposition 4.2 with M[t] = M[c−1] to see that there remains,
up to a suitable generization C ′, also no common direct free factor of degree c + 3 in {L4, F2} and
{L4, F1(−4)}. Hence we have 0HomR(I(C ′),M(C ′)) = 0HomR(M(C ′), E(C ′)) = 0 by the first part
of the proof and we conclude by Proposition 2.10.

We should have liked to generalize Corollary 4.4 to the arbitrary case of diameter 2 by dropping
the Buchsbaum assumption. In particular if we could prove a result analogous to Corollary 4.4 for
curves whose Rao moduleM is the generic module of diameter two (cf. [27] for existence and minimal
resolution), we would be able to answer affirmatively the following question (which we believe is true).
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Question. Is any irreducible component of H(d, g) whose Rao module of its generic curve is
concentrated in at most two consecutive degrees, generically smooth?

In our corollaries we have used Theorem 4.1 and Proposition 4.2 to consider generic curves, or to
get the existence of a certain generization, with nice obstruction properties. We may, however, also
use our results to study many different generizations of a given curve C, see the works of Amasaki,
Ellia and Fiorentini and others ([1], [38], [7], [21]) for similar approaches. Hence we may see when
C sits in the intersection of different integral components of H(d, g). There may be quite a lot of
such irreducible components of H(d, g) [11]. We will soon look closely to the possible generizations
of a curve of diameter one in the case β1,c · β2,c+4 6= 0. To get a flavour of the other possibilities, we
consider the following example of a non-generic curve of Hγ,M .

Example 4.5. In [3] and [39] one proves the existence of an obstructed curve of H(33, 117)S of
maximal rank with one-dimensional Rao module. Since the degrees of the minimal generators of
I(C) are given in [3] and M = H1(IC(5)), we easily find the minimal resolution to be

0→ R(−9)→ R(−10)2 ⊕R(−9)⊕R(−8)4 → R(−9)⊕R(−8)⊕R(−7)5 → I(C)→ 0 .

It follows from Theorem 3.4 of this paper that C is obstructed. By Proposition 4.2 (resp. The-
orem 4.1) there exists a generization C1 (resp. C2) of C, obtained by removing the direct factor
R(−9) from L4 and F2 (resp. from F2 and F1). The curve C1 is ACM, hence unobstructed, and
belongs to a unique irreducible component V of H(33, 117)S. Moreover the curve C2 is unobstructed
by Theorem 3.4. Now looking only to the semicontinuity of h1(IC(5)) and h1(OC(5)), there is a pri-
ori a possibility that C2 may belong to V . By Corollary 4.3(a) or by Proposition 2.10, however, C2

is generic in H(33, 117)S since we may suppose C2 is generic in H(33, 117)γ. Hence the irreducible
component W of H(33, 117)S to which C2 belongs, satisfies W 6= V !! Since C is contained in the
intersection of the components, we get the main example of [3] from our results.

As an illustration of the main results of this section, we restrict to curves which are generic in
Hγ,M , or more generally to curves which satisfy a1 · b1 = 0 and a2 · b2 = 0 (letting a1 = β1,c+4,
a2 = β1,c, b1 = β2,c+4 and b2 = β2,c). Thus we consider the case

a1 = 0, b2 = 0 and (a2 6= 0 or b1 6= 0) (4.3)

where proper generizations as in Proposition 4.2 occur, to give a rather complete picture of the
existing generizations in H(d, g) (caused by simplifications of the minimal resolution). Let n(C) =
(r, a1, a2, b1, b2) be an associated 5-tuple. Only for curves satisfying a1 = 0 and b2 = 0 we allow
the writing n(C) = (r, a2, b1) as a triple. Thanks to [2] we remark that any curve D satisfying
n(D) = n(C) and γD(v) = γC(v) for v 6= c, belongs to the same irreducible family Hγ,M as C, i.e.
a further generization of C and D in Hγ,M lead to the "same" generic curve. Now given a curve C
with n(C) = (r, a2, b1), we have by Proposition 4.2:

For any pair (i, j) of non-negative integers such that r − i− j ≥ 0, a2 − i ≥ 0 and b1 − j ≥ 0,
there exists a generization Cij of C in H(d, g) such that n(Cij) = (r − i− j, a2 − i, b1 − j).

(4.4)
Note that if we link C to Cl as in Proposition 2.5, we get, by combining (2.18), (3.4) and

(3.6) that the 5-tuple n(Cl) = (r(Cl), a1(Cl), a2(Cl), b1(Cl), b2(Cl)) is equal to (r, b2, b1, a2, a1) where
n(C) = (r, a1, a2, b1, b2). In particular if C satisfies (4.3), then the linked curve Cl also does.

As an example, let n(C) = (4, 3, 2) (such curves exist by Example 3.12). By (4.4) we have 10
different generizations Cij among which two curves correspond to the triples n(C22) = (0, 1, 0) and
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n(C31) = (0, 0, 1), i.e. they correspond to two unobstructed ACM curves with different postulation.
Hence they belong to two different irreducible components of H(d, g) having (C) in their intersection.
Pushing this argument further, we get at least

Proposition 4.6. Let C be a curve in P3 whose Rao module M 6= 0 is r-dimensional and concen-
trated in degree c, let a1 = β1,c+4 and a2 = β1,c (resp. b1 = β2,c+4 and b2 = β2,c) be the number of
minimal generators (resp. minimal relations) of degree c+ 4 and c respectively, and suppose

a1 = 0, b2 = 0 and a2 · b1 6= 0 .

(a) If r < a2+b1, then C sits in the intersection of at least two irreducible components of H(d, g).
Moreover, the generic curve of any component containing C is arithmetically Cohen-Macaulay, and
the number n(comp,C) of irreducible components containing C satisfies

min{a2, r}+min{b1, r} − r + 1 ≤ n(comp,C) ≤ r + 1 .

In the case s(C) = e(C) = c, we have equality to the left.
(b) If r ≥ a2 + b1 and s(C) = e(C) = c, then C is an obstructed curve which belongs to a unique

irreducible component of H(d, g).

Proof. We firstly prove (b). Let C ′ be any generization of C in H(d, g) and let n(C ′) = (r′, a′1, a
′
2, b
′
1, b
′
2)

be the associated 5-tuple where r′ = 0 corresponds to the ACM case of C ′. Since s(C) = c and since
the number s(C) increases under generization by the semicontinuity of h0(IC(v)), we get s(C ′) ≥ c
as well as h0(IC′(c)) = a′2 and b′2 = 0. Similarly e(C) = c implies h1(OC′(c)) = b′1 and a′1 = 0.
Applying these considerations to C ′ = C, we get χ(IC(c)) ≤ 0 by the assumption r ≥ a2 + b1.

Now let C ′ be the generic curve of an irreducible component containing C. By Proposition 4.2 we
get r′a′2 = 0 and r′b′1 = 0 which combined with χ(IC′(c)) = χ(IC(c)) ≤ 0 yields a′2 = 0 and b′1 = 0.
Hence n(C ′) = (r − a2 − b1, 0, 0, 0, 0) for any generic curve of H(d, g). Since γC′(v) = γC(v) for
v 6= c by semicontinuity and the vanishing of H1(IC(v)), any such C ′ belongs to the same irreducible
component of H(d, g) by the irreducibility of HγC′ ,M(C′). Moreover C is obstructed by Theorem 3.4,
and (b) is proved.

(a) Suppose r < a2 + b1. To get the lower bound of n(comp,C) (which in fact is ≥ 2), we
use (4.4) to produce several generic curves of H(d, g) which are generizations of C. Indeed let
m(a) = min{a2, r} and m(b) = min{b1, r}. By (4.4) there exist generizations C0, C1,..,Cm(a)+m(b)−r
such that n(C0) = (0, a2 −m(a), b1 + m(a) − r), n(C1) = (0, a2 −m(a) + 1, b1 + m(a) − r − 1),...,
n(Cm(a)+m(b)−r) = (0, a2 + m(b) − r, b1 −m(b)). Since the curves Ci are ACM and have different
postulations, they belong to m(a) + m(b) − r + 1 different components, and we get the minimum
number of irreducible components as stated in the proposition.

To see that the generic curve C ′ of any component containing C is ACM, we recall that r′a′2 = 0
and r′b′1 = 0 by Proposition 4.2 with notations as in the first part of the proof. Suppose r′ 6= 0.
Then a′2 = 0 and b′1 = 0. To get a contradiction, we remark that γC′(v) = γC(v) for v < c, from
which we get h0(IC′(c)) + b′2 = h0(IC(c))− a2 since a2 (resp. b′2) is the only possibly non-vanishing
graded Betti number of I(C) (resp. I(C ′)) in degree c. Hence h0(IC′(c)) ≤ h0(IC(c)) − a2 and
similarly we have the "dual" result h1(OC′(c)) ≤ h1(OC(c))− b1. Adding the inequalities, we get

χ(IC′(c)) + h1(IC′(c)) ≤ χ(IC(c)) + h1(IC(c))− a2 − b1 < χ(IC(c)) ,

i.e. a contradiction because χ(IC′(c)) = χ(IC(c)). Now using the fact that the generic curve C ′ of
any irreducible component containing C is ACM and that HγC′ ,M(C′) is irreducible, we prove easily
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that n(comp,C) ≤ r + 1 because there are at most r + 1 different postulations γC′ . Indeed since
M(C ′) = 0, γC′(v) = γC(v) for v 6= c and

γC′(c) + σC′(c) = χ(IC′(c)) = χ(IC(c)) = γC(c) + σC(c)− r

where σC(v) = h1(OC(v)), we see that the different choices of γC′ can happen in degree v = c only,
and that they are given by γC′(c) = γC(c)− i where i is chosen among {0, 1, 2, .., r}.

Suppose s(C) = e(C) = c. Since in this case γC(c) = a2 and σC(c) = b1 by arguments as in the
first part of the proof, we can easily limit the (at most) r + 1 different choices of the postulation
γC′(c) = γC(c)− i above by choosing

m(a) ≤ i ≤ r −m(b)

i.e. n(comp,C) equals precisely m(a) +m(b)− r + 1, and we are done.

Example 4.7. Now we reconsider some particular cases of Example 3.12, even though Proposi-
tion 4.6 is well adapted to treat the whole example in detail. Recall that for any triple (r, a2, b1) of
natural numbers, there exists a smooth connected curve C with n(C) = (r, a2, b1) and s(C) = e(C) =
c(C) by Example 3.12. In particular

(a) For every integer r > 0 there exists a smooth connected curve C, with triple n(C) = (r, r, r),
of degree d and genus g as in Example 3.12, which is contained in r + 1 irreducible components of
H(d, g)S. Moreover the generic curves of all the components containing C are ACM.

(b) For every r > 0 there exists an obstructed, smooth connected curve with triple (r, a2, b1) =
(2t, t, t) or (2t+ 1, t, t), of degree d and genus g as given by Example 3.12, which belongs to a unique
irreducible component of H(d, g)S by Proposition 4.6. In particular the obstructed curve C with
(r, a2, b1) = (2, 1, 1) belongs to a unique irreducible component of H(32, 109)S, confirming what we
saw in Example 3.12.

To prove Theorem 4.1 and Proposition 4.2 we need a lemma for deforming a module N , which
basically is known (and related to [26], Prop. 2.1, p. 140). For our purpose it suffices to see that if
we can lift a (three term) resolution with augmentation N to a complex, then the complex defines a
flat deformation of N . In the case N = I(C) where C has e.g. codimension 2 in P3, we also know
that a deformation of an ideal I(C) is again an ideal, i.e.

Lemma 4.8. Let C be a curve in P3 whose homogeneous ideal I(C) has a minimal resolution of the
following form

(L•) 0→
⊕
i

R(−i)β3,i
ϕ−→
⊕
i

R(−i)β2,i
ψ−→
⊕
i

R(−i)β1,i → I(C)→ 0 .

Let A be a finitely generated k-algebra, B the localization of A in a maximal ideal ℘, and suppose
there exists a complex

(L•B)
⊕
i

RB(−i)β3,i
ϕB−→

⊕
i

RB(−i)β2,i
ψB−→

⊕
i

RB(−i)β1,i , RB = R⊗k B ,

such that L•B ⊗B (B/℘) ∼= L•. Then (L•B) is acyclic, ϕB is injective and the cokernel of ψB is a
flat deformation of I(C) as an ideal (so coker(ψB) ⊆ RB defines a flat deformation of C ⊆ P3

with constant postulation). Moreover for some a ∈ A − ℘, we can extend this conclusion to Aa via
Spec(B) ↪→ Spec(Aa), i.e. there exists a flat family of curves CSpec(Aa) ⊆ P3 × Spec(Aa) whose
homogeneous ideal I(CAa) has a resolution (not necessarily minimal) of the form

(L•Aa
) 0→

⊕
RAa(−i)β3,i →

⊕
RAa(−i)β2,i →

⊕
RAa(−i)β1,i → I(CAa)→ 0 .
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Proof (sketch). If E = cokerϕ and EB = cokerϕB, then one proves easily that EB ⊗B (B/℘) =
E, Tor1(EB, B/℘) = 0 and that ϕB is injective. By the local criterion of flatness, EB is a flat
deformation of E. Letting QB = coker(EB → ⊕iRB(−i)β1,i), we can argue as we did for EB to see
that QB is a flat deformation of I(C) and that L•B augmented by QB is exact.

To prove that QB is an ideal in RB, we can use the isomorphisms Hi−1(NC) ∼= ExtiOP
(Ĩ , Ĩ) for

i = 1, 2, interpreted via deformation theory and repeatedly applied to Bi+1 → Bi for i ≥ 1 (Bi =
B/℘i), to see that a deformation of the OP-Module Ĩ (such as Q̃B) corresponds to a deformation of
the curve C in the usual way, i.e. via the cokernel of ĩ: Q̃B → R̃B. We get in particular a morphism
H0
∗(̃i): QB → RB which proves what we want (one may give a direct proof using Hilbert-Burch

theorem (cf. [26], page 37-38)).
Finally we easily extend the morphism i and any morphism of the resolution L•B to be defined

over Aa′ , for some a′ ∈ A − ℘ (such that L•Aa′ is a complex). By shrinking SpecAa′ to SpecAa,
a ∈ A− ℘, we get the exactness of the complex and the flatness of I(CAa) because these properties
are open.

Proof (of Theorem 4.1). Suppose that F has rank s and consider the s by s submatrix M(ψ) of ψ
in

0→ L4
σ⊕0⊕0−−−−→ L3 ⊕ F ′2 ⊕ F

ψ−→ F ′1 ⊕ F → I(C)→ 0

which corresponds to F → F . As in the "Lemma de générisation simplifiantes" ([26], page 189), we
can change the 0′s on the diagonal of M(ψ) to some λ1, ..., λs where the λ′is are indeterminates of
degree zero. Keeping σ⊕ 0⊕ 0 unchanged, we still have a complex which by Lemma 4.8 implies the
existence a flat family of curves over Spec(Aa), A = k[λ1, ..., λs], for some a ∈ A − (λ1, ..., λs). Let
λ := Πs

i=1λi be the product. Since any curve C ′ of the family given by Spec(Aλa) has a resolution
where F is redundant (F , and only F , is missing in its minimal resolution), and since we may still
interpret the Rao module M(C ′) as ker H3

∗(σ̃ ⊕ 0⊕ 0) with σ ⊕ 0⊕ 0 as above (so the whole family
given by Spec(Aa) has constant Rao modules), we conclude easily.

Remark 4.9. Slightly extending the proof and using Bolondi’s result on the irreducibility of Hγ,M

([2]), one may prove that set U of points (C) of the scheme Hγ,M whose modules F2 and F1 of
the minimal resolution (4.1) of I(C) are without common direct free factors, form an open (and
non-empty if a curve with minimal resolution (4.1) exists) irreducible subset of Hγ,M .

Proof (of Proposition 4.2). (a) Since we have the assumption that M ∼= M ′ ⊕M[t] as R-modules,
the minimal resolution (3.1) of M is given as the direct sum of the resolution of M ′ and the one of
M[t] which is “r-times” the Koszul resolution associated with the regular sequence {X0, X1, X2, X3}.
The matrix associated to σ[t] (resp. σ = σ′ ⊕ σ[t]) will have the form

X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X


[
σ′ 0
0 σ[t]

]
(4.5)

where X is (X0, X1, X2, X3)T and each "row" in the left matrix is a 4 × r matrix, etc. Let ηj :
R(−t− 4)→ L′4 ⊕R(−t− 4)r be the map into the j-th direct factor of R(−t− 4)r, 1 ≤ j ≤ r, and
let πi : L′3 ⊕R(−t− 3)4r ⊕ P ′2 ⊕R(−t− 4)b1 → R(−t− 4) be the projection onto the i-th factor of
R(−t− 4)b1 , 1 ≤ i ≤ b1. Similar to what was observed by Martin Deschamps and Perrin in the case
M ∼= k ([26], page 189) we can change the 0 component in the matrix of σ ⊕ 0 which corresponds
to πiηj : R(−t− 4) → R(−t− 4), to some indeterminate of degree zero. To get a complex we need
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to change four columns of the matrix A associated to L3 ⊕ F2 → F1 as follows. Let r1 := rankF1

and look to the column (ak), 1 ≤ k ≤ r1, of A which corresponds to the map R(−t− 4)→ F1 from
the i-th factor of R(−t − 4)b1 . Put ak =

∑3
l=0 γ

i
k,lXl for every 1 ≤ k ≤ r1. Since the resolution

is minimal, such γik,l exist, but they are not necessarily unique. Since the column of the matrix
of σ ⊕ 0 which corresponds to ηj consists of only 0’s and X (cf. (4.5)) there are precisely four
columns [Hj

k,0, H
j
k,1, H

j
k,2, H

j
k,3], 1 ≤ k ≤ r1, of A satisfying

∑3
l=0H

j
k,lXl = 0 for every k which may

contribute to the composition (σ⊕0)ηj . Now if we change the trivial map π1η1 to the multiplication
by an indeterminate λ1 and simultaneously change the four columns [H1

k,0, H
1
k,1, H

1
k,2, H

1
k,3] of A to

[H1
k,0 − γ1

k,0λ1, H
1
k,1 − γ1

k,1λ1, H
1
k,2 − γ1

k,2λ1, H
1
k,3 − γ1

k,3λ1], leaving the rest of A unchanged, we still
get that (4.2) defines a complex. We can proceed by simultaneously changing the 0 component
of π2η2 to λ2 and the corresponding four columns of the matrix A as described above, etc. Put
λ := Πm1

i=1λi. By Lemma 4.8 we get a flat irreducible family of curves C ′ over Spec(k[λ1, ..., λm1 ]a),
for some a ∈ A− (λ1, ..., λm1), having the same (not necessarily minimal) resolution, hence the same
postulation, as C. Since λ is invertible in Spec(k[λ1, ..., λm1 ]λ·a), we can remove redundant factors of
the resolution of I(C ′) in this open set. Since M(C ′) ∼= ker H3

∗(σ̃⊕ 0⊕ 0), we have a generization C ′

with properties as claimed in Proposition 4.2. Note that since we have changed 4m1 columns of A we
may have changed some zero entries of A to non-zero constants, making the resolution non-minimal
in degree t + 3 (only). Finally using Remark 3.5 for v = 0, the assumption on L′2 shows that (3.5)
holds and hence we conclude by the left formula of (3.6).

(b) We will prove (b) by linking C to a Cl via a complete intersection of two surfaces of degrees
f and g satisfying H1(IC(v)) = 0 for v = f, g, f − 4 and g − 4, and then apply (a) to Cl. To
see that Cl satisfies the assumption of (a), first note that M(Cl) admits a decomposition M(Cl) ∼=
M ′(Cl)⊕M[f+g−4−t] as R-modules. Indeed M = M(C) satisfies the duality

M(Cl) ∼= Ext4R(M,R)(−f − g) ∼= Homk(M,k)(−f − g + 4) , (4.6)

(cf. [37] and [30], p. 133). If we let M ′(Cl) := Ext4R(M ′, R)(−f − g), then the decomposition
M ∼= M ′ ⊕M[t] translates to

M(Cl) ∼= Ext4R(M ′, R)(−f − g)⊕ Ext4R(M[t], R)(−f − g) ∼= M ′(Cl)⊕M[t](2t+ 4− f − g)

since M[t](t) ∼= Ext4R(M[t](t), R(−4)) by the self-duality of the minimal resolution of M[t](t). Finally
sinceM[t](2t+4−f−g) is supported in degree f+g−4−t, we may write the moduleM[t](2t+4−f−g)
as M(Cl)[f+g−4−t] := M[f+g−4−t]. Next to see that direct free part F1 generated in degree t in the
resolution of I(C), is equal (at least dimensionally) to the corresponding part in degree f + g− 4− t
of F2(Cl)(4) in the minimal resolution of I(Cl) of the linked curve Cl, we remark that since the
isomorphism of (2.18) is given by the duality used in (4.6), it must commute with their decomposition
as R-modules, i.e. we have

0HomR(I(C),M(C)[t]) ∼= 0HomR(M(Cl)[f+g−4−t], E(Cl)) (4.7)

Then we conclude by (3.4) and (3.6) provided we can use Remark 3.5 for v = 0. Indeed if L∗ :=
HomR(L,R), we have an exact sequence → (L′2)∗ → (L′3)∗ → (L′4)∗ → Ext4R(M ′, R) ∼= M ′(Cl)(f +
g) → 0. Since L′2 has no direct free factor of degree t, it follows that (L′2)∗(−f − g) has no direct
free factor of degree f +g− t, i.e. we have −4HomR((L′2)∗(−f −g),M[f+g−4−t]) = 0 and Remark 3.5
applies. Now using (a) to the linked curve Cl withm2 = m1, we get a generization of C ′l with constant
postulation where R(−f − g+ t)m1 is "removed" in its minimal resolution. A further linkage, using
a complete intersection of the same type as in the linkage above (such a complete intersection exists
by [21], Cor. 3.7) and the formula (4.7) (replacing C and Cl by C ′ and C ′l respectively), we get the
desired generization C ′ and we are done.
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