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INTRODUCTION
In this paper we study formal deformations of graded algebras
and corresponding problems in projective geometry., Given a
graded algebra A, we may forget the graded structure and deform
(1ift) A as an algebra. Clearly we also have a deformation
theory respecting the given graded structure of A ., This deform-
ation theory is closely related to the corresponding theory of
X = Proj{A). One objective of this paper is toc compare these
three theories of deformation.
A basic tool is the cohomology groups of André and Quillen,
Let 5= A be a graded ringhomomorphlam and let M be a graded
A-module. We shall see that the groups
gl(s, A,M)
are graded A-modules whenever S isncetherianand S - A is
finitely generated, In fact, if we let
JEH(S,4,1)
correspond to S-dervivations of degree Vv, we shall prove that

there are canonical isomorphisms
o .

L JEN(s,8,m) v mi(s,a,m)
Ve OO
for every i 2 0,

Deformations of A (forgetting the graded structure) are
classified by the groups HI(S,A,A) for i=1,2. Restricting
to graded deformations, we shall see that they are classifies

by the subgroups

JHH(8,4,4)
for i=1,2 . These generalities are proved oxr at least gtated
in chapter 1.

et m : R-=> 3 hbe a graded surjection satisfying (ker ﬁ)2=0,



Since there is an injection

OHZ(S,A,A% Kerl) = HZ(S,A,Ag er I )

we deduce that A is liftable to R iff A is liftable asg
a graded algebra., We would like to generalize this regult to
arbritary surjections of complete local rings, This seems

difficult. However if we assume

JEN(S,8,4) = 0

for v>0 or v<0 (called negative or positive grading
respectively), then the statement above follows from 2.6 of
chapter 2 when S ig a field Xk . In fact, let 1 De the
category of artinian local V-algebras with residue fields

k , v/mv = X, and let Def °(A/k, - ) , resp Def(i/k, ~ ) ,

be the graded deformation functor, resp non-graded deformation
functor on 1 with hulls R(4) and R(A) respectively.

Congider the local Ve~morphism
R(A) » RO(4)

Theorem 2.6 stateg that this morphism hag a section whenever
A hags negative or positive grading., This follows from the

existence of an isomorphisms.
R(4) ~ R%(A[1])

Here degl = 1 if we have negative grading.
In chapter 3 we enter into projective geometry assuming
the graded algebras to be positively grmded and generated Dy

elements of degree 1. We compare the groups

JHT (8, 4,M)



with the corresponding groups Ai(S,X,ﬁ(v)) in projective
geometry, X = Proj(A). 'The groups Ai(S,X, ~) were intro-
duced by Illusie in [I] and by Daudal [11]. If X is S-smooth,
then |

at(s,%,0) = 5%, o o)

where GX is the sheaf of S-derivationasep X. If the depth of

M with respect to the ideal
o0

" zvfﬁ AV
is sufficiently hig, the groups

(8, 4,1)
and

at(s,x,8(v))

coincide. For instence, if depth A > 4 ,

JEN(8,4,0) ~ 41(s,%,0,(v))

V2 (8,4, )%24%(5,%,0.(v))

Thisimplies that the deformations of A and X correspond
‘ uniquely to each other, When depthmA.g 3 a rigidity theorem
of Schlessinger, see (2}2»6)in [K,L], is generalized by the

injection
JET(5,4,8) » 81(5,X,04(v))

Now these depth conditions are usually rather crude, and the

exact sequences in which these groups fit are in many cases

a better tool.



In chapter 3 we also relate the groups corresponding to
embeddings. TLet ®:B = A be a surjective morphism of graded

S-algebras such that B, = A =5 and let
f s X = Proj(dA) @ X = Proj(B)

be the induced embedding. We would like to compare the groups
vHi(B,AgM) and Ai(S,f,ﬁ(v)). If £ is locally a complete

interéectiom, one knows that
84 (5,1,04(v)) T BN, N (V)

where Nf is the normal bundle of X in Y. Again putting

depth conditions on M , we conclude that
VI (B, 4, 1)
and
a1 (s, £,H(v))
coincide, If ﬁepthmA > 2 , then
JEHB,A,8) v a1(8,1,8,(v)
and
He (B, A, AYes 4%(8, £,0 (V)
AY) ¥ L] ¥ ¥ X
From this follows that if B is S = k-free then
Def®{w,~) ~ Hilby(-)
on 1 where Def®(w,~) is the graded deformation functor
of ® and where Hile(m) is the local Hilbert functor at
X . From this and the isomorphism

R(4) ~ R°(al1])

we generalize a theorem of Pinkham [P] as follows., If A has



negative grading and depth A > 1 and if X = Proj(alT])
is the projective cone of X in Jmn£1 = Proj(BLT]) , then

there is a smooth morphism of functors
Hilby(-) = Def(A/k,-)

In chapbter 4 we investigate the conditions of negative
and positive grading. We shall assume A 1o be the minimal
cone of a closed wubschems ™ X C P g . By twisting the em-
bedding we prove that the minimal cone B of X c P g for
large N very often has negative or positive grading. For
instance, if X is S-smooth B will have negative grading.
If X is of pure dimention > 2 and locally CohenuMacaﬁiey,
then B will have positive grading, Combining these two re-
sulte we deduce a theorem of Schlessinger [83], See also
(m].

Using these results we find that the smooth unliftable
projective variety of Serre [Se] gives rise to a graded
k-algebra which is uniiftable to characteristic zero. This is
done in chapter 5. His example is of the form X = ¥/G, ¥
is a complete intergection of dimention 3 and the order of G
divides the characteristic.

The poesibility of using this example $o gel an unliftable
k-algebra may be looked upon as the beginning of this paper.
The proof given here is due to 0.4, Laudal and the suthor,

We end chapber 5 by proving that if ord(G) did not divide
the characteristic and if Y was a complete intersectlon of

dimention > 3 +then X = ¥./G would have been everywhere

1iftable,“rwhis paper contains all the results of [K]. I would

like to thank 0.4A,Taudal Ffor reading the manuscript.



CHAPTER 1

Cohomology groups of graded algebras.

Rings will be commutative with unit. ILet S-alg he the

category of S-algebras and

SF © B-alg

[restn

the full subcategory of free S~algebras, Given an S-algebra
A and an A-module M, we define
gl(s,a,m) = 1imd) Derg (-,M)
! )
(S¥/4)
where Derg(-~,M) is the functor on (8F/A)°  with values in
- Ab  defined by
0
Ders(u,M)(F + A) = DerS(F,M)

M being an TF-module wvia ©,
If 8S- A is a graded Swalgebra and if M is a graded
A-module, we may congider the category of graded S-algebras

Sgealeg and the corresponding category
SgF ¢ Sg-alg
of free graded S-algebras, Let
wWerg(-,M) ¢ SgR/A -~ Ab
be the functor definéd by

o
kDerS(u,M§(F 2 A) = kDerS(F,M) = {D€ Der (?,M)|D is graded of 4
> degree k

Then we put

Definition 1.1

5,4, = 1nlE) | perg(~,m)
8gF/A°
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Ag mentioned in the imtroducticn, the groups Hi(S,A,—) and

oHi(S,A,~) clagsifies formal deformations. Recall that if

ul
R=3

is any surjection with nilpotent kernel, we say that an R-algebra
Av is a lifting or deformation of A +to R 1if there is given

a cocartesian diagram

=
W e

W
B

=

such that
Tor,R(ar,8) = 0

Two liftings A' and A" areconsidered equivalent if there is
an R-algebra isomorphism A' ~ A" reducing to the identity on
A. If @ : A= B is a morphism of S-algebras and A' and
Bt are liftings of A and B respectively, we say that a

morphism
¢t ¢ A = B

is a lifting or deformation of ®© with respect to A' and

B if @% idg = @, We define graded liftings of graded algebras
and graded liftings of graded worphisms in exactly the same

way.,

i
Agssume that R -+ 8 satisfles (kerrﬂg = 0

Then it ig known that

There i8 an element

o(A) € H(S,A,A® Xer 1)
S



whi¢h is zero if and only if A can be 1ifted to R. If
o(A) = O, then the set of non-equivalent liftings is a prin-
cipal hdmogeneous gpace over H1(S,A,A.® ker 1)

Thaompen 1.3 ®

There is an element

o(®, A',B") € H1(S,A,B®S; ker 9

which is zero if and only if ® can be lifted to R with
regpect to A' and B'. If o(® ;3 A',B') = 0 then the set of

1iftings is a principal homogeneous space over

i

HO(S,A,Bg Kexy 1) DerS(A,Pczso ker )

The elements ©(A) and o(p 3 A',B') are called obstructions.

a0

Then corresponding theorems in the graded case are

There is an element

UO(A) € o

HE(S,A,Ag Ker )
which is zero if and only if A can be lifted to a graded
R-algebra, If GO(A) = 0 , then the set of non~eguivalent

liftings is a principel homogeneous space over 0H1(S,A,A.§ ker )

There is an element
1
o e A,BYE H (S,AqB‘g ker )

which is zero if and only if © can be lifted as a graded
morphiem to R with respect to A' and B' , Moreover, if
Go(m ; AT,B') = 0, then the set of graded liftings is a
principal homogeneous space over OHO(S,A,B‘z ker m) =

JDerg(4,B g ker )



In [L1]we find proofs of 1.2 and 1.3 and these can easily be
carried over to the graded case.

If we want to compare the graded and non~graded theories
of deformation, we need to know the relations between the
groups _E'(S,A,M) and HY(S,A,M) , This is given by the
following theorem. A proof of this can also be found in [I].

Theorem 1.6

Let S5 2 A De a graded ringhomomorphism an let M Ybe
a graded A-module. If S is mgoetherisn and S = A ig finitely
generated, then there is a canonical isomorphism

o . .
v EN(E,4,M) » BY(S,A,M)
k=m €O

for every i = O,

Remark 1In general, there is an injection
o] . .
kil—- . (S, 4,M) > HY(S,4,M)
for every i = 0.
Froof
Let
(SER/A) g SgB/A
be the full subcategory defined by the objects ® : I' = A
where F is a finitely generated S-algebra,

Look at the diagram of categories

(SgF/A) fg"f"‘) §.&F./A

where all functors are forgetful. These induce morphisms



iim(i)DerS(u,M) PSR 1im(i)DerS(*,M) = Hi(S,A,M)

b e
(SE/4) ¢q SE/A J/

J/ .
1im(i)DerS(~,M) e —-lim(i)DerS(«,M)
- e
(SE2/1) g, Sz/A

I claim that these maps are all isomorphisms for 1 = o.
This will prove 1.6 since there is a canonical jsomoxrphism of

functors
[em]
*) kggckaerS(m,M)~49vDers(—,M)

on (SgH/A) g,

For i = O , the contention of # ig eagily proved. For
i > 0 1let us prove that the right hand vertical morphisms
are isomorphisms.

Let P - A be a graded S~algebrasurjection and let
P, = FxFx,...x7 {(i+1)-times
' A A A
Consider the complex

1am (%) Derg(~,M) = 11D perg(-,m) » - 1im{(®) Derg(-,M) =
e - e
SE/P, SE/P, SF/F,

R,

where the differensials are the alterating sum of group-

morphisms
1in{® Derg(~,M) - 14n{% Derg(-,M)

e W
SE/F, S/,

induced by the projections Fi “» Pi-1' Tn thisg situation there
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is a Leray spectral sequence given by the tepm

LI JERPACY Derg(~,M))
A
SE/F,

converging to
:L:Lm(') Ders(-—,M) = H(')(S,A,M)

é...»-—
SF/ A

[y

For a proof see (2.1.3) in [DT1].
Similarely, there is a Leray spectral sequence with
'E'P‘éfi - HP(1in(®) Derg(~,M))
A
Sgk/F.
converging to
1in{*) Derg(~,M)
— ‘
Sgk/A
To show that the morphisms

1in(1) Derg(-,M) = 1im(H) Dexg (-, M)
— “—
s/4 Sg/A

are lgomorphisms, we use induction on i . If it is an isom~

orphiem for 1 < n and for every object A in Sg~alg, we

conclude that the morphism
P9 - g Pyl
is an iscomorphism for g9 < n and every p.
Recall that
B3 ¢ 1im (@) Derg(~-,M) = HY(S,F,M)



- 12 -

Hence Eoéq =0 for g> 1,

Since F € obSgF , we got

1E°éq- = 1im{®) Derg(~,M) = 0 for q > 1
SgF/F
as well, Since for r 2~ 2 the differensials of the spectral

sequence are of bidegree {r,1-r) , and since for p and g
given, B3 = Epéq for some r , we easily deduce isomorphisms
1
Epgcq > EPC;Dq
for every p and ¢ with p+q < n+?1 ., Hence there is an

isomorphism
1im(n+1) Ders(u,M)~élim(n+1) Derg(-,M)

- aaanes | S
SE/A Sgh/A

Q.E,D,
Let R —135 be a graded surjection such that
(ker Tf)z = 0
It is easy to see that the injection
JEE(S, 4,4 ® ker w) —E(S,4,4 © ker )

3 S
maps the obstruction GO(A) onto ©{A) . Tor definitions
of the obstructions see [L1]. This proves

Corollary 1.7

Tet R-35 be a graded surjection such that (ker ﬂ)2 = 0.
If A 1is a graded S-algebra, then A can be 1lifted to R iff
A can be 1ifted to R as a graded algebra
Remark

Let FA be the sBet of non-~eguivalent liftings of A to
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R and FAO the corresponding set of graded liftings. If
A" is a graded lifting of A +to R , then thewe are isomorp-

hisms and obvions vertical injections fitting into the diagram
F, =~ H'(S,4,4)
JO . HY(S,4,4)
A T o0 P

Hence there is a projection

p: Fy—pF,°

Now 1.7 can be generalized as follows, Let
® 3 A~—>D

be a graded Dealgebrahohomorphism Assume there are liftings A' and
B" , not necessarily graded, of A and B such that o is
liftable to R with respect to 4 and B, Then ¢ admits
a graded 1lifting to R with respect p(4') and p(B) .
We omit the proof.

Similar results for graded S-modules and for graded module

morphisms are valid,
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CHAPTER 2

Defomation functors and formal moduli.

Por the rest of this paper we shall deform only finitely
generated algebras,

Tet U : R= R' be a surjective ringhomomorphism . If
(ker 7)% = 0 , then 1.7 say that A is liftable to R 4iff
A is liftable to R as o graded algebra.. We would like to
drop the condition (ker m)° = 0 in 1,7. To do this we shall
introduce defomation functors.

et V be a noetherian local ring with maximal ideal
my end residue field k = V/my . Let 1 be the category
whose objects are artinian local V-algebras with residue fields
k and whose morphisms are local V-homomorphisme., TLet S be
a finitely generated k-algebra and assume that we can find
graded liftings S5 of 8 to R for any RE€ obl such that
for any morphism m : R = Ri of 1 ‘there is a morphism

SR - SR' with

For each R , Tix one SR with this property and let
w52 A

be a finitely generated graded B-algebra, Relative to the

- choice of 1liftings SR we define

Def(4/S,R) S{J/ l I o' is a graded lifting of A to

SR}/N
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It is easy to see that Def®(A/S,~) is a covariant functor

on 1 with values in Setz . Thie is the graded deformation

 functor or AfS. Correspondingly, we demote by Def(4/S,-)

AT

the non-graded deformation functor of A/S .

Recall that a morphism of covariant functors
P G
on 1 is smooth iff the map
P(R) —pF(R ) z G(R)
G(R' )
ig surjective whenever R+—3R' 1is surjective., The tangent
gspace tF of ® is defined to be

by = Pxle])

when k[g] € ob 1 is the dual ring of numbers,

Definition 2.1

A pro-1 object R(4/8) , or just R(A) is ealled a hull for
Def(4/S,~) if there is o smooth morphism of functors
Homt (R(A),-) —w Def(4/8,)

on ] which induces an isomorphism on thelr tangent spaces.

s iy

RO(A) is similarely defined as the hull of Def®(4/S,~) .

By 1.2 and 1.4 we see that
. e 1
Def(s/8,x[e]) = H'(S,A,4)
Der®(a/8,x[e]) = H'(S,4,4)
Took at the canonical morphism of functors
Def®(4/8,~) —p Def(A/S,~)

and the corresponding V-worphism
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R(4) —> RO(4)

If this morphism splits we have solved the problem mentioned
at the beginning of this paragraph.

In [11] we find a very general theorem decribing these
hulls, TFollowing [T1] we notice that since A is a finitely
generated S-algebra, the group Hi(S,ﬁ,A) for a given i
is finite ag an A-module. We pick a countabel basis fvj}
for Hi(S,A,A) as a k-vectorspace and define a topology on
Hi in which a basis for the neighbourhoods of zero are those
subspaces containing all but a finite number of these vj .
Let '

i = Hom 2 (8',k) for i = 1

il

and let

o, or just o i=1,2
be the completion of Symv(Hi*) in the topology induced by
the topology on Hi* , 1.e. the topology in which a basisg Lor
the neighbourhoods of zero are those ideals containing some
power of the maximal ideal and intersecting Hi% in an open
gubspace. If gl is a Ffinite k-vectorspace then t iga
convergent power geries algebra on 9 . The result we need
is the following. See (4.2.4.) in {TI4].

Theorem 2,2

There is a morphism of complete local rings

6 =o(a) 3 PPy’

guch that

~

R{A)
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short remark on the proof,

To simplify ideas, assume V = k and H1($,A,A) finite
as a k-vectorspace. Let Y, = 1 be the full subcategory
of 1 consisting of objects R statisfying m% =0 ., DPut

1 -
and R, = I, . If R € obl, , then by 1.2

Def(A/S,R)

1 C (¥ C ¢
H(8,4,4) ®my = Homp (' ,mp) = Homq(T5,R) = Hom, (R, R)
k - -

Hence R2 represents the funetor Def(A/S,-) on 12 . Xmt

A2 be the universal lifting of A to SR. . 1If
2
o, : 75-3>k =T is the composition,
$hen : R, = Tl = T1 ®, k .
2 2 2 T2
2
By induction we shall assume that
o, ¢ 23T £ i < ped
R T ! LSl

are copstructed such that

. 1
R, =1T; & k

+ e
i
and such that 4, 18 liftable to sRi'
Consider the following diagram
e o 1
— n.ﬂu #;n“__i% Tn

T |
\ v
2 1 1
Tt o Tt unww; n-1 = Tny1f#%h

nw1

We shall try to construct @ : 1237 such that the diagrem
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*
above commutes, In fact it is enough to define v, on H2

as a k-linear map. lLet

» 1, el
R, = T,/ 7" (or)

Then the dlagram

1 . :

T'*i
e Rn-1

is commutative and kerm' is a k-medule via T;_uélm

Let An“1 be any lifting of Az to SR . The obstruction
R n=1
for lifting A to S is given by
n-1 Fn

2 i 2 y
o(h _4)EH(S phy qshy g ® ke ') o HY(S,4,4) ikerﬂ -

Rpmq

Hom (Hz*, ker ')

Let o be any k-linear map fitting into the commutative diagram

7
—t
N

i
R ;.
R, = n/lma(ﬁh_q)

Thug killing the obstruction of lifting, we conclude that
A is lif'table to S . Put
AY1”1 LB Rn ]

R{A) = 1im Rﬂ and O = lim GI]. .



Taudal proves that this R{A) is a hull for Def{4/S,-) .

If V=X , just as in the general step, we let 7V, be the
largest quotient of V/mVZ to which S = A is liftable,

Any lifting SV 2 A, may serve as a zero point for the isow-

2
morphism
Def(A/S,R) & H'(S,4,4) ® my
k

where R€ obl, For the rest we may proceed as before.

Jorollary 2.2.8

Let V be a regular local ring such that S5 = A is Lift-
able to V/mvz . Then R(A) is regular iff the composition

R N,

is zero.
It follows from the fact that the image of the composition
is in m%1 . Q.E,D,

Similar results are true for RO(4) . Ir

= momX( BN (S, 4,4),%) i=1,2

and
Opl | or just Or for i=1,2
is the completiomn of Symv(OHi*) in the corresponding topo-

logy, then there is a morphism of complete local rings

. Om? o1
a, = cO(A) TR A

guch that

H O Om A
RV(A) &« "7 @
Om

A =i >

The canonical injections
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OI—Ii = OHi(S,A,A) —>ut(s,4,4) = H

induces surjections

pt 3 Opl for i = 1,2
These surjections can be assumed to fit nicely into a commutative
diagram

TQ«WﬁPOTg

o i ‘lao

.T1 *—9°T1
in such a way that the induced morphism

R(A)-—> R°(4)
makes the diagram

Def®(A/S,~) —3Def(A/S,-)

1T T

Hom{R°(4),~) ~> Hom(R(4),~)

commutative.

We shall only sketch a proof of this commutativity sincé
we will not use it much., We need an easy lemma, see (4.2.3)
in (11].
Lemma 2.3,

Congider the commutative diagram

¥, 4
RT —— Rz
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whose objects and morphisms are in 1 ., Assume T4 and
m, surjective and (kerﬂ;])2 = (kerﬂé)g =0, If Ay is

a lifting of A to SRi’ and A2 = A2 §1 R2 s then
2
1T R 2 R2

(8

maps the obstruction 0(A1) onto G(AZ) .

Proof of the commulativity.
As in the "proof" of 2.2, let us assume V = kX and
H1(S,A,A) finite as a k-vectorspace. We constructed R,

and @, in such a way that

R(A) = lim Rn ¢ = 1lim O

In the graded case we ghall use the notations

-0 - s o ,
RO(4) = lim °Ry o, = %igﬂ(ﬁo)ﬁ

Now R2 and OR2 represents this defyrmation funedors on

1, . If A, is the universal lifting of A to 8

we

R H
2
eagily see that A, & 032 is the graded universal lifting
R
to Sop . 2
et nzZ3 and let A 4 be a lifting of 4, to SRn~1

By induction we may assume the commutativity of

T2 0T2

n-] 11

1w (Uo)n~1

1 0,1
] e L

0

2

0 . s s :
and that Aﬁ"1 ® Rn~1 ig a graded lifting of Az @

Rﬂ__,| R

Ry



By 2.3 a commutative diagram

3 - +
g - » OHz

1 Ol

is found, hence then is a commutative diagram

0
Byl ——> Bpq
Since

0,

il . 5
is a surjective map of k-vectorspaces, we deduce from the

surjectisity of

1 ~f 1 A
H'(8,4,4) i ker Wy H (8,4,4) i kerqﬂn

(using 1.2 and 1,7) that there is a lifting A and A

to Sy  such that A © R is a graded 1ifting of
N g B

L
0
Ahm1 g Rn~1 *
T

The case V & X wmekes no trouble,
R.B.D,
From this we get
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Proposition 2,4

TLet V Dbe a regulap local ring such that S = A 1s liftable
to V/mVZ, Then
i) If R(A) is a regular local ring, so is RO(4) ,
ii) If R°(A) is regular, then the morphism

R(A) ——> OR(A)
aplits
Proof

i) follows from the commutativity of the diagram

* +
HZ , 3 OHQ.
Lo
¥ 3 T
o 0’0
\q 1

using 2.2.8

o] . oJy o]
If RY(A) is regular, then ~T'= R (A) .
The obvious surjection

1

B = u'(s,4,4) =4 j1'(8,4,4) — 11 (s,4,4) = &

induces an injection
0T1 3 T1

which defines a one-sided inverse of R(A) —3 RO(A) .

The surjections Q.E.D.
HY ——p JHT for i = 1,2

induce. morphisms
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oTi > Ti
If the corresponding diagram

OTZ ___‘_} T2
o, _c

0T1._“m} T1
cotmmites , then R{A)-—>R°(4) splits. In general there
seem to be no reasons for this diagram to commute. However
imposing some rather mpatural conditions on the graded algsbra
A, the commutativity can be proved.
Definition 2.0

We say that S -——3A has negative grading (resp. positive

grading) if

JH'(8,4,4) = 0 for v ¥ 0
(res - H'(s,4,4) = O for v <0
P . W Ll B - - '

If A has positive or negative grading, then the diagram
above commutes, proving

Theorem 2,6

If & = A has negative or positive grading, then
R(A) ——> RO(A)
splits as a local V~homomorphism.
In the same direction ®We have the following more general

result.

Theorem 2,7

Assume S = A has negative (resp. positive) grading and

put B = A[T] with degT = 1 (resp degl = ~1). Then there is
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8 V-isomorphism
R%(B) ~ R(4)

We shall need some preparatioﬁs.
et A and B be graded S-algebras and
¥ : B4
an S-algebra homomorphism, not necessarily graded,
i> 0, ¥ induce® maps
vt . mi(s,a,A) ——> HE(S,B,A)
¥i : H(S,B,B) —> HI(S,B,A)
Let Yi/O be the

composed map

JEH(8,B,B) ——>u1(S, B, B) ?%Hi(S,ZB,A)
1

Lemma 2.8
If ¥ and Y¥i/O are isomorphisms for i = 1

jections for i
R(4) ~ RY(B)

Remark 2.8 a

Let 7 : R—3R' Dbe a surjection in 1
ker 7 is & k-module via R-—xk . Look at
R ——% Sy
. ,_
b
L A N
! l,
K vy S5 e B oenem A

where &' and Y' are liftings to Syt and B’

For every

and ine

= 2 , then there is a local V-isomorphism

such that

is a graded
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Consider the diagram

H2(S,B,B) © ker W &= HZ(5,B,B) ® ker m
k

‘l’ / ¥,/0 ® ker

H%(S,A,4) ® ker T ——> H2(S,B,A) ® ker T
k ?2 ® ker T k

¥

lifting %o SR .

By [31], the obstructions for deforming A ana B respec-

tively map on the same element in HZ(S,B,A) ® ker T,

Proof of 2.8
We shall use the notation
i
Ty

for the completion of
4 #*
Symy (H'(S,B,4)")

The morphisms
: HY(S,A,A) ~— HI(S,B,A)

Vifo OHi(S,B,B) —> u(8,B,4)

vi o,
L

induce morphisms

i i
1 e Ty
which by the ¥proof™ of 2.2 and by 2.8.,a f£it into a commutative

diagram

Om? . 2 .~ e

SR A

Ot & 1~ 1
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The horigontal maps are surjections and isomorphisms by the

agsumptions of 2.8. Q.E.D

Remark 2.8 b

If yd is an isomorphism for i = 1 and an injection

for i = 2 the morphism
ety ¢ H'(8,3,B) —> 8'(5,4,4)
induces a morphism
| R{4A) —>R(B)

Now we turn to the proofs of 2.6 and 2.7
Proof of 2,7

Let
Y ¢ B —> A
be the composition
B = A[T] —— A[7]/(Tm1) ~ A
and let J Dbe the canonical injection
jJ: A-——3 B

et M Dbe any B-module.
j induces maps
¢ H(8,B,M) —> HN(8,4,M)
Using the exact sequence
. . o "
HY(A,B,M) ~—3 H*(S,B,M) —> H'(S,4,M) —> H""'(4,B,M) —>
and the fact that

HY(A,B,M) = O for i > 1



we deduce that jﬁ are isomorphisme for 1 = 1 , However
¥+ are the inverse maps of ji for 1 = 1,2 .

Hence by 2.8 it is enough to prove that
vifo : JHM(S,B,B) —> H(5,B,4)

is an isomorphism for 1 = 1 and an injection for i = 2,

Look at the diagram

JE(8,B,B) —> H(5,B,B) —> #(S,B,4)

L4 i
l In J]l;; Ia

(S, 4,B) 3 B'(S,4,B) ~—3 B (5,4,4)
i I
7H(8,4,A)® k[?] 3 EH(S,A,4)
K

where the lower horiwmontal map is induced by sending T to
1, If deg T =1 and if 1> 1, (¥H)"Wijo 1is given by the

composition

. [¢] . 0] . .
DHl(S,B,B) ~Lov HRS, AT ~ B v BY(S, A, A) > HE(S, A, A)

which ie an injection for all 1 > 1 . If A has negative
grading, then by definition Y1/o is an isomorphism. The

case degl = -1 is similar, Q.H.D

Proof of 2.6

Let

® 3 B -3 B/(T) = A
be the canonical surjection. Then

o ¢ mH(s,0,8) —> HH(8,B,4)
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are isomorphisme for i > 1 . By 2.8 b there is a morphism
RO(4) —> &°(B)

deduced form the commutative diagram

The horizontal maps are induced by (CD:L)"‘1 s i , Moreover
by 2.7 and its proof, the isomorphism.

R°(B) ~ R{A)

is deduced from the commutative diagram

O 2
LBeggﬁ* T

A
o, (8) | iom)
“rp - Ty
The horisontal maps are induced by
(¥ To(tiso) ¢ ul(s,B,B) —D HH(8,4,4)
However if degl = 1 , this mérphism is given by

0 . .
JE5(5,B,B) ~ v HN(S,A,A) —> HF(S, 4, 4)
\)'-'...-

which splits, Using & one-sided inverse; i.e. a projection
for i = 2, a comumtative diagram

T2

o (B)J, G(A)
O’l‘ __.h.,_b..% TA
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is found, inducing the isomorphism R°(B) ~ R(A) We claim
that the composed map |

RO(A) =3 R%(B) ~ R(4A)

is a one-sided inverse of R(A) ——3 RY(A) . This is

trivial if we look at the diagram
Ome ___ Ome 2
T Ty —>» T

0 o(A)

O
Tp — Opl - Tz

The composition of the horigontal maps are induced by the
obvious projections

GHY(8,4,4) € H*(S,4,4)
since (9) o @i are given by

. 8] . .
JH(8,B,B) ~ A ;»Ochs,A,A)T"w—w-) JHT(8,4,4)

gsending T %o 0O . The case degl = -1 is similarily

treated,
Q.E.D,

Theorem 2.7 can be generalized in the following way. Let
¢ = A7)y = By
be the localization of B 1in the multiplicative system

»)
{1,7,7°,...} and put deg? = 1 . Then for any finitely

generated S-algebra A , then is an isomorphism
R7(C) ~ R(4)

We omit details of a proof.



The conditions of negative and positive grading on S—3A are
only reasonable if the graded ring S 8its in degree gero

However, if S ~®A 1is any graded morphism and ©G is So

smooth, then

R(A) —— RO(4)

splits 1if Somdaﬂh has negetive or positive grading. In be-
eing more precise we shall assume that the "choice" of the
liftings of SO and S are compatible, i.e. for any R € obl ,
there is a morphism (SO)R-> Sy such that if R—>R' is in

1 , then there is a commutative diagram
(So)g —P Sy
Lo
(85)R? ey Spo
Then the maps
DefC(A/S,~) Defo(A/So,-«-)
Def (A/5,-) wed Def (4/8_,-)

are well defined and they are easily seen to be smooth.

Therefore the morphisms
RO(A/8) g R°(4/8,)
R (A/S)&— R (A/SO)
are still smooth. These maps fit into a commutative diagram

RO(A/S) & RO(A/SO)
0
R (4/S) g R (A/S)



The right hand vertical morphism splits because. Somw}A. has
negative or positive grading, By definition of smoothness

the left hand vertical morphism also gplits.
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CHAPTER 3

Relationg to projective geometry.

As we know the graded theory of algebras are closely
related to projective geometry. In what follows we shall
compare the groups vHi(S,A,M) with Ai(S,X, M{v)) when

X = Proj(4) . Moreover if

Pz B-——3 4

is & surjéctive graded morphism and

f 2 Proj(A) > Proj(B)
ig the induced embedding, we shall relate the groups
JE(EB,AM) b0 AM(s,1,Bi(v)) .
Let X Vbe any S~scheme, M any guasicoherent OX~Modu1e
and let f : X¥—>»Y ©be a morphism of S-schemes. Then there are
groups

At(s,x,M) ana AM(s,£,M)

for every i > 0 . Using [I1] we shall summarize some pro-
perties needed in the sequel.
1) (3.1.12) in [T1lstates that A“(S,X,M) is the abut-

ment of a spectral sequence given by the term

P39 = (X, 4%5,1)

If U= Spec(A) is an open affine subscheme of X , the

OX—Module Aq(s,ﬂ), or just AQ(M) , 18 given by

A0 (U) = HY(S,4,M(1))
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~J

If X is affine, say X = Spec(A), and M = M for some

A~module M , we deduce
al(s,x,1) = ut(s,4,M)
If X is S~smooth, we find
a¥(s,x,m) = BH(X,8, gg)
where BX = AO(OX) is the sheaf of S~derivations.

ii) By (3.1.14) in [14] 4%(S,£,M) is the abutment of

the spectral sequence given by
wP3d = mP(y,2%(£,M))
If V= Spec(B) is any open affine subscheme of Y , then by
definition
A%, (v) = a%B, 277 (V), 1)
Therefore if f is affine, say £~ (V) = Spec(4),
a%(B, 27" (), M) = HY(B,4,E(£7T(V),M))
iii) Let %< X be locally closed. By (3.1.16) there

is an exact sequence

e B8, K, M) — A28, X, 1) 3 AP(8,X-2,0) —>A"F (5, %,1) —>

where the groups A%(S,X,g) is the abutment of a spectral se-
guence given by the term
BP3% = aP(s,%,7300))

If X = Spec(A) and 2 = V(I) for a suitable ideal I C A

we write
H%(S,A,M) = A7(8,%,M)

iv) TLet f : XY be an affine morphism of S-schemes.

By (3.2.3) there is a long exact sequence



— AR(8,£,M) > A8, 1, M) — A(5,Y, £ ) —> A" (S, £,M) —>

Let 8 Dbenoetherisn and let A and B be finitely
generated, positively graded f-algebras generated by its

elements of degree 1. Assume AO = BO = S , Let

@ : Be> A
be a surjective graded S-algebra morphism and let
f 3 X = Proj(A) —~—> Proj(B) = ¥
be the corresponding embedding., Put

oD .
m = .u1ab and X' = Spec(A) -~ V{m)
V=

et

Ty X e X

be the obvious morphism, M is an affine smooth surjection.

If M is a graded A-module, we shall denote by Mg

the

localization of M in !1,a,a2,..,. b . Tet M(a) be the

homogeneous piece of Mg of degree zero,

Let b & B such that a =0{b). Since
B(b) ..«m)i Bb
is flat, a theorem from [A] gives the ieomorphism

Hq‘(B(b),A(a),Ma) ~ Hq(Bb,A(a) % b)Bb’Ma)

However

~ A

Aeoy® By
(Q)B(b) b a
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Therefore
BBy AnyMy) % HUBy, 2g,1,) o BA(B, 4,10)
Hence

BB (p) b(a) H(a)) = HHEBA (o)

D+(b) = Speo(B(b)) c ¥
Then by (ii)
éq(f,ﬁ(\)))(])'*_(b)) = Hq(B(b),A(a),M(V)(a))
Proving
~ e
AN, (V) ~ 198, 4,1) (V)
Using (i) we find

AYB, M) (D()) = BHB,4,,M,) = HUB,A,H),

a?

Therefore

Lo,

\ -
A%(B,3) ~ HY(B,4,M)
This proves
(448, 5)) ~ Eal(r,H(v))
With notations as above there is an isomorphism
alcs, 2, M) ~ (AM(B,x W)
3 ¥ . 'v - L4

where vAl(B,Xf,ﬁ) is the homogeneous piece of Ai(B,X',ﬁ)

of degree V.

e

Going back to the definitions of A*(S,f,H(v)) and



AH(E, %, M) in [11] we deduce a morphism

al(s, 2, 5(v)) —> ,at(s,x",H)

The corresponding moxphism of spectral seguences

BP (%, 4902, (V) —> JEP (AT (B,W) ~ JEP(X,m,A%(B,1m)

is an isomorphism for every p and (¢
QOEODI

Theorem 3,2

If ® ¢« BaA is surjective and if
depthmM > n an integer
then the morphisms
JEH(B, A, = 2aM(s,2,H(v))
are isomorphisms for i< n and injections for i = n

Proof

S 3

By iii) there is a long exact sequence

— wl (8,8,0) —>EL(3,4,m) —> 41 (8,x", %) —p (5,0, —

Since depthM > n , we conclude that
H%(M)=$ 0 for q < n~1
Moreover HO(B,A,-) = O since o is surjective., By the
spectral sequence of 1ii) we deduce
H-(B,4,M) = 0 for i < n

Corollary 5.3

If depth A > 2

Tra o
JH'(B,4,8) ~ 41(8,£,04(v))



JE2(B,4,8) <y A2(8,2,05(V)

are isomorphisms and injections respectively.
TLet us apply this result to the case S5 = k, k¥ a field,

We denote by

Hilbf(-)
the local Hilbert functor relative to Y at £ , defined on
the category 1 . (See the beginning of chapier 2 and use
V = 1{), Tet

Det® (v, -)
by the functor Def°(A/B,-) defined in chapter 2 using tri-
vial liftings of B,

Corollary 3,4

If depthmA.z 2 , then there is an isomorphism of functor
Def®(w,-) ~ Hilb,(-)
on 1 .

Proof

S AL

Both functors are prorepresentable. By (2.2) Def’(w,-)

is prorepresented by
sym( 1 (8,4,8)%) A & k
sym( B (B, 4,4)%) "

Using (5.1.1) in [T1], Hilbf(—) is prorepresented by the
object

sym(at(£,00%) M A x
X ®

Sym(4%(£,04)%) "
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The natural morphism of functors
Det®(w,-) —> Hilb.(~)

corresponds to a morphism hetween their prorvepresenting objects.
Thig is nothing but the morphism induced by the natural maps

in (3.2) LD

Assume B to be k~-free and
£f: X gj@i
%o be the induced embedding. In this case Hilb.(-~) is also
denoted by Hilbx(-) . Both Hile(—) and Deff(w,-) are

easily defined on 1 for V arbritary, and by the same

arguments as before there is an isomorphism of functors
0 o
Def~(w,~) wJﬁﬁylille(~)

on 1 whenever depth A > 2, Even if depth A > 1 we de~

duce this isomorphism in some cases, In Taclt, the sequence
1 .
0 —p H' (B, 4, 4) i &1 (I, £, 05) wd H' (B, 8,5 (1)) —3 5 (B, 4, A)—p 42 (k, £, 05)
is exact., The isomorphism therefore follows from
B (B,A,H (A) = 0
ofl A8, Ay Hy =
Recall that 1f Isker © & B
a' (B, 4,0 (8)) = Hom,(T/I%,H (A))
0 P T o0 A *“m
Furthermore X:E]TE =P and if n > 2
Bl (8) ~ uH' (2, T(V))
If we define ¢ Dby

¢ = max iV lH1(:P,E(\J))#Q}



Y fo

and

8 = min {deg filifi,n,frf is a minimal set of generatnra
of I}
then

OHi(B,A,Hrl(A)) =0 for ¢ < 8

In [E] we find mere or less a direct proof of (3.4).
So far we have concentrated on deformations of embeddings.

One may ask for the relationship between the groups
JEH(S, A,M)
and
o v 52
A (QngrM(V))

This is given by our next theorem

Theorem 3,5

There are canonical morphisms
JEE(S,8,00) —F 4t (5,%,H(v))
for emy i > o and any V. If =n > 1 and if depthmm >+l
then the morphisms above are bijective for 1< 1i<mn and
injective for 1 = n.
Proof,
Congider the following two exact sequences
> 5H(5, 4,1) = B (5, A,10) —> 41 (8, X", H) = mH (8, 4,10)—
e 23 (8 M)~ AL(, X1, - 4T (5,1, - 4T (s, TN
with

B: X' = Spec(L)-V(m)~—y X = Proj(i)
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as before, The speciral sequence given by
BP9 = BP(x,a%m, W)
converges to
APY(s M)
A%, M) is defined by
A%, M) (D, () = A4y Ay, M)

and it is easy to see that

0 q 40

Aq(ﬂaﬁ) == { - ?/j[ 0
# 4 =

Since depth M > n+2 then

at(s,m,m)

i

HE (2,7, M) = £ES(X,M(v)) = 0
Turthermore

Ho(M) = 0
implying that

BH(8,0,1) = 0

for 1< i <n

for i < n+1

for i < n+1

The theorem now follows from the two exact sequences stated

at the beginning of this proof.

Coxollary 3,6

If depth A>3 and
81(8,X,04(v)) = 0
for every v , then

H1(S,A,A) = O

QoEvDo



oy aﬁ.?. o

In the smooth case
81(5,%,04(0) = B (X,04(v))

and (3.6) reduces to a rigidity theorem of Schlessginger;
see (2.2.6) in [K,1] . See also [&v].
Corollary 3.7
If depth A > 4 and
42(8,%,05(v)) = 0

for every Vv, then
Hz(S,A,A) = 0
[P SR ——
If X has only a finite number of nonsmooth points, then
H (2,41 (04(v)) = 0
Moreover if the non-smooth polnts are complete intersections

10X, A7 (04 (v)) = 0
In this case we conalude
- 2
12(8,%,05(v)) ~ H2(X,0,(v))

We will end this chapter by proving & geometic variant of
(2.7) due to Pinkham [P], we also need (3,4).
Iet R be kefree and ©® : R —3 A Dbe surjective,

corresponding to X = Proj(A) gj&m} Look at the diagram

R[?] ~—> R

B = A[TP] —> A

where ® = © ® 1dyrq] and where the horizontal maps are induced
k

by sending T to 1. Put deg T = 1.



~ 43 -

Clearly

Def®(#,-) —> Der®(B/k,-)
is smooth. Hence

R%(B) ——> RO(®)
is smooth, If A hasnegative grading
R(A) ~ R(B)

The composition

R(A) ~ RO(B) —3 RO(P)
is therefore smooth,

Moreover if depth A > 1 then depth B > 2. Using (3.4)

we\find

Def®(®,-) ~ Hilby(-)
whenever X = Proj{(B) . This proves

Theorem 3.8

Let X %De a eloged gubsgcheme of Zwﬁ' and let A The its

minimal cone. If
¥ = proj(alt])

ig its projective cone in 3@“;1 and if A hag negative grading,

then there is a smooth morphism of functors

Hilbg(~) -3 Def(A/k,-)

on 1 (V arbritary)
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CHAPTER 4

Positive and negative grading

In this paragraph we shall see that if
N
Xc Iy

is closed and satisfies some weak conditions, then after a

~ suitable twisting the minimal cone of the corresponding em-

bedding will have positive of negative grading.

Suppose S5 noetherian and let
o0
A= H A
\):‘-—“Ov
be a graded AO = 5 algebra of finite type, generated by

A1. Denote by m the angmentation ideal of A; i,e.

(]
"= vl-f1 by
Assume moreover
depthmA > 1

Let M be any graded A-module and put

Mgy = L My,

Vi OO
In what follows we shall relate the groups
(S, 4,M)

to the groups

(5, 8a) H(q))

Lemma 4,1

If X! = Spec{d) - V(m) and x"(d} = Spec (A4)) - V(megy)

then the groups
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A (8,10, gy = A8, X7 (), H(g))
are isomorphic for every i

Proof

Lopemer T

The canonical morphism A(d)c—wéﬂ induces & morphism of

schemes
T X ()
thus a homomorphism '

Ates,x M) Ai(s,X'(d),”ﬁ)

It suffices to prove that the corresponding morphism of spectral
sequencés
HP(X"Aq(M))(d) — HP(X'(d)Léq(ﬁ(d)))
ig an isomorphism for every p and gq .
Congider the commutative diagram
t t
=2 Xa)
ln in
-A# LU - s A
Proj{s) = X == X(d} PTOJ(A(d))

Then

EO(x, A%H)) gy & BP(EmA ) 5y gHP(K,Aq-(ﬁ)(dv)) >

%HP(X(G)pﬂq(Mkd))(V))f: HP(X(d),”%Aq(ﬁ(d))) Z‘HP(X'(d),Aq(ﬁ(d)))

This will prove
Theorem 4.2
Let n Dbe an integer and assume depth M 2> n + 2

Then



(S, 4,00 14y = BHS, Aegyg))

are isomorphic for i <n and for every 4 > 1t .,

Proof

presnayrwee

Congider the exact sequences
s HL(S, 8,M) gy ~3 BT (8, 4,M) gy =>4 (5,X7, ) (g — (8, 4,10) gy

—P Hi(d)(S’A(d)’M(d)) e Hi(S,ﬂ(d)sm(d)M Ai(S,X' (d)’ﬁ(d)) *—-)Iiljﬁ?;gs,ﬁ(d)’

Mita)) >
Since depthM = n+2 1is equivalent to the conditions

M~ JHO(X,M(v))
Y

Ua(x, H(v)) = 0 gor 1< i<n
AV

we easily deduce
d@PthM(d) R a2
Hence

@wﬁﬂ>=%mf&%mﬂmﬂ:° For 4%

Q- E; :D-m

We are specially interested in (4.2) for the case n = 1
and M =A, Tet R be a graded S-free algebra, generated

by R4, such that

»
Pl

A= R/I
Put P = ﬁg = Proj(R)

If N> 2
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H () = B (2, 3(6)) = mn'(Few))
t t

Futhermore by assumption depth A > 1 , fhus
0
H,(A) =0
Recall also

i+ a) =_%Hi(X,OX(t)) =.§Hi(ox(t)) for i > 1

Proposition 4.3

Let 4 > 1 and assume
H'(X,04($+1)) = 0 5'(2,%(t+1)) = 0
for all + > d , Then there is a natural isomorphism
s (8,4,4) ~ vH1(S,A(d),A(d))

for v =1
Froof

Consider the long exact sequences

> E (8,00 ()~ (5,4, ) (g X8 D gy >, (5,1,0) gy —

> Wy (518ay s ay)> B8, Ay ) > RS (0 0 )=

2
B(a)

By agsumption we have

H (S,A(d},ﬁ(d)) e
Ao (5,4,4) = (8, 0,E () = dvDerS(A,%H1(T(t))) = 0

1 o _ . - _
VH m(d)(D’A(d)’A(d)) = VDelS(A(d)’%H (I(dt))) = 0

since VvV =~ 1,
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Futhermore
av (5,4, K%(8)) = g Derg (4,181 (0 (1)) = 0
vHO(S,A(d),HZ dr(ﬁ)): vners(ﬁ(d),%HT(oX(at))> =0

Mea)
Since
1 . \ o 1

B (R, AH () — H'(5,4,H' (4))

ig surjective and since
2 ~
Ao (R, 4,8 (4)) = 4 Hom, (T/1 ,¥H1(I(t))) -0
we find
1 )

aoH (8, 4,H_(4)) = 0 for v > 1

oimilarely we prove that

vH1(S,A(d),H1m(d)(A(dj)) = 0 for v > 1,
Hence

deZm(S,A,A) =0 for v > 1

VHzm(_d)(s,A(d),A(d)) =0 for v > 1

The exact sequences above together with (4.1) prove the pro-

position

Goroldary 4.4
If depth A = 2 and if Vv 1is an integer such that

' (X,04(av+1)) = 0

then

_— 1
ol (5,4,0) =0 dmplies  H (S,A15),4(qy) = O
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Proof

ik v

By assumption
1 1
H (4) = H m(d)(Atd))

Moreover

it

(dv+1)H2m(A) H“(X,ox(av+1)) = 0

Thus

oo (8,4,4) = o Derg(A,H (4)) = 0

Using the long exact sequences of the proof of (4.3) we find

a diagram

1 1/ e
0 —3 g H (8,4,8) _223y,u4 (8,X1,04,) 30
4

0 =3 (8, 4g)sb(q)) = vM(S’X'(d)'OX*(d))

which proves 4.4
Q.E.D.

Corollary 4.5  (Negative grading of A(d))

Assume depthmﬁ.z 1 and suppose there is a d > 1 such

that
1’ (X,04(5+1)) = 0 1 (p,¥(t+1)) = 0
JH(8,4,4) =0 for +t >4
Then
vH‘(s,@(d),A(d>) =0 for v > 1
Proof

Use 4.3 for Vv = 1,2,...,
Q.10. D,



Corollory 4.6 (Positive grading of Ayy)

Assume depth A > 2. OSuppose there is & d > 1 such that

(B (8,4,8) = 0 H'(X,05(=t+1)) = 0 for t > d
then
1
Wi (S:A(d);ﬁ(d)) = 0 for v < 0
Froof

Use 4,4 for Vv = -1,-2,...
Q.E.D,

Let us put 4.5 and 4.6 together in the following theorem
Theorem 4.7

Tet X = Proj(a)
a) If X is S-smooth, then there is a graded S-algebra B

having negative grading such that
X~ Proj(B)
b) If depth A> 2 and if there is an integer n such that
H'(X,05(6)) = 0 for £ < n

then there is an S~algebra B having positive grading

such that
X ¥ Proj(B)
¢) If X satisfies the conditions of a) and b) <then
X = Proj(B)

for an S-algebra B which has both positive and negative
grading
Proof

If X 1is S-smooth, then



- 01 .

JET(8,4,4) = 0
for large V. In fact the sequence
1 1 ‘
—3 HO(S, A, H n(8)) =S H (S, 4,4) e A1 (8,X1, 05, )
is exact and
1 Tyl
V(8,81 (8)) = vDerS(A,tH1(I(t))) = 0
VB (8,X1,05,) = JH(X,8y,) = JE(X,m,84,) = 0

for large Vv . Thus (4.5) proves a), (4.6) proves D)

since
JT(8,4,1) =0
for small V , This follows from the surjection
H(R, 4, A) — H(S,A,A)
and from the fact that |
JE(B,4,4) = JHom, (1/T%,4) = 0

for small V. Q.B.D.

For similar results, see [83] and [M].
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CHAPTER 5

The existence of a k-algebra which is unliftable to charae-

terigtic suro,

In [Se] Serre gives an example of a k-smooth projective
variety X 1in characterigtic p which cannot be lifted to
characterietic zero, This means that for any complete local
ring £\ of characteristic zero such that 1\/mf&=k, it‘is

impossible to 1ift X to /N, His varitey is of the form
X = /G

when Y ig a complete intersection of dimention 3 and ¢ is
a finite group operating on Y without Tixpoints. Futhermore
the order of @ divides p . |

By (4.7 a) thore exisls a graded k~algebra B with negative
grading such that

X = Proj(B)

Hence (2.6) proves that B cannot be lifted to any (noetheri~

an) complete local ring A of characteristic zero. In fact

the example of Serre satisties even (4.7 c¢), thus proving the

existence of a graded k-algebra C satisfying H'(k,0,0) = 0
for v 4 0, such that X = Proj(d) . (2.6) reduces +o the

almost triﬁial result
0
R°{C) ~ R(C)
Clearly € is unliftable to any complete local ring A\ of
characteristic zero,

The reagon why Serre’'s example works is obviously that p,

the characteristic of k, divides the order of G ., To see



this, let us prove

Theorem 5,1

Let B-—>A be an S-algebrahomomorphism having a B-linear
retraction. Let I C A Dbe an ideal such that the comosed

morphism
U = Spec(A) ~ V(I)E3 Spec(A) —yp Spec(B)
is étale. If depthIA = n+2 , then there is an injection

(8, B,B) ey BH(S, 4, 4)

By étaleness Ai(B,II,O[I) =0 for all i , and the

depth condition implies

HE(B,4,4) = 0  for i < net
Using the exact sequence

> HI(B, 4, 4) —> HL(B, 4, 4) -—>41(3,1,0,) —>

we conclude

HY(B,A,A) = O for i < n+1
However, there is an exact sequence
> BN (B, &, 4) —>x T (5, 4,4) —3> EL(S, B, 4) ~>u (8,4, 4) ~>
Hence

HH(8,4,4) ey HH(S, B, 4) i<n

L]

Since the injection B-—3»A has a B-linear retraction
o' ($,B,B) — H(S,B,4)

is injective f£ér any .i
QﬂElDl



Apply (5.1) to the following situation.,. ILet

Y = Pro;j{4)

" be a projective k-scheme, and let G be & finite group acting

on A such that the graded injection

JENY
induces Y—>Y/G = X . Assume Y- ¥ &tale and suppose
that the ordey of G does not divide the characteristic of

the field Lk .
Corollary 5,2

a) If depthmA 2 3  then
H (k,4,A) =-0  implies  H'(x, 4%1%) = 0
b) If depth A > 4 then
Ho(k,A,A) = 0 implies  H2(k, 4%, %) = 0
Froof
Clearly AGﬁhg.ﬁ has a retraction by the assumption on
ord(G). Moreover the morphism
Spec(d) - V(m) —> Spec(AG)

is étale. We use (5.1)
Q.B.D,

Agsgume Y +to be a complete intersection
Y = Proj(A)

with depth A > 4, Under the same conditions as in (5.2) we

deduce
H(x, 2%, 4% = 0

Clearly % = Proj(AG) behaves as the example of Serre except



for the condition on ord(G).
Remark

Clearly (5.2) is true not only for graded k-algebras A,
Tn this case we suppose the condition on ord(G) and that

the morphism
spec(Ah) - V(m) —> Spec(d)

is étale. Tor (5.2 a) , see [s2].
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