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Summary of talks. We consider space curves X with homogeneous ideal I and Rao module M which
often satisfy 0Ext2R(M,M) = 0. We find necessary and sufficient conditions for unobstructedness, and we
compute the dimension of the Hilbert scheme, H(d, g), at (X) under the sufficient conditions. In the diameter
one case (Mv = 0 for v 6= some c), the necessary and sufficient conditions coincide, and the obstructedness
turns out to be equivalent to the non-vanishing of certain graded Betti numbers, e.g. there are repeated direct
free factors ("ghost-terms"), in the minimal free resolution of I. Moreover by taking suitable deformations
we show how to kill some of the "ghost-terms" in the free resolution of a curve of arbitrary diameter. For
Buchsbaum curves of diameter at most 2, we simplify in this way the minimal resolution further, allowing
us to see when a singular point of H(d, g) sits in the intersection of several, or lies in a unique irreducible
component of H(d, g). As a consequence we get that any irreducible component of H(d, g) is generically
smooth in the diameter 1 case.

1 Introduction.
The main object of these notes is the Hilbert scheme H(d, g) of space curves. As a set the
Hilbert scheme H(d, g) is

H(d, g) =
{

(X) | X ⊆ P3 a curve of degree d and arithmetic genus g
}

where we by a curve mean an equidimensional, locally Cohen-Macaulay (lCM) one-dimensional
subscheme of the projective 3-space P3 defined over an algebraically closed field k. The Hilbert
scheme H(d, g) is actually the representing object of a correspondingly defined functor of (flat)
deformations. Its existence as a scheme was proved in the late fifties by Grothendieck [14].

In these notes we will focus on the structure of the Hilbert scheme H(d, g). Much is still
unknown concerning questions related to irreducibility, number of components, dimension
and smoothness of H(d, g). For particular classes of space curves, some results are known,
e.g. that the open subset of H(d, g) of arithmetically Cohen-Macaulay curves is smooth of
known dimension [8]. Further progress to the questions was made in [35], [19], [20], [2], [3],
[36], [37], [25], [12], [26], [7], [10], [11], [31] and [22], to mention some paper of particular
relevance for these notes. In the talks we will report on the work [22] with a special look to
obstructedness of Buchsbaum curves, interpreted by their minimal resolutions, and the set
of irreducible components of H(d, g) containing Buchsbaum and arithmetically CM curves.

In the following we will use these



Notations and terminologies

• R = k[X0, X1, X2, X3] a polynomial ring over k = k.

• m = (X0, .., X3) is the irrelevant maximal ideal.

• IX := the ideal sheaf of X in P = P3.

• NX := HomOP (IX ,OX) the normal sheaf of X ⊆ P3.

• Hi(F) := Hi(P,F), where F is a coherent OP-Module.

• Hi
∗(F) = ⊕v Hi(F(v)).

• hi(F) := dim Hi(F), and χ(F) = Σ(−1)ihi(F).

• Γm(N) := ⊕v ker(Nv → Γ(P, Ñ(v))), where N is a graded R module of finite type.

• Hi
m(N) is the right derived functor of Γm(N).

• I = I(X) := H0
∗(IX) is the homogeneous ideal of X ⊆ P.

• M = M(X) := H1
∗(IX) is the Hartshorne-Rao module of X ⊆ P.

• E = E(X) := H1
∗(OX).

• The postulation of X ⊆ P is the function γ(v) = h0(IX(v)) defined over the integers.

• ρ(v) = ρX(v) := h1(IX(v)) is the deficiency function, and

• σ(v) = σX(v) := h1(OX(v)) is the specialization function.

• vext(N1, N2) = dim vExti(N1, N2) etc., i.e. we use small letters for the k-dimension.

Attached to a curve X ⊆ P3 we define the following numbers;

• s(X) := min{n| h0(IX(n)) 6= 0},
• e(X) = max{n|h1(OX(n)) 6= 0},
• c(X) = max{n|h1(IX(n)) 6= 0}, provided M 6= 0.

• b(X) = min{n|h1(IX(n)) 6= 0}, provided M 6= 0.

• Then diamM = c(X)− b(X) + 1 is the diameter of M , or of X (let diamM = 0 if M = 0).

• If M = 0, we say X is arithmetically Cohen-Macaulay (ACM).

• If M 6= 0 and c(X) < s(X), or if M = 0, we say X has maximal rank.

• If M 6= 0, c(X) < s(X) and e(X) < b(X) (or if M = 0, and e(X) < s(X)), we say X has
seminatural cohomology.

• If m ·M(X) = 0, then X is a Buchsbaum curve.

For the Hilbert scheme and its strata we say that

• X is unobstructed if the Hilbert scheme, H(d, g), is smooth at the corresponding point (X),
otherwise X is obstructed.
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• Hγ,ρ ⊆ H(d, g) is the stratum consisting of curves X with constant cohomology, i.e. γX and
ρX do not vary with X [25].

• Hγ ⊆ H(d, g) consists of curves with constant postulation γ.

• H(d, g)S ⊆ H(d, g) is the open subscheme consisting of smooth connected curves.

• The curve in a small open irreducible subset of H(d, g) (small enough to satisfy all the
openness properties which we want it to have) is called a generic curve of H(d, g).

• If a generic curve has a certain property, then there is an non-empty open irreducible subset
of H(d, g) of curves having this property.

• A generization X ′ of X in H(d, g) is a generic curve of some irreducible subset of H(d, g)
containing (X). Then X is a specialization of X ′ in H(d, g).

2 Preliminaries.
In this section we shortly review some results which we will need later on and we include
references for a more thorough reading.

2.1 Cohomology groups and deformations.

Let N , Ni be graded R-modules of finite type, and recall that the right derived functor
vExtim(N,−) of vΓ0

m(HomR(N,−)) is equipped with a spectral sequence ([13], exp. VI)

Ep,q
2 = vExtpR(N1,H

q
m(N2)) converging to vExtp+qm (N1, N2) (1)

and a duality isomorphism ([21], Thm. 1.1, [19] Thm. 2.1.4 and Rem. 2.1.5 for a full proof);

vExtim(N2, N1) ∼= −v−4 Ext4−i
R (N1, N2)

∨ where (−)∨ = Homk(−, k), (2)

which generalizes the usual Gorenstein duality vH
i
m(N) ' −vExt4−i

R (N,R(−4))∨. These
groups fit into a long exact sequence ([13], exp. VI)

→ vExtim(N1, N2)→ vExtiR(N1, N2)→ ExtiOP
(Ñ1, Ñ2(v))→ vExti+1

m (N1, N2)→ (3)

which in particular relates the deformation theory of the curve X ⊆ P3, described by

Hi−1(NX) ∼= ExtiOP
(IX , IX) for i = 1, 2 (4)

(cf. [19], Rem. 2.2.6 for a proof of this isomorphism), to the deformation theory of the
quotient A := R/I(X), or equivalently of the homogeneous ideal I = I(X), described by

0ExtiR(I, I) for i = 1, 2

(cf. [19], Thm. 2.2.1 and [36], Thm. 2.3 where Walter manages to get rid of the “generically
complete intersection” assumption of [19], § 2.2), in the following exact sequence

0→ vExt1
R(I, I)→ H0(NX(v))→ vHomR(I,M)

α−→ vExt2
R(I, I)→ H1(NX(v))→ . (5)
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Note that M = H2
m(I) and vExt2

m(I, I) ∼= vHomR(I,M). In this situation Walter also proved
that the map α : vHomR(I,M)→ vExt2

R(I, I) of (5) factorizes via vExt2
R(M,M) in a natural

way ([36], Thm. 2.3), the factorization is in fact given by a certain edge homomorphism of
the spectral sequence (1) with N1 = M , N2 = I and p+ q = 4.

Let DefA be the deformation functor of deforming A = R/I as a graded quotient of R,
defined on the category of local artinian k-algebras with residue field k. Let HilbX be the
corresponding deformation functor of X ⊆ P3 (i.e the local Hilbert functor at X) defined on
the same category. Note that (5) and the assumption 0Hom(I,M) = 0 lead to

DefA ∼= HilbX (6)

because the assumption leads to an isomorphism of their tangent spaces and an injection
of their obstruction spaces. This was first proved in [17] (Thm. 3.6 and Rem. 3.7) in this
generality using a cohomological proof, but the case M = 0 was already proved in [8] with a
direct proof.

Lemma 1. With M = H1
∗(IX) and E = H1

∗(OX) we have

vExtiR(M,M) ∼= −v−4 Ext4−i
R (M,M)∨ , i, v ∈ Z.

Moreover if vExt2
R(M,M) = 0, then there is an exact sequence

0→ −v−4Ext1
R(M,M)→ vExt1

R(I,M)∨ → −v−4HomR(M,E)→ 0 .

Proof. The duality follows from (2) sinceM is artinian. By (2) we also have vExt1
R(I,M)∨ ∼=

−v−4Ext3
m(M, I) and then we conclude by a standard exact sequence associated to (1).

2.2 Minimal resolutions, linkage and deformations.

Let X be a curve in P3. Related to a minimal resolution,

0→ ⊕iR(−i)β3,i → ⊕iR(−i)β2,i → ⊕iR(−i)β1,i → I → 0 , (7)

of the homogeneous ideal I of X, we define the following invariant:

Definition 2.

δj(v) =
∑
i

β1,i · hj(IX(i+ v))−
∑
i

β2,i · hj(IX(i+ v)) +
∑
i

β3,i · hj(IX(i+ v)) .

We also write βj,i(X) = βj,i. We get (see [22], Lem. 2.2, for a proof).

Lemma 3.

0ext1
R(I, I)− 0ext2

R(I, I) = 1− δ0(0) = 4d+ δ2(0)− δ1(0) = 1 + δ2(−4)− δ1(−4) .

Remark 4. In [25] the numbers 1 − δ0(0) and δ1(−4) were called δγ and εγ,δ respectively.
By Lemma 3 it follows that the dimension of the tangent space to the Hilbert scheme Hγ,ρ at
(X), which they show is δγ + εγ,δ− 0hom(M,M)+ 0ext1(M,M) (Thm. 4.2, page 173), is also
equal to 1 + δ2(−4)− 0hom(M,M) + 0ext1(M,M).
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In these notes to the talks we need the notion of linkage and the following proposition
(see [20] , Prop. 3.12 and Prop. 3.8, for a proof). We consider IX/Y := IX/IY as the sheaf
ideal of X in Y .
Definition 5. Two curves X and X ′ are said to be (algebraically) CI-linked if there exists a
complete intersection curve (a CI) Y such that

IX/IY ∼= HomOP(OX′ ,OY ) and IX′/IY ∼= HomOP(OX ,OY ) .

Thus if Y is a CI of type (f, g), then we know that the dualizing sheaf satisfies ωY ∼=
OY (f + g − 4), and hence we get

IX/Y ∼= ωX′(4− f − g) and IX′/Y
∼= ωX(4− f − g) . (8)

Proposition 6. Let X and X ′ be curves in P3 which are linked (algebraically) by a complete
intersection of two surfaces of degrees f and g. If

H1(IX(v)) = 0 for v = f, g, f − 4 and g − 4,

then X is unobstructed (resp. generic) if and only if X ′ is unobstructed (resp. generic).
Now recall Rao’s theorem concerning the form of a minimal resolution (7) of I = I(X).

Let
0→ L4

σ−→ L3 → L2 → L1 → L0 →M → 0 (9)
is the minimal resolution of M = H1

∗(IX). Then (7) and

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I → 0 (10)

are isomorphic. Here the composition of L4 → L3⊕F2 with the natural projection L3⊕F2 →
F2 is zero ([34], Thm. 2.5).

It is well known that the Hartshorne-Rao module M is a biliaison invariant, up to twist
([34]). Moreover using (8) and the fact that ωX′ ∼= Ext2(OX′ ,OP(−4)) it is rather straightfor-
ward to find a resolution of IX′ in terms of the resolution (7) and some part of the resolution
of the dual of M , by the mapping cone construction. Using the mapping cone construction
twice, we get a nice relationship between the minimal resolution (10) of I and a free resolu-
tion of the homogeneous ideal of the bilinked curve Z. Indeed suppose we link X, first using
a CI of type (f, g), then a CI of type (f ′, g′), and put h = f ′ + g′ − f − g. Then

0→ L4(−h)
σ(−h)⊕0−−−−−→ L3(−h)⊕ F2Z → F1(−h)⊕R(−f ′)⊕R(−g′)→ I(Z)→ 0 (11)

is a free resolution of I(Z) where F2Z := F2(−h)⊕R(−f − h)⊕R(−g − h) (see [27]). Note
that this is not necessarily a minimal resolution. For instance if one of the hypersurfaces of
the second linkage is the same as one of the hypersurfaces of the first linkage (e.g. f = f ′),
the direct factor R(−g′) is redundant.
Example 7. (Sernesi [35], [6]) If X is “2 skew lines”, and we link twice via CI’s of type
(4, 2) and (4, 6), using a common hypersurface of degree 4 in both linkages, then we get a
curve Z of degree 18 and genus 39 and with minimal resolution

0→ R(−8)→ R(−8)⊕R(−7)4 → R(−6)4 ⊕R(−4)→ I(Z)→ 0 ,

cf. (11). If we compare it to the Rao form (10), we see that F2 = R(−8) and that 0→ L4 =
R(−8)→ L3 = R(−7)4 is the leftmost part in the minimal resolution “the Koszul resolution”
of M(Z) where M(Z) = R/m(−4).
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3 Sufficient conditions for unobstructedness.
In these notes we will focus on the structure of the Hilbert scheme H(d, g). As mentioned
earlier, much is still unknown concerning questions related to irreducibility, number of com-
ponents, dimension and smoothness of H(d, g). Some results are, however, known. In 1975
Ellingsrud [8] managed to prove that the open subset of H(d, g) of arithmetically Cohen-
Macaulay curves (resp. with fixed postulation) is smooth (resp. irreducible), and he com-
puted the dimension of the corresponding components. A generalization of this result in the
direction of smoothness and dimension was given in [19] (see Theorem 8 (i) below) while the
irreducibility was generalized by Bolondi [2]. Later, Martin-Deschamps and Perrin gave a
stratification Hγ,ρ of H(d, g) obtained by deforming space curves with constant cohomology
[25]. Their results lead rather immediately to (iii) in the result below. In [22] we made some
further progress and proved among other things the following result.

Theorem 8. Let X be a curve in P3 of degree d and arithmetic genus g, let I = H0
∗(IX),

M = H1
∗(IX) and E = H1

∗(OX) and suppose at least one of the following conditions:

(i) vHomR(I,M) = 0 for v = 0 and v = −4 ,

(ii) vHomR(M,E) = 0 for v = 0 and v = −4 , or

(iii) 0HomR(I,M) = 0 , 0HomR(M,E) = 0 and 0Ext2
R(M,M) = 0 .

Then H(d, g) is smooth at (X), i.e. X is unobstructed. Moreover if 0ExtiR(M,M) = 0 for
i ≥ 2, then the dimension of the Hilbert scheme at (X) is

dim(X) H(d, g) = 4d+ δ2(0) + −4homR(I,M) + −4homR(M,E) .

The following proof is a simplification of the proof of Thm. 2.6 in [22].

Proof. Suppose (i). To see that X is unobstructed we combine (6) with

0Ext2
R(I, I) ∼= −4Ext2

m(I, I)∨ ∼= −4Hom(I,M)∨ , (12)

which we deduce from (1) and (2). It follows that DefA is smooth by the assumption
−4Hom(I,M) = 0, whence X is unobstructed. The proof is really nothing more than to
interpret the exact sequence (5) in terms of deformation theory.

(iii) One may deduce the unobstructedness of X from results in [25] by combining Thm.
1.5, page 135 with their tangent space descriptions, pp. 155-166. We will, however, give
a partially independent proof, using an exact sequence which we need later on. Indeed it
suffices to prove, and interpret in terms of deformation theory, the exact sequence

0→ Tγ,ρ → 0Ext1
R(I, I)→ 0HomR(M,E)→ 0Ext2

R(M,M)→ 0Ext2
R(I, I)→ (13)

where Tγ,ρ is the tangent space of the Hilbert scheme of constant cohomology Hγ,ρ at (X).
To prove it we use the spectral sequence (1) and the duality (2) twice and Walter’s remark
on the factorization of α via 0Ext2

R(M,M) in (5), see [22], Thm. 2.6 (iii) for details.
To see that X is unobstructed, we get by (13) and the vanishing of 0HomR(M,E) an

isomorphism between the local Hilbert functor of constant cohomology at X and DefA. The
former functor is smooth because 0Ext2(M,M) contains in a natural way the obstructions of
deforming a curve in Hγ,ρ (cf. [25], Thm. 1.5, page 135). Hence we conclude by (6).
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(ii) We claim that the unobstructedness of X follows from Proposition 6. Indeed if we take
a complete intersection Y ⊇ X of two surfaces of degrees f and g such that the conditions
of Proposition 6 hold (such Y exists), then the corresponding linked curve X ′ satisfies

vHomR(I(X ′),M(X ′)) ∼= vHomR(M(X), E(X)) for v = 0 and v = −4 (14)

becauseM(X ′) (resp. I(X ′)/I(Y )) is the dual ofM(X)(f+g−4) (resp. E(X)(f+g−4)) and
vHomR(I(Y ),M(X ′)) = 0 for v = 0,−4 by assumption. Hence we conclude by Proposition 6
and the proof of (i) above.

It remains to prove the dimension formula, i.e. to prove

h1(NX) = δ2(0) + −4homR(I,M) + −4hom(M,E) .

Since this follows from the next lemma, we are done.

Lemma 9. Let X be any curve in P3 such that 0ExtiR(M,M) = 0 for i ≥ 2. Then

h1(NX) = δ2(0) + −4homR(I,M) + −4hom(M,E) . (15)

Proof. The main observation for proving the lemma is the fact that 0Ext2
R(M,M) = 0 implies

α = 0 in the sequence (5) for v = 0. Since the cokernel of the rightmost map in (5) is
0Ext3

m(I, I), it follows that h1(NX) = 0ext2
R(I, I) + 0ext3

m(I, I). Moreover using the spectral
sequence (1) which converging to 0Ext3

m(I, I), we get 0ext3
m(I, I) = 0homR(I, E)+0ext1

R(I,M)
because

0Ext2
R(I,M) ∼= −4Ext2

m(M, I)∨ ∼= −4Hom(M,M)∨ ∼= 0Ext4
R(M,M) = 0.

Finally since 0ext1
R(I,M) = −4hom(M,E) by Lemma 1 and δ2(0) = 0homR(I, E) by Remark

7 of [20], we conclude by (12).

Corollary 10. Let X be any curve in P3, let diamM ≤ 2 and suppose e(X) < s(X). If
diamM 6= 0, suppose also e(X) ≤ b(X) and c(X) ≤ s(X). Then

H1(NX) = 0 .

Proof. This follows from (15). We leave the details to the reader (or see [22], Cor. 2.8).

4 Comparison of deformation functors
In this section we will use cohomological methods to investigate when the immersions

Hγ,ρ

(
1)
↪→ Hγ

(
2)
↪→ H(d, g)

are isomorphisms around (X). Indeed by the semicontinuity of hi(IX(v)) it is rather obvious
that (2) (resp. the composition of (1) and (2)) is an isomorphism at (X) provided X has
maximal rank (resp. seminatural cohomology). We shall, however, show the isomorphisms
under weaker assumptions. As a consequence we get some interesting information on the
semicontinuity of the graded Betti number for curves X in P3.
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Proposition 11. Let M = H1
∗(IX) and E = H1

∗(OX). Then

(a) 0HomR(I,M) = 0 ⇒ Hγ
∼= H(d, g) are isomorphic as schemes at (X).

(b) 0HomR(M,E) = 0 ⇒ Hγ,ρ
∼= Hγ are isomorphic as schemes at (X).

Proof. (a) By interpreting the exact sequence

0→ 0Ext1
R(I, I)→ H0(NX)→ 0HomR(I,M)

α−→ 0Ext2
R(I, I)→ H1(NX)→ (16)

in terms of deformation theories, as done in (6), we get the conclusion.
(b) was established in the proof of Theorem 8 (iii) by interpreting the exact sequence

0→ Tγ,ρ → 0Ext1
R(I, I)→ 0HomR(M,E)→ 0Ext2

R(M,M)→ 0Ext2
R(I, I)→ (17)

in terms of deformation theories.

To see that the assumption above is by much weaker than claiming X to have seminatural
cohomology, we include a result for generic curves:

Proposition 12. Let X be a curve in P3, and suppose X is generic in the Hilbert scheme
H(d, g) and satisfies 0Ext2

R(M,M) = 0. Then X is unobstructed if and only if

0HomR(I,M) = 0 and 0HomR(M,E) = 0 . (18)

Proof. One way is clear from Theorem 8. Now suppose X is unobstructed and generic with
postulation γ and deficiency ρ. By generic flatness we see that Hγ,ρ

∼= Hγ
∼= H(d, g) near (X)

from which we deduce an isomorphism of tangent spaces Tγ,ρ
∼= 0Ext1

R(I, I) ∼= H0(NX). We
therefore conclude by the exact sequences (17) and (16), recalling that the map α of (16)
factorizes via 0Ext2

R(M,M), whence α = 0.

As a surprising consequence of Proposition 11, we get some “new” semicontinuity results
which we heavily use in section 6.

Corollary 13. Inside Hγ and hence inside Hγ,ρ the graded Betti numbers obey semicontinuity,
i.e. if X ′ is a generization of X in Hγ, then

βi,j(X
′) ≤ βi,j(X) for any i, j .

In particular if 0HomR(I(X),M(X)) = 0, then βi,j(X
′) ≤ βi,j(X) for any i,j and every

generization X ′ of X in H(d, g).

Proof. Apply Nakayama’s lemma to the syzygy modules of (7) (see Rem. 7 of [23] and [33]).
Then combine with Proposition 11 (a).

Example 14. It is known that the curve Z of Example 7 sits in the intersection of two
irreducible components of H(18, 39)S and moreover that the generic curve Z̃ of one of the
components is ACM with minimal resolution

0→ R(−8)⊕R(−6)2 → R(−5)4 → I(Z̃)→ 0 ,

see [35], [6]. Looking to the minimal resolution of I(Z) in Example 7, we get β1,5(Z) = 0
while β1,5(Z̃) = 4, i.e. we don’t have semicontinuity for β1,5. In this example Corollary 13
does not apply to generizations of Z in H(d, g) because 0HomR(I(Z),M(Z)) 6= 0!
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5 Necessary conditions for unobstructedness.
First note that we can easily reformulate a part of Theorem 8 as

Proposition 15. Let X be a space curve with Rao module M satisfying 0Ext2
R(M,M) = 0.

If X is obstructed, then either

(a) 0HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0, or

(b) −4HomR(I,M) 6= 0 and 0HomR(M,E) 6= 0, or

(c) 0HomR(I,M) 6= 0 and −4HomR(M,E) 6= 0.

There is a partial converse to this result, at least for Buchsbaum curves X, or more gen-
erally for curves admitting “a Buchsbaum factor” which we denote as M[t].

Definition 16. M = M(X) admits “a Buchsbaum factor” M[t] in degree t if

M 'M ′ ⊕M[t]

as R-modules where M[t] supported in degree t and has diameter 1.

If M 'M ′ ⊕M[t], then M has a minimal resolution of the form

0→ L′4 ⊕R(−t− 4)r σ−→ L′3 ⊕R(−t− 3)4r → L′2 ⊕R(−t− 2)6r...→ L′0 ⊕R(−t)r →M → 0

where
0→ L′4 → L′3 → L′2 → L′1 → L′0 →M ′ → 0

is the minimal resolution of M ′ and

0→ R(−t− 4)r
σ[t]−−→ R(−t− 3)4r → R(−t− 2)6r → R(−t− 1)4r → R(−t)r →M[t] → 0 (19)

is “r times” the Koszul resolution of the R-module k ∼= R/(X0, X1, X2, X3).

Remark 17. Suppose M = M(X) admits “a Buchsbaum factor”, M 'M ′ ⊕M[t].
(a) If M ′ = 0 then X is Buchsbaum curve of diameter one.
(b) Every Buchsbaum curve (not ACM) has a Buchsbaum factor. Every curve obtained

from Liaison addition where one of curves is Buchsbaum, admits a Buchsbaum factor ([27]).

Combining with Rao’s theorem (10), we get a minimal resolution

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I → 0 ,

of I = I(X) where

L4
∼= L′4 ⊕R(−t− 4)r , L3

∼= L′3 ⊕R(−t− 3)4r .

Moreover to define what we will call the fundamental 5-tuple, we write Fi as

F2
∼= P2 ⊕R(−t− 4)b1 ⊕R(−t)b2 , F1

∼= P1 ⊕R(−t− 4)a1 ⊕R(−t)a2 (20)

where Pi, for i = 1, 2 are supposed to contain no direct factor of degree t and t+ 4.
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Definition 18. The fundamental 5-tuple (with respect to obstructedness) associated to a
curve X with Buchsbaum factor M[t] in degree t is

(a1, a2, b1, b2, r)

Note that (a1, a2) = (β1,t+4, β1,t) are 1st graded Betti numbers of I = I(X) while

(β′2,t+4, β
′
2,t, β

′
3,t+4) := (b1, b2, r)

are graded "Betti number of I off L′3 and L′4".

Remark 19.
(a) If M ′ = 0, then β′i,j = βi,j are the usual Betti numbers of I = I(X).
(b) Note that the 5-tuple (a1, a2, b1, b2, r) was written as (r, a1, a2, b1, b2) in [22].

Theorem 20. Let X ⊆ P3 be a curve, and suppose 0Ext2
R(M,M) = 0 and M ∼= M ′ ⊕M[t]

as R-modules. Then X is obstructed if either

(a) 0HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or

(b) −4HomR(I,M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or

(c) 0HomR(I,M[t]) 6= 0 and −4HomR(M[t], E) 6= 0.

The proof of (a) relies on the study of a morphism appearing in the Proposition below.
It is straightforward to show Proposition 21 by using [12], Prop. 2.13. We will, however, give
the proof of Prop. 3.6 of [22] which relies only on (16) and (17). For the proof recall that
H0(NX) ∼= Ext1

OP
(IX , IX) by (4).

Proposition 21. Let X ⊆ P3 be a curve, and suppose 0Ext2
R(M,M) = 0. If the obvious

morphism
0HomR(I,M)× 0HomR(M,E) −→ 0HomR(I, E)

(given by the composition) is non-zero, then X is obstructed.

Proof. It is well known (cf. [24]) that if the Yoneda pairing (inducing the cup product)

< −,− > : Ext1
OP

(IX , IX)× Ext1
OP

(IX , IX)→ Ext2
OP

(IX , IX), (21)

given by composition of resolving complexes, satisfies < λ, λ >6= 0 for some λ, then X
is obstructed. If we let p1 : Ext1

OP
(IX , IX) → 0HomR(I,M) and p2 : Ext1

OP
(IX , IX) →

0HomR(M,E) be the maps induced by sending an extension onto the corresponding con-
necting homomorphisms (cf. the maps appearing in (16) and (17)), then <-,-> fits into a
commutative diagram of natural maps

Ext1
OP

(IX , IX) × Ext1
OP

(IX , IX) −→ Ext2
OP

(IX , IX)
↓ p1 ↓ p2 ↓

0HomR(I,M) × 0HomR(M,E) −→ 0HomR(I, E)
(22)
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By (16), 0Ext1
R(I, I) = ker p1, and p1 is surjective because α = 0. Moreover since the

composition 0Ext1
R(I, I) ↪→ Ext1(IX , IX) → 0HomR(M,E) is surjective by (17), there exists

(λ1, λ2) ∈ Ext1(IX , IX) × 0Ext1
R(I, I) such that the composed map p2(λ2)p1(λ1) is non-zero

by assumption. Using λ2 ∈ 0Ext1
R(I, I) = ker p1, we get

p2(λ1 + λ2)p1(λ1 + λ2) = p2(λ1)p1(λ1) + p2(λ2)p1(λ1)

i.e. either < λ1 + λ2 , λ1 + λ2 > or < λ1 , λ1 > are non-zero, whence X is obstructed.

Remark 22. Assume 0Ext2
R(M,M) = 0. From (16) and (17), we see that 0HomR(I,M) 6= 0

and 0HomR(M,E) 6= 0 if and only if we have the following strict inclusions of tangent spaces

Tγ,ρ  0Ext1
R(I, I)  H0(NX) (23)

By Proposition 21, X is obstructed if (23) holds, cf. [25], ch. X, Prop. 5.9. for the case
M ∼= k.

Before proving Theorem 20, we remark that

Lemma 23. Let X ⊆ P3 be a curve, and suppose M ∼= M ′ ⊕ M[t] as R-modules. If
vExt2

R(M[t],M) = 0 for v = 0 and −4, then

(a) 0homR(I,M[t]) = ra2 and −4homR(I,M[t]) = ra1 .

(b) 0homR(M[t], E) = rb1 and −4homR(M[t], E) = rb2 .

Proof. (a) If we apply vHom(−,M[t]) to (10), we get vHom(I,M[t]) ' vHom(F1,M[t]) because
m ·M[t] = 0 and we conclude by (20).

(b) is the dual result. We claim that −v−4HomR(F2,M[t])
∨ ∼= vHomR(M[t], E) for v = 0

and −4. Indeed, exactly as in Lemma 1, we get by duality (2) and the spectral sequence (1)
(which converges to −v−4Ext3

m(M[t], I)) an exact sequence

0→ −v−4Ext1
R(M[t],M)→ vExt1

R(I,M[t])
∨ → −v−4HomR(M[t], E)→ 0

for v = 0 and −4. We get −v−4Ext1
R(M[t],M)∨ ∼= vExt3

R(M,M[t]) by (2) and (1) and
vExt3

R(M,M[t]) ∼= vHomR(L3,M[t]) by (9). Interpreting vExt1
R(I,M[t]) similarly via the min-

imal resolution (10) of I, we get vExt1
R(I,M[t]) ∼= vHomR(L3 ⊕ F2,M[t]). Hence we get the

claim and we conclude by (20).

Proof (of Theorem 20). (a) Since 0HomR(I,M[t]) ∼= 0HomR(R(−t)a2 ,M[t]) by (10) and (20),
we get that the composition

0HomR(I,M[t])× 0HomR(M[t], E) −→ 0HomR(I, E)

is non-zero. Since 0Hom(I,M) → 0Hom(I,M[t]) is surjective by the existence of the R-split
morphism M →M[t], the corresponding composition of Proposition 21 is also non-zero, and
(a) is proved.

(b) In [22], there is a result (Prop. 3.8) with a quite complicated proof which implies (b)
and (c) of Theorem 20. Here we just remark that we immediately get (b) from (a) and a result
of Walter ([37]) in the case M ′ = 0. Indeed using [37], Thm. 0.5 we get the obstructedness
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of X provided 0HomR(I,M) = 0 and the assumptions of (b) holds. Since (a) takes care of
the case 0HomR(I,M) 6= 0 under the assumptions of (b), we get (a)

(c) The conclusion follows from Proposition 6 and (b) exactly as in the proof of Theorem 8
(ii).

Combining Lemma 23 with Theorem 20 and using Proposition 15 for the final conclusion,
we get

Corollary 24. Suppose 0Ext2
R(M,M) = 0 and M ∼= M ′ ⊕M[t] as R-modules. Then X is

obstructed if
a2 · b1 6= 0 or a1 · b1 6= 0 or a2 · b2 6= 0

where (a1, a2, b1, b2) = (β1,t+4, β1,t, β
′
2,t+4, β

′
2,t).

Moreover if M ′ = 0, i.e. M ∼= M[c], then X is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0 .

Remark 25. Let r 6= 0. For the fundamental 5-tuple (a1, a2, b1, b2, r), we have that

a2 · b1 = 0 and a1 · b1 = 0 and a2 · b2 = 0

is equivalent to requiring that the 5-tuple is of the form

(0, 0, b1, b2, r) , (a1, 0, 0, b2, r) or (a1, a2, 0, 0, r) .

Hence if X is unobstructed, then there are “two consecutive 0’s in the 1st four coordinates of
the 5-tuple”. This is equivalent to unobstructedness if diamM = 1.

Example 26. (a) (Sernesi, [6]). Take the curve bilinked to 2 skew lines, as in Example 7.
The minimal resolution is

0→ R(−8)→ R(−8)⊕R(−7)4 → R(−6)4 ⊕R(−4)→ I → 0 ,

whence c = 4. The corresponding 5-tuple, (β1,c+4, β1,c, β2,c+4, β2,c, β3,c+4), is

(0, 1, 1, 0, 1) .

It follows that the curve X of H(18, 39)S is obstructed by Corollary 24 or Remark 25.
(b) Start with the generic curve of H(8, 5)S. It has 2-dimensional Rao module M and

diamM = 1 ([15]). Link with (4, 6), then with (6, 8) using a common hypersurface of degree
6 in both linkages. The minimal resolution is

0→ R(−10)2 → R(−10)⊕R(−9)8 → R(−8)7 ⊕R(−6)→ I → 0 ,

whence c = 6. The corresponding 5-tuple is (β1,c+4, β1,c, β2,c+4, β2,c, β3,c+4) = (0, 1, 1, 0, 2),
i.e. the curve X of H(32, 109)S is obstructed by Remark 25.

(c) ([3] and [37]). There is a curve in H(33, 117)S of maximal rank and diamM = 1 with
minimal resolution

0→ R(−9)→ R(−10)2 ⊕R(−9)⊕R(−8)4 → R(−9)⊕R(−8)⊕R(−7)5 → I(X)→ 0 .

The corresponding 5-tuple is (1, 0, 1, 0, 1), i.e. X is obstructed by Remark 25.

In the next section, we shall see that the curve of Example 26 (a) sits in the intersection of
two irreducible components, while the curve of Example 26 (b) belongs to a unique irreducible
component, by studying the possible generizations of the curves.
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6 On the minimal resolution of a generic curve.
In this section we consider generizations of a space curve, i.e. deformations to a more general
curve, by simplifying their minimal resolutions (“killing ghost terms”). We shall prove a gen-
eral result (Theorem 27) valid for any space curve and a more special result (Proposition 31)
which holds for curves with a Buchsbaum factor under some conditions. These results are
inspired by the corresponding results in [25] which treat the case M ∼= k.

Theorem 27. Let X be any curve, let

0→ L4
σ−→ L3 → L2 → L1 → L0 →M(X)→ 0

be a minimal free resolution of M = M(X) and look to the minimal free resolution

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → I(X)→ 0 (24)

given by Rao’s theorem. If F1 and F2 has a common free factor;

F2 = F ′2 ⊕R(−i) , F1 = F ′1 ⊕R(−i),
then there is a generization X ′ of X in H(d, g) with constant postulation and Rao module
and with minimal resolution

0→ L4
σ⊕0−→ L3 ⊕ F ′2 → F ′1 → I(X ′)→ 0 .

The proof is rather straightforward once we have proven a key lemma. We delay the proof
of the lemma and Theorem 27 until the end of this section.

Suppose M = M(X) admits an R-module decomposition M = M ′ ⊕ M[t] where the
diameter of M[t] is 1 (e.g. X is Buchsbaum). Using Theorem 27 we get immediately

Corollary 28. Let X be a curve and suppose M(X) ∼= M ′ ⊕M[t] as R-modules. Let

(β1,t+4, β1,t, β
′
2,t+4, β

′
2,t, β

′
3,t+4) = (a1, a2, b1, b2, r)

be the corresponding 5-tuple of X.
(a) If a1 · b1 6= 0, then there is a generization X ′ of X in H(d, g) with constant postulation
and Rao module whose 5-tuple is

(C1) (a1 − 1, a2, b1 − 1, b2, r) .

(b) If a2 · b2 6= 0, then there is a generization X ′ of X in H(d, g) with constant postulation
and Rao module whose 5-tuple is

(C2) (a1, a2 − 1, b1, b2 − 1, r) .

Remark 29. Repeated use of Corollary 28 results in a curve (a generization of X) with
Buchsbaum factor M[t] whose corresponding 5-tuple satisfies

a1 · b1 = 0 and a2 · b2 = 0 .
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Remark 30. In the following we need a slight extension of the notion of a 5-tuple to a special
case where r = 0, i.e. we need to consider generizations X ′ of a curve X with a Buchsbaum
factor in degree t (i.e. M(X) ∼= M ′ ⊕M[t]) for which M(X ′) ∼= M ′. For such X ′ we still
have a number t and a minimal resolution of the form (10). Then we use the free summands
of (20) appearing in the minimal resolution of I(X ′) to define (a1, a2, b1, b2, r) with r = 0.

Proposition 31. Let M(X) ∼= M ′ ⊕M[t] as R-modules and suppose L′2 has no factor in
degree t and t+ 4. Let (a1, a2, b1, b2, r) be the corresponding 5-tuple of X.

(a) If r · b1 6= 0, then there is a generization X ′ of X in H(d, g) with constant postulation
and constant M ′ whose 5-tuple is

(P1) (a1, a2, b1 − 1, b2, r − 1) .
(b) If r ·a2 6= 0, then there is a generization X ′ of X in H(d, g) with constant specialization

(function) and constant M ′ whose 5-tuple is

(P2) (a1, a2 − 1, b1, b2, r − 1) .

Remark 32. Repeated use of Proposition 31 results in a generization X ′ with 5-tuple satisfy-
ing r · a2 = 0 and r · b1 = 0. Using also Theorem 27, we get a curve X ′ whose corresponding
5-tuple is of the form

(a1, 0, 0, b2, r) with r 6= 0, or (a1, a2, b1, b2, 0) with a1 · b1 = a2 · b2 = 0. (25)

Note that if M ′ = 0 then the curve X ′ is unobstructed by Corollary 24 (and Theorem 8).

Remark 33. We give details of the proof of Proposition 31 later. For a complete proof, we
refer to the proof of Prop. 4.2 of [22]. There is an inaccuracy in the statement of Prop.
4.2 (a) of [22] which states that the resolution for the generization in which r and b1 are
replaced by r − 1 and b1 − 1, is minimal. Looking to the proof of [22] the resolution may
be non-minimal at one and only one spot. Indeed if F1 contains a direct factor R(−t − 3),
this factor may become redundant (we try in the proof of this paper to clarify. I intend to
put a revised version, correcting Prop. 4.2, for the corresponding paper on the arXiv). In
conclusion the graded Betti numbers of a generization as in (a) do not change except for the
change which corresponds to the replacement of r and b1 by r− 1 and b1− 1 respectively and
for a possible change in which β2,t+3 and β1,t+3 decrease by the same number i, i ≤ 4. Note
that this remark does not affect the conclusion on the 5-tuple in Proposition 31 (a).

Remark 34. Suppose diamM = 1, i.e. M(X) ∼= M[t] and t = c.
(a) By Remark 33 there is a generization as in Proposition 31 (a) whose graded Betti num-

bers do not change except for β3,c+4 and β2,c+4, which both decrease by 1, and for β1,c+3 and
β2,c+3 which may decrease by at most 4, keeping, however, β1,c+3 − β2,c+3 unchanged. More-
over if we combine with Theorem 27, we can suppose β2,c+3 decreases by exactly min{β1,c+3, 4}
after a further generization.

(b) Extending some ideas of the proof of Proposition 31 (b) (which we hope to do in a
forthcoming paper), we can describe the possible changes of the graded Betti numbers under
the generization (P2) in detail. In particular we get that the graded Betti numbers of a
generization as in Proposition 31 (b) do not change except β3,c+4 and β1,c, which both decrease
by 1, and β1,v and β2,v for v ∈ {c + 3, c + 2, c + 1} for which β1,c+1 − β2,c+1 increases by 4,
β2,c+2 − β1,c+2 increases by 6 and β1,c+3 − β2,c+3 increases by 4. Moreover combining with
Theorem 27, we can take β1,c+1 ·β2,c+1 = 0 and β1,c+2 ·β2,c+2 = 0 after a further generization.
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Example 35. (a) ([35]). The 5-tuple of X is

(0, 1, 1, 0, 1) .

Using (P1) and (P2) the curve X admits two generizations to two curves with 5-tuples

(0, 1, 0, 0, 0) and (0, 0, 1, 0, 0) .

(b) The curve X with 5-tuple (0, 1, 1, 0, 2) admits two generizations to two curves with 5-tuples

(0, 1, 0, 0, 1) and (0, 0, 1, 0, 1).

Both these curves, however, admit generizations to a curve with 5-tuple (0, 0, 0, 0, 0), indicat-
ing that the curve X, which is obstructed by Corollary 24, may not sit in an intersection of
two irreducible components of H(d, g)!!

(c) ([3] and [37]). The 5-tuple of X is (1, 0, 1, 0, 1), i.e. the curve X admits two generizations
to two curves with 5-tuples:

(1, 0, 0, 0, 0) and (0, 0, 0, 0, 1)

To see that the 2 directions of generizations in Example 35 (a) and (c) correspond to two
different components, while those in Example 35 (b) lead to a unique component, we prove
Proposition 37 below which relies on the semicontinuity of the graded Betti numbers (cf.
Corollary 13). E.g. we will in Example 35 (c) see that Proposition 37 “separates irreducible
components” where the usual semicontinuity of hi(IX(v)) fails! Indeed since both generiza-
tions in Example 35 (c) have the same postulation as X, the semicontinuity of hi(IX(v)) can
not be used to prove that the two generizations belong to two different irreducible compo-
nents!

For the rest of this section we suppose M ′ = 0, i.e. we consider curves of
diameter at most 1 for which we attach a 5-tuple (cf. Remark 30) consisting of the usual
graded Betti numbers.

Definition 36. (a) A minimal 5-tuple is a 5-tuple which doesn’t allow further reductions
by using either (C1), (C2), (P1) or (P2), i.e. the 5-tuple is of the form (25) or as in the
proposition below.

(b) The set of all graded Betti numbers is called minimal provided it doesn’t allow further
reductions by using either (P1), (P2) or reductions coming from cancellations of a common
direct free factor as in Theorem 27 for some i (in particular β1,i · β2,i = 0 for every i 6= t+ 3
if M = M[t]). We denote the minimal set of all graded Betti numbers by βtot(X), or just βtot.

Proposition 37. Let t be an integer such that M(X)v = 0 for v 6= t, and let β = β(X) be
the minimal 5-tuple of X, i.e.

β = (β1,t+4, 0, 0, β2,t, β3,t+4) with β3,t+4 6= 0 and t = c,

or
β = (β1,t+4, β1,t, β2,t+4, β2,t, 0) with β1,i · β2,i = 0 for i = t, t+ 4.
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Then X is unobstructed. Let V (β) be the unique irreducible component of H(d, g) containing
X and let Xi be curves as X above with minimal 5-tuples β

i
, i = 1, 2 and with the same t.

Then

(i) The generic curve of V (β) has 5-tuple = β

(ii) If β
1
6= β

2
, then V (β

1
) 6= V (β

2
).

(iii) V (β) depends only on βtot or, equivalently, only on the postulation γX and β3,t+4, not
on X.

Proof. (i) X is unobstructed by Corollary 24 (and Theorem 8). Let X ′ be the generic curve
of V (β). We have 0HomR(I(X),M(X)) = 0, cf. Lemma 23, and we get

Hγ
∼= H(d, g) at (X)

by Proposition 11. It follows that X ′ has the same postulation as X, whence

β1,v(X
′)− β2,v(X

′) + β3,v(X
′) = β1,v(X)− β2,v(X) + β3,v(X) (26)

for every v, cf. [9], [32]. Moreover β(X ′) ≤ β(X) by Corollary 13. Since β(X) is minimal,
see the form of β of this proposition, we get β(X ′) = β(X), and (i) is proved.

(ii) Suppose V (β
1
) = V (β

2
), i.e. we can suppose their generic curves X ′1 and X ′2 coincide.

Then (i) leads to a contradiction because

β1 = β(X ′1) = β(X ′2) = β2 .

(iii) By a result of Bolondi (cf. [2]) the subset of H(d, g) of curves of constant postulation
and Rao module structure is irreducible. For curves of diameter at most one there is only
one structure on the module M(X), namely the trivial structure, in which case “constant
Rao module structure” may be replaced by requiring dimM(X) or β3,t+4 to be constant. It
follows that if the curves X1 and X2 of the proposition, in addition to having the same β,
also satisfy γX1 = γX2 , then they define the same irreducible component of H(d, g) and we
get the equivalent statement by (26).

Once more we revisit Example 35.

Example 38. In (a) the 5-tuples of the two generizations are minimal, both with t = 4
and both ACM, and they correspond to two different irreducible components of H(18, 39)S
containing (X) by Proposition 37. Note that we for this example may separate the two
components by the usual semicontinuity because the triple (h0(IZ(4)), h1(IZ(4)), h1(OZ(4)))
equals (1, 1, 1) for Z = X, while it is (1, 0, 0) and (0, 0, 1) for the two generizations.

(c) Again the 5-tuples of the two generizations are minimal, both with t = 5, and they
correspond to two different irreducible components of H(33, 117)S containing (X) by Proposi-
tion 37. In this case one of the generizations is ACM, the other is Buchsbaum of diameter 1.
In this case we can not separate the two components by the usual semicontinuity of hi(IZ(v)).

(b) To see that the curve X with 5-tuple (0, 1, 1, 0, 2), which we know is obstructed, be-
longs to a unique component, we use Proposition 37 (iii). To conclude we need to verify
that the postulation of X1 and X2 coincides where X1 and X2 are two curves with a common
5-tuple (0, 0, 0, 0, 0) and having X as a common specialization. Since X is Buchsbaum of
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diameter 1 and t = c = 6, it follows that γX1(v) = γX2(v) for v 6= 6 by the semicontinu-
ity of hi(IX(v)) since h0(IX(v)) − h1(IX(v)) + h1(OX(v)) = χ(IX(v)) is a constant under
generization. Moreover we easily see that γX1(6) = γX2(6) = 0, and we are done.

Question on possible generizations: If we use (P1), (P2), (C1), (C2) and more
generally the removal of “ghost terms” allowed by Theorem 27 (shortly called (Ci) in the
following), we find generizations of a diameter one curve X which “allow simplifications”, i.e.
except for (P2) which remove “ghost terms”, in the minimal resolution of I(X). The question
is: have we found “all” generizations of X in H(d, g), at least from the point of view of its
minimal resolution (“all” should be taken modulo those (Ci) which do not change the 5-tuple,
cf. Remark 34)? In particular can we find the minimal free resolution of a generic curve of ev-
ery irreducible component of H(d, g) containing (X) as a combination of (P1),(P2) and (Ci)?

Case (1). To answer, we first suppose the 5-tuple (a1, a2, b1, b2, r) of X satisfies r · a2 = 0.
As in the proof of Proposition 37 we have 0HomR(I(X),M(X)) = 0 and hence

Hγ
∼= H(d, g) at (X).

It follows that every generization of X has postulation γ, i.e. that only consecutive can-
cellations in the minimal resolution are allowed ([32]). So the answer is YES in this case.
Indeed (P1) and (Ci) suffices! Note that, compared with [32], we have by Theorem 27 and
Proposition 31 also proved the existence of the generizations!

Case (2). Also in the case r · b1 = 0, the answer is YES. Indeed this case follows
from the case r · a2 = 0 by linkage. Note that if we link X to Xl as in Proposition 6,
we get, by combining (14) and Lemma 23, that the 5-tuple (a1, a2, b1, b2, r) of X is equal
to (b2(Xl), b1(Xl), a2(Xl), a1(Xl), r(Xl)) where (a1(Xl), a2(Xl), b1(Xl), b2(Xl), r(Xl)) is the 5-
tuple of Xl, see the last part of the proof of Proposition 31 for details. In particular we get
a2(Xl) = 0 in the 5-tuple of Xl and since we know “all” generizations of a curve Xl with
a2(Xl) = 0 by the case (1), one may check this gives “all” expected generizations of X. Note
that this also nicely explains the somewhat strange generizations of X given by (P2). Indeed
a generization given by (P2) corresponds to a generization (P1) for the linked curve, i.e. to
the removal of a “ghost term” in the minimal resolution of the linked curve!

Case (3). Finally for the remaining unsolved case a2 · b1 6= 0 the answer seems to be YES,
which we hope to treat in a forthcoming paper. Here we only partially give the answer. To
simplify, we restrict to curves which satisfy a1 · b1 = 0 and a2 · b2 = 0 (letting a1 = β1,c+4,
a2 = β1,c, b1 = β2,c+4 and b2 = β2,c). Let us a little more generally consider the case

β(X) := (0, a2, b1, 0, r) and (a2 6= 0 or b1 6= 0) (27)

where proper generizations as in Proposition 31 occur, to give a picture of the existing
generizations in H(d, g). Thanks to [2] we remark that any curve D satisfying β(D) = β(X)
and γD(v) = γX(v) for v 6= c, belongs to the same irreducible family as (X), i.e. further
generizations of X and D with constant postulation and Rao module structure lead to the
"same" generic curve. By Proposition 31, we have

For any pair (i, j) of non-negative integers such that r − i− j ≥ 0,
a2 − i ≥ 0 and b1 − j ≥ 0, there exists a generization Xij of X
in H(d, g) such that β(Xij) = (0, a2 − i, b1 − j, 0, r − i− j).

(28)
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Example 39. As an example, let β(X) = (0, 3, 2, 0, 4) (such curves exist by Example 41).
By (28) we have 10 different generizations Xij among which two curves correspond to the
5-tuples β(X22) = (0, 1, 0, 0, 0) and β(X31) = (0, 0, 1, 0, 0), i.e. they correspond to two unob-
structed ACM curves with different postulation. Hence they belong to two different irreducible
components of H(d, g) having (X) in their intersection.

Pushing the arguments of Example 38 (c) and Example 39 a little further, we get at least

Proposition 40. Suppose the Rao module M(X) 6= 0 is r-dimensional and concentrated in
degree c, let a1 = β1,c+4 and a2 = β1,c (resp. b1 = β2,c+4 and b2 = β2,c) be the number of
minimal generators (resp. minimal relations) of degree c+ 4 and c respectively, and suppose

a1 = 0, b2 = 0 and a2 · b1 6= 0 .

(a) If r < a2+b1, then the generic curve of every irreducible component containing (X) is
ACM. Moreover the number, n(comp,X), of irreducible components containing (X) satisfies

n(comp,X) ≥ min{a2, r}+ min{b1, r} − r + 1 ≥ 2 ,

and in the case s(X) = e(X) = c, we have equality to the left.
(b) If r ≥ a2 + b1 and s(X) = e(X) = c, then X is an obstructed curve which belongs to

a unique irreducible component of H(d, g).

Proof. For the details of a proof, see [22], Prop. 4.6.

It is not difficult to find examples of smooth connected curves satisfying even the restrictive
condition s(X) = e(X) = c(X) of the proposition (see Example 3.12 of [22] for examples in
which a2 > 1). See also [1].

Example 41. (chark = 0). We claim that for any pair of positive integers (r, b) there exist
smooth connected curves X of diamM(X) = 1 with minimal resolution as in (10) and (20)
such that

s(X) = e(X) = c , and

h0(IX(c)) = 1, h1(IX(c)) = r, h1(OX(c)) = b and c = 1 + b + 2r and such that the corre-
sponding 5-tuple is (0, 1, b, 0, r). Note that such curves are obstructed by Corollary 24. To get
the examples, we use Chang’s results ([5] or [37], Thm. 4.1) to show the existence of smooth
connected curves with Ω-resolution

0→ OP(−2)3r−1 ⊕OP(−4)b → OP ⊕ Ωr ⊕OP(−3)b−1 → IX(c)→ 0.

Here Ω is by definition given by the exact sequences

0→ Ω→ OP(−1)4 → OP → 0 and 0→ OP(−4)→ OP(−3)4 → OP(−2)6 → Ω→ 0 (29)

which we deduce from the Koszul resolution of the regular sequence {X0, X1, X2, X3}. Using
the mapping cone construction we find the minimal resolution of I = I(X) to be

0→ R(−4)r → R(−4)b ⊕R(−3)4r → R(−2)3r+1 ⊕R⊕R(−3)b−1 → I(c)→ 0 .
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Moreover the degree of X is d =
(
c+4
2

)
− 3r − 7 and the genus is g = (c+ 1)d−

(
c+4
3

)
+ 5.

The simplest case is (r, b) = (1, 1), which yields curves X with s(X) = 4, d = 18 and
g = 39 (Sernesi’s example), while (r, b) = (2, 1) yields curves X with s(X) = 6, d = 32 and
g = 109 (Example 35 (b)). More generally, all curves X above satisfy h1(NX) = δ2(0) = b
by Lemma 9, and if r > b, then X belongs to a unique irreducible component of H(d, g) by
Proposition 40. Other examples of singularities of H(d, g) which belong to a unique irreducible
component are known ([18], Rem. 3b) and [11], Thm. 3.10).

To prove Theorem 27 and Proposition 31 we need the following lemma for deforming a
module N , which basically tells that if we can lift a (three term) resolution with augmentation
N to a complex, then the complex defines a flat deformation of N which in the case N = I(X)
has to be a deformation of I(X) as an ideal! Below we mainly follow the arguments of [22],
Lem. 4.8.

Lemma 42. Let X be a curve in P3 whose homogeneous ideal I(X) has a minimal resolution
of the following form

(L•) 0→
⊕
i

R(−i)β3,i
ϕ−→
⊕
i

R(−i)β2,i
ψ−→
⊕
i

R(−i)β1,i → I(X)→ 0 .

Let A be a finitely generated k-algebra, B the localization of A in a maximal ideal ℘, and
suppose there exists a complex

(L•B)
⊕
i

RB(−i)β3,i
ϕB−→
⊕
i

RB(−i)β2,i
ψB−→
⊕
i

RB(−i)β1,i , RB = R⊗k B ,

such that L•B⊗B (B/℘) ∼= L•. Then (L•B) is acyclic, ϕB is injective and the cokernel of ψB is a
flat deformation of I(X) as an ideal (so coker(ψB) ⊆ RB defines a flat deformation of X ⊆ P3

with constant postulation). Moreover for some a ∈ A−℘, we can extend this conclusion to Aa
via Spec(B) ↪→ Spec(Aa), i.e. there exists a flat family of curves XSpec(Aa) ⊆ P3 × Spec(Aa)
whose homogeneous ideal I(XAa) has a resolution (not necessarily minimal) of the form

(L•Aa
) 0→

⊕
RAa(−i)β3,i →

⊕
RAa(−i)β2,i →

⊕
RAa(−i)β1,i → I(XAa)→ 0 .

Proof (sketch). If E = cokerϕ and EB = cokerϕB, then one proves that EB ⊗B (B/℘) = E,
Tor1(EB, B/℘) = 0 and that ϕB is injective. By the local criterion of flatness, EB is a flat
deformation of E. Letting QB = coker(EB → ⊕iRB(−i)β1,i), we can argue as we did for EB
to see that QB is a flat deformation of I(X) and that L•B augmented by QB is exact.

To prove that QB is an ideal in RB, we can use (4) to see that a deformation of the
OP-Module IX (such as Q̃B) corresponds to a deformation of the curve X in the usual way,
i.e. via the cokernel of ĩ: Q̃B → R̃B. We get in particular a morphism H0

∗(̃i): QB → RB

which proves what we want (or use [37]). One may give a direct proof using Hilbert-Burch
theorem (cf. [25], page 37-38).

Finally we easily extend the morphism i and any morphism of the resolution L•B to be
defined over Aa′ , for some a′ ∈ A−℘ (such that L•Aa′ is a complex). By shrinking SpecAa′ to
SpecAa, a ∈ A− ℘, we get the exactness of the complex and the flatness of I(XAa) because
these properties are open.
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Proof (of Theorem 27). In the resolution

0→ L4
σ⊕0⊕0−−−−→ L3 ⊕ F ′2 ⊕ R(−i) ψ−→ F ′1 ⊕ R(−i)→ I(X)→ 0

the matrix of ψ has a zero in the entry which corresponds to R(−i) → R(−i). As in the
"Lemma de générisation simplifiantes" ([25], page 189), we can replace the mentioned zero by
some indeterminate λ of degree zero. Keeping σ ⊕ 0⊕ 0 unchanged, we still have a complex
which by Lemma 42 implies the existence a flat family of curves over Spec(Aa), A = k[λ], for
some a ∈ A−(λ). Since any curve X ′ of the family given by Spec(Aλa) has a resolution where
R(−i) is redundant (R(−i), and only R(−i), is missing in its minimal resolution), and since
we may still interpret the Rao module M(X ′) as ker H3

∗(σ̃ ⊕ 0 ⊕ 0) with σ ⊕ 0⊕ 0 as above
(so the whole family given by Spec(Aa) has constant Rao modules), we get the theorem.

Proof (of Proposition 31). (a) By the assumptionM(X) ∼= M ′⊕M[t], the minimal resolution
(9) of M is given as the direct sum of the resolution of M ′ and the one of M[t]. Let X =
(X0, X1, X2, X3)

T and recall (10) and (20). Let η: R(−t− 4)→ L′4⊕R(−t− 4)r be the map
into, say, the last direct factor of R(−t− 4)r, and let

π : L′3 ⊕R(−t− 3)4r ⊕ P ′2 ⊕R(−t− 4)b1 → R(−t− 4)

be the projection onto the last factor of R(−t− 4)b1 . As observed by Martin Deschamps and
Perrin in the case M ∼= k ([25], page 189) we can change the 0 component in the matrix
of σ ⊕ 0 which corresponds to π(σ ⊕ 0)η: R(−t − 4) → R(−t − 4), to some indeterminate
of degree zero. To use Lemma 42 we must change four columns of the matrix A associated
to L3 ⊕ F2 → F1, to get a complex. Indeed let r1 := rankF1 and look to the last column
(ak), 1 ≤ k ≤ r1, of A. Put ak =

∑3
n=0 γ

i
k,nXn for every 1 ≤ k ≤ r1. Since the resolution

is minimal, such γik,n exist. Since the last column of the matrix of σ ⊕ 0 consists of only 0’s
and one X there are precisely four columns [Hj

k,0, H
j
k,1, H

j
k,2, H

j
k,3], 1 ≤ k ≤ r1, of A satisfying∑3

n=0H
j
k,nXn = 0 for every k, which may contribute when we take the product of A with the

last column of σ⊕ 0. Now if we change the trivial map π(σ⊕ 0)η to the multiplication by an
indeterminate λ and simultaneously change the four columns [H1

k,0, H
1
k,1, H

1
k,2, H

1
k,3] of A to

[H1
k,0 − γ1

k,0λ,H
1
k,1 − γ1

k,1λ,H
1
k,2 − γ1

k,2λ,H
1
k,3 − γ1

k,3λ], leaving the rest of A unchanged, we get
the desired complex. By Lemma 42 we get a flat irreducible family of curves having the same
(not necessarily minimal) resolution of the homogeneous ideal, hence the same postulation,
as X. Since we can remove redundant factors of the resolution in an open set, we have a
generization X ′ with properties as claimed in Proposition 31. For more details, we refer to
the proof of Prop. 4.2 of [22].

Note that in the above proof the Rao module M(X ′) will satisfy M(X ′) ∼= M ′ ⊕M[t−1].
In particular the module F2 (resp. L3) in the minimal resolution (10) of I(X ′) increases
(resp. decreases) by R(−t − 3)4. If F1 contains a direct factor R(−t − 3)i, then some of its
summands may become redundant, because when we concretely make the row and column
equivalent operations to get the isomorphic resolution in which R(−t − 4) directly may be
deleted, the submatrix of A which corresponds to the map R(−t − 3)4 → R(−t − 3)i, may
have positive rank, say equal to p. Then we remove these p redundant factors as in the proof
of Theorem 27. This takes care of the correction in Remark 33.
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(b) We will prove (b) by linking X to an Xl via a CI of type (f, g) satisfying H1(IX(v)) = 0
for v = f, g, f−4 and g−4, and then apply (a) to Xl. To see that Xl satisfies the assumptions
of (a), let M ′(Xl) := Ext4

R(M ′, R)(−f − g). Then M(Xl) admits a decomposition M(Xl) ∼=
M ′(Xl)⊕M[f+g−4−t] as R-modules because of the duality

M(Xl) ∼= Ext4
R(M,R)(−f − g) ∼= Homk(M,k)(−f − g + 4) , (30)

and the self-duality of M[t](t). Moreover with L∗ := HomR(L,R) we have an exact sequence
→ (L′2)

∗ → (L′3)
∗ → (L′4)

∗ → Ext4
R(M ′, R) ∼= M ′(Xl)(f + g)→ 0. Since L′2 has no direct free

factor of degree t and t+ 4, it follows that (L′2)
∗(−f − g) has no direct free factor of degree

f + g − t and f + g − t− 4, and visa versa, see the proof of Prop. 4.2 of [22] for details.
Now since Xl satisfies the assumptions of (a), we need to see that the direct free part

F1 generated in degree t in the resolution of I(X), is equal (at least dimensionally) to the
corresponding part of F2(Xl)(4) in the minimal resolution of I(Xl) of the linked curve Xl.
Indeed since the isomorphism of (14) is given by the duality used in (30), it must commute
with their decomposition as R-modules, i.e. we have

0HomR(I(X),M[t]) ∼= 0HomR(M[f+g−4−t], E(Xl)) . (31)

Then we conclude by Lemma 23 because

vExt2
R(M[t],M)∨ ∼= −v−4 Ext2

R(M,M[t]) ∼= −v−4HomR(L′2,M[t]) = 0

for v = 0 and 4 by the assumption on L′2. Note that vExt2
R(M[f+g−4−t],M(Xl)) = 0 for v = 0

and 4 by the same reason, i.e. because −v−4HomR((L′2)
∗(−f − g),M[f+g−4−t]) = 0.

Now applying (a) to the linked curve Xl, we get a generization of X ′l with constant
postulation where R(−f − g + 4) is "removed" in its minimal resolution. A further linkage,
using a complete intersection of the same type as in the linkage above (such a complete
intersection exists by [20], Cor. 3.7) and formula (31) combined with Lemma 23 (replacing
X and Xl by X ′ and X ′l in (31), in the case r− 1 = 0 one explicitly constructs the resolution
of I(X ′) by the mapping cone construction), gives the desired generization X ′, and we are
done.

Remark 43. Note that the proof of Proposition 31 (b) simplifies in an obvious way in the
case of most interest to us, i.e. where the diameter is 1 (M ∼= M[c]).

7 Consequences, remarks and questions.
An interesting consequence of Theorem 27 and Proposition 31 is the following

Corollary 44. Let X be Buchsbaum (or ACM) of diamM(X) ≤ 2. Then there exists a
generization X ′ of X in H(d, g) such that X ′ is Buchsbaum (or ACM) and such that the
modules of the three sets

{F2, F1} , {L4, F2} and {L4, F1(−4)}

in the minimal resolution (10) of I(X ′) are without common direct free factors. In particular

0HomR(I(X ′),M(X ′)) = 0HomR(M(X ′), E(X ′)) = 0

and H(d, g) is smooth at (X ′).
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Proof. Since the module structure of M = M(X) is trivial, we get

0HomR(I,M) ∼= 0HomR(F1,M).

Since M ∼= M[c] ⊕M[c−1] as R-modules and M[t] is given by (19), it follows that the latter
group vanishes if and only if L4 and F1(−4) are without common free factors. Moreover, as
in the proof of Lemma 23, we have

−4HomR(F2,M)∨ ∼= 0HomR(M,E)

where the former group vanishes if and only if L4 and F2 are without common free factors.
Now, using M ∼= M[c] ⊕M[c−1], we can successively apply Proposition 31 to M[c] and M[c−1]

to see that {L4, F2} and {L4, F1(−4)} are without common direct free factors. Finally since
{F2, F1} are without common direct free factors after performing a suitable generization
(Theorem 27), we are done.

All general curves of diamM(X) = 1 are Buchsbaum. Hence

Corollary 45. Every irreducible component of H(d, g) whose generic curve X satisfies diamM =
1 is generically smooth.

Question. Is any irreducible component of H(d, g) whose Rao module of its generic curve
is concentrated in at most two consecutive degrees, generically smooth?

We believe the answer is YES. Indeed if we as in Corollary 44 can show the existence of
a generization X ′ of X such that

0HomR(I(X ′),M(X ′)) = 0HomR(M(X ′), E(X ′)) = 0

for every curve X of diamM(X) = 2, then we can use Theorem 8 to see that H(d, g) is
smooth at (X ′), whence we get an affirmative answer to the question!

Remark 46. If we simply call an irreducible component V of H(d, g) reduced if H(d, g) is
generically smooth along V , then we know that V is reduced if the Rao moduleM of its generic
curve satisfies diamM ≤ 1. Moreover recall that in Mumford’s well known example ([30]) the
diameter of M of the obstructed generic curve is 3. Using [18] we find a large number of non-
reduced components among which there are examples of any diameter diamM ≥ 3. Indeed,
as is well known, a smooth cubic surface X ⊂ P3 satisfies Pic(X) ' Z⊕7. It follows from
the main theorem of [18] (or directly from [31]) that the general curve which comes from the
linear system (3α, α5, 2) ∈ Z⊕7 is the generic curve of a non-reduced component of H(d, g) for
every α ≥ 4 (and α = 4 is Mumford’s example). Its diameter is 2α− 5. In the same way the
general curve which corresponds to (3α+1, α5, 2) ∈ Z⊕7 is the generic curve of a non-reduced
component of H(d, g) of diamM = 2α− 4 for every α ≥ 4. So the question above represents
the only open case concerning reducedness of irreducible components of H(d, g) with respect
to the diameter of the Rao module of its generic curve.
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