UNOBSTRUCTEDNESS AND DIMENSION OF FAMILIES OF
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ABSTRACT. The goal of this paper is to study irreducible families of codimension 3,
Cohen-Macaulay quotients A of a polynomial ring R = k[xg, z1, ..., £,]; mainly, we study
families of graded Cohen-Macaulay quotients A of codimension 1 on some codimension
2 Cohen-Macaulay algebra B defined by a regular section o of (S?K))\. We give lower
bounds for the dimension of the irreducible components of the Hilbert scheme which
contains Proj(A). The components are generically smooth and the bounds are sharp if
A>0and n =4 and 5.

We also deal with a particular type of codimension 3, Cohen-Macaulay quotients A of
R; concretely we restrict our attention to codimension 3 arithmetically Cohen-Macaulay
subschemes X C P™ defined by the submaximal minors of a symmetric homogeneous
matrix. We prove that such schemes are glicci and we give lower bounds for the dimension
of the corresponding component of the Hilbert scheme.

In the last part of the paper, we collect some questions/problems which naturally arise
in our context.
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1. INTRODUCTION

The main purpose of this work is to contribute to the classification of codimension
r, Cohen-Macaulay graded quotients of a polynomial ring R = k[zg,---,x,] and, in
particular, we address the following two problems: (1) to determine the unobstructedness
of arithmetically Cohen-Macaulay (briefly ACM) schemes X C P™ of codimension r;
and (2) to determine dimx Hilb?™ P being X C P" an arithmetically Cohen-Macaulay
scheme of codimension r. In codimension 2, the classification of arithmetically Cohen-
Macaulay graded quotients of a polynomial ring R = klzg, -+ ,z,]| is well known, it is
given by the Hilbert-Burch Theorem; and the unobstructedness of arithmetically Cohen-
Macaulay schemes X C P" of codimension 2 as well as dimx Hilb” ) P were established

1991 Mathematics Subject Classification. Primary 14M12, 14C05, 14H10, 14J10; Secondary 14N05.

* Partially supported by BFM2001-3584.
1



2 JAN O. KLEPPE, ROSA M. MIRO-ROIG

in 1975 by G. Ellingsrud [8]. There is, in our opinion, little hope of solving the above two
problems in full generality and for arbitrary codimension. So, we will restrict our attention
to codimension 3, ACM schemes X C P" which are divisors on some codimension 2, ACM
scheme Y C P". According to [6]; Theorem 3.12, an effective divisor D ~ aKy + bH on
Y is ACM if and only if —2 < a < 1. ACM effective divisors X ~ bH on a codimension 2,
ACM scheme Y C P were studied in [19] and [20]; ACM effective divisors X ~ Ky +bH
on a codimension 2, ACM scheme Y C P" were studied in [19]; and ACM effective
divisors X ~ —Ky + bH on a codimension 2, ACM scheme Y C P" were studied in
[21]. In this paper we study the remaining case; namely, we study ACM effective divisors
X ~ —2Ky + bH on a codimension 2 ACM scheme Y C P” or, equivalently, graded CM
quotients A given by

(1.1) 0 — (S’Kp)(-\) B — A —0

where B is a codimension 2 graded generically complete intersection CM quotient of R.
In this paper, we deal with divisors on codimension 2 ACM schemes and we refer to
[13] for general results about the theory of generalized divisors for schemes satisfying the
condition Sy of Serre.

Next we outline the structure of the paper. In section 2, we recall the basic facts on
deformation theory needed in the sequel. Sections 3 and 4 are the heart of the paper. In
section 3, we study families of graded Cohen-Macaulay quotients A of codimension 1 on a
codimension 2 Cohen-Macaulay algebra B defined by a regular section o of (S2K})y; i.e.
graded CM quotients A given by (1.1). We determine lower bounds for the dimension of
any irreducible component of Hilb?™® (P") containing a point (X), X = Proj(A), where A
is given by (1.1) (see Theorem 3.6 and Theorem 3.7), and we show that, for n = 5 and 4,
they are sharp for A > 0 (see Corollary 3.9 and Remark 3.11). The lower bounds will be
computed in terms of

a = OhomB(IB/I%,IA/B) — OeXt}3<[B/Z%,IA/B),
b:= ohomp(la/p, B) — Oext}S(IA/B,B), and

e .= QethB([A/B, IA/B)>
where I4/p = S?Kp(—\) and where at least a and b are explicitly given as a sum of
binomials involving only the degrees of the generators and first syzygies of Ip.

In section 4, we deal with ideals generated by the submaximal minors of a homogeneous
symmetric matrix. A classical scheme that can be constructed in this way is the Veronese
surface X C P°. Given rational numbers ay, ..., a; such that a; + a; € Z, for all 4, j, we
denote by S(a) = S(ay,- - ,a;) the irreducible family of codimension 3, ACM schemes
X C P" defined by the submaximal minors of a ¢ x ¢ symmetric homogeneous matrix
The goal of section 4 is to give lower bounds for the dimension of the irreducible component
S(a) of Hilb?(P") containing S(a) (cf. Theorem 4.8). We give 2 examples where the first
bound turns out to be sharp. Indeed, we guess that, for n = 5, the first bound may
be sharp for any scheme defined by linear forms f;;. As a byproduct we also prove
that any codimension 3, ACM scheme X C P" defined by the submaximal minors of a
t x t symmetric homogeneous matrix is glicci (see Proposition 4.5). This last result has
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independently been established by Gorla who has proved that any codimension (m_;”),

ACM scheme X C P" defined by the ¢ x ¢t minors of a m x m symmetric homogeneous
matrix is glicci ([9]; Corollary 2.7). We end this paper with some questions/problems
which naturally arise in our context.

Finally, the authors would like to thank the referee for his/her valuable comments. In
particular, we include Remarks 4.1 and 4.2 to answer an imprecision pointed out by the
referee.

Notation: Throughout this paper P" will be the n-dimensional projective space over an
algebraically closed field k, R = k[zg, x1,...,2,] and m = (o, ..., x,). The sheafification
of a graded R-module M will be denoted by M and the support of M by Supp(M).

For any closed subscheme X of P, we denote by Zyx the ideal sheaf of X and Ny
its normal sheaf. Let I(X) = HY(Zx) be the saturated homogeneous ideal of X unless
X = (), in which case we let I(X) =m . If X is equidimensional and Cohen-Macaulay of
codimension ¢, we set wx = Extf,, (Ox, Opn)(—n — 1) to be its canonical sheaf.

For any quotient A of R, we let 14 = ker(R — A) and Ny = Hompg(4, A) be the normal
module. If A is Cohen-Macaulay of codimension ¢, we let K4 = Exty(A, R)(—n — 1) be
its canonical module. When we write X = Proj(A), welet A= R/I(X) and Kx = K. If
M is a finitely generated graded A-module, let depth ; M denote the length of a maximal
M-sequence in a homogeneous ideal J and let depth M = depth,, M. Let H%(—) be the
right derived functor of the functor, I';(—), of sections with support in Spec(A/.J).

We denote the Hilbert scheme by Hilb?(P") (cf. [11]). Thus, any point px € Hilb?(P")
parameterizes a subscheme X C P" with Hilbert polynomial p € Q[s]. By abuse of
notation we will write (X') € Hilb”(P"). By definition a scheme X C P" is unobstructed
if Hilb?(P™) is smooth at (X).

2. PRELIMINARIES

This section provides the background and basic results on deformation theory needed
later on.

Let B = R/Ip be a graded quotient of the polynomial ring R, let M and N be a
finitely generated graded B-modules and let J C B be an ideal. A Cohen-Macaulay
(resp. maximal Cohen-Macaulay) B-module M satisfies by definition depth M = dim M
(resp. depth M = dim B), or equivalently, H: (M) = 0 for i < dim M (resp. i < dim B)
since depth; M > r is equivalent to H%(M) = 0 for i < r. Note that if B is Cohen-
Macaulay, then the v-graded piece of H: (M) is by Gorenstein duality

JHE(M) ~ _ Extim™B=(M, Kp).
Let Z be closed in Y := Proj(B) and let U =Y — Z. Then we have an exact sequence

0 — Hpzy(M) = M — H)(U,M) — Hjz(M) =0
and isomorphisms H;(Z)(M) ~ H~YU, ]\7) for i > 2. More generally if depth; ;) N > i+1
there is an exact sequence

(2.1)  oExtp(M, N) < Extp, (M|v, Nly) — oHomp(M, Hjf; (N)) — oExty ! (M,N) —
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by [12], exp. VI, where the middle form comes from a spectral sequence also treated in
[12]. Moreover, we have (cf. [25], Lemma 5)

Lemma 2.1. Let B be Cohen-Macaulay, let r and t be integers and suppose depth ; B > r.
Then depth,, M > dim B — t implies depth; M > r —t.

In dealing with deformations we will need to consider the (co)homology groups of
algebras. To define them let

(22) e — Fg = @;ilR(—ng’j) — F1 = EB:;IR(—TLLZ) —-R—-B—0

be a minimal resolution of B and let H; = H;(Ip) be the 1. Koszul homology built on a
set of minimal generators of Iz. Then we may take the exact sequence

(2.3) 0 — Hy(R,B,B) —» H — I, ® B — Ig/Ig* — 0
as definition of the 2. algebra homology Hy(R, B, B) (cf. [28]), and the dual sequence,
— ,Homp(F, ® B, B) — Homp(H,, B) — ,H*(R,B,B) — 0,

as a definition of graded 2. algebra cohomology H?(R, B, B). If B is generically a complete
intersection, then it is well known that Extp(Ip/I%, B) ~ H*(R, B, B) ([1], Proposition
16.1). We know that H°(Y, Ny ) is isomorphic to the tangent space of Hilb?(P") in general,
while H'(Y, Ny) contains the obstructions of deforming ¥ C P" in the case Y is locally
a complete intersection (l.c.i.) (cf. [11]). If (Hompg(Ip, H.(B)) =0 (e.g. depth,, B > 2),
we have by (2.1) that (Homp(Ip/I%, B) ~ H°(Y,Ny) and (H*(R, B, B) — H'(Y,Ny)
is injective in the l.c.i. case, and by [18], Remark 3.7 that oH?(R, B, B) contains the
obstructions of deforming Y C P". Thus (H?(R, B, B) = 0 suffices for the unobstructed-
ness of a locally complete intersection arithmetically Cohen-Macaulay (ACM) subscheme
Y of P" of dim B > 2 (for this conclusion we may even entirely skip “l.c.i.” by slightly
extending the argument, as done in [18]).

There are cases where we can conclude that some X = Proj(A) or A is unobstructed
without assuming (H?(R, A, A) = 0. One such case which we need in this paper is
treated in [19], Theorem 9.4 and extended in [23]. Following [23] we say “(M, B) is
unobstructed along any graded deformation of B” if for every small Artin surjection
(T,mr) — (S,mg) (i.e. a surjection of local Artinian k-algebras with residue fields k
whose kernel a satisfies a - my = 0) and every graded deformation (Mg, Bg) of (M, B),
there is a graded deformation of Mg to any graded deformation By of Bg. We need the
following special case of [23], Proposition 13.

Proposition 2.2. Let ¢Extp(M, M) = 0. Then (M, B) is unobstructed along any graded
deformation of B if for every local Artinian k-algebra T with residue field k and for every
graded deformation Br of B to T, there exists a graded deformation My of M to Br.

Example 2.3. Let char(k) # 2, let B ~ R/Ip be a graded CM quotient of R of codimen-
sion ¢ and suppose depth;,) B > 3 where Y — Z is locally a complete intersection in P".
Then (S?Kp(v), B) is unobstructed along any graded deformation of B for every integer
v. Indeed the proposition above applies because Kp, :=Exty (Br, Rr(—n — 1)) is flat
over T by [16], Proposition Al. Hence Kp, ® Kp,, as well as S?Kp,, are T-flat. It fol-
lows that S?Kp,.(v) is a graded deformation of S?Kp(v). Since (Exty(S?Kp, S?Kp) =0
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by (2.1) (explained thouroughly later), we conclude easily. In the next section, e.g. in
Corollary 3.9, we use the unobstructedness of (S? Kz(v), B) to show that the quotient A
of (1.1) is unobstructed provided A > 0.

Finally in the case B = R/Ip is a generically a complete intersection codimension two
CM quotient of R, we notice some exact sequences frequently used in this paper. Firstly
since I, — F} is injective in (2.2), we get a minimal resolution

(24) 0= R— K =&/ R(n;) — FY = @} R(ns;) — Kp(n+1) =0

by taking R-duals. If we apply Hom(—, B) to (2.4), letting K}, = Homp(Kp, B), we get
the exactness to the left in the exact sequence

(2.5) 0— Kp(n+1)" — &2 B(—ny;) — &1 B(—n1;) — I/ — 0

which splits into two short exact sequences “via @B(—ng;) - H; — @&B(—ny;)”, one
of which is (2.3) with Hy(R, B, B) = 0. Indeed in this case H; is Cohen-Macaulay by [2]
and hence Hy(R, B, B) = 0 by (2.3). Moreover since Exty(Ip, I5) ~ Np we showed in
[24] that there is an exact sequence of the form

(2.6) 0— F/@rFy,— (FY@r F)) ® (FY @ F3))/R — F)Y @z I}, — N — 0.
Indeed this sequence is deduced from the exact sequence
0— R— @ I(n1;) — @9:11](”2,3') — N — 0

which we get by applying Hompg(—, I5) to (2.2), (cf. [24],(26)). Then it is straightforward
to find Castelnuovo-Mumford regularity of Ng, as well as the formula of dim(Np), of [8].
Note also the following frequently used sequences (cf. [7], p. 595 for two of them)

(2.7) 0— A(FY) — FY @ F) — S*(F)) — S*(Kg)(2n+2) — 0
(2.8) 0 — A3(FY) — AHFY)@ FY — FY @ S*(F)) — S*(Fy) — S*(Kp)(3n +3) — 0
(2.9) 0= A(F) - FL®F — S*(F)—I14—0.

3. CM QUOTIENTS OF CODIMENSION 1 ON A CODIMENSION 2 CM ALGEBRA

In this section we study families of graded CM quotients defined by a regular section o
of (S2K})y; i.e. CM quotients A given by

(3.1) 0 — (S’Kp)(-\) - B—A—0
where B is a codimension 2 graded generically complete intersection CM quotient of R.

Recall that by [27]; Theorem I11.4.2, for any general codimension 2, arithmetically
Cohen-Macaulay scheme Y C P" with degree matrix (u,])Z;l:_l, u;; > 0, we have
Pic(Y) 2 Z.H or Pic(Y) = Z? unless Y C P* is a Castelnuovo surface and Pic(Y) = Z°
or Y C P* is a Bordiga surface and Pic(Y) = Z!''. In addition, if n = 4 then Pic(Y) =
72 = 7.H & 7Z.K with K the canonical divisor on Y and H the hyperplane divisor.

Moreover, by [6] Theorem 3.12; an effective divisor X ~ aKy + bH is ACM if and
only if —2 < a < 1. ACM effective divisors X ~ bH on a codimension 2, ACM Y C P
are determinantal schemes of codimension 3 and they have been studied in [19] and
[20]; ACM effective divisors X ~ —Ky + bH on a codimension 2, ACM Y C P" are
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arithmetically Gorenstein schemes of codimension 3 and they have been studied in [21];
and ACM effective divisors X ~ Ky +bH on a codimension 2, ACM Y C P" were studied
in [19]. We will devote this section to the remaining case; namely, to study arithmetically
Cohen-Macaulay effective divisors X ~ —2Ky + bH on a codimension 2, ACM Y C P".

Our goal is to determine good lower bounds for the dimension of any irreducible com-
ponent of Hilb?™(P*) containing a point (X), X = Proj(A), where A is given by (3.1),
and to show that they are sharp for A > 0 (when n = 4 and 5). The lower bounds will
be computed in terms of

a = OhomB(IB/]]QB, IA/B) - Oextg(]B/[é, ]A/B)7
b:= ohomp(la/p, B) — oextp(la/p, B), and
€= oextQB(IA/B, La/B),
where I4/p = S 2Kp(—\). Indeed since we will use deformation theory related to the flag
of surjections
R— B — A= B/lyp

it turns out that the groups

oBxtyp(Ip/15,Ia/p)  (or JExtyp(Ip, Ia/p) )

oExty(Iays/T5/5,A)  (or (Extp(la/s, A))
play a central role.
Let Y = Proj(B) and let U = Proj(B) — Z < P" be a local complete intersection
(Led.). In the following we almost always assume depth; ;) B > 3 because our proofs

often use that Kp|U and Ig/I%|U are locally free in a large enough open set. Firstly we
will make a more explicit. To do it, we define

s'(v) :== dim(S"Kp),.
Lemma 3.1. If depth; 4 B > 3, then Exth(Ip/1}, S*(Kp)) =0, and

m -1

a = Z 52(”1,1’ —A) -

i=1
[dim(A*F) ® F))_, — dim
dim(F)Y @ F)Y @ F)')_, —
where v = 2n + 2 + .

=

32(n27i - A+ 83(n +1-)) =

(]

1
N —dim(FY @ FY @ F))_,+
dim(S?FY @ Fy)_, — dim(S*Fy)_,]

-
Il

—~

Proof. The exact sequence (2.5) leads to
(3.2) 0 — H — & B(—ny;) — Ip/I; — 0, and

(3.3) 0— Kp(n+1)V — & 'B(—ny;) 2 F, ® B — H, — 0

where H; is the 1.Koszul homology. Since I4,5 = S*Kp(—\) we apply Homp(—, S2Kg5(—\))
to (3.2), and we get

(34) 0 — HOHlB(]B/]%7 S2KB(—)\)) — @¢:132KB(—)\ + nu) —
Homp(H,, S?Kp(—)\)) — Extp(Ig/I3, S*Kp(—\)) — 0



and
Exty(Hy, S°Kp(—))) = Exth(Ip/Ih, S*Kp(—N)).
Moreover using the exact sequence (3.3) we obtain

(3.5) 0 — Homp(Hy, S’ Kp(—)\)) — @' S*Kp(—\+ ny,) = FY @ S°Kp(—)\) —

Homp(Kj(—n — 1), S°Kp(—\) =2 S°Kg(n+1—\)) — Extp(H;, S?Kp(—\)) — 0.
Note that we have used (2.8) and Lemma 2.1 to see depth;,) S*Kp > 2 and then (2.1)
to get Homp (K}, S?Kp) & S3Kp. Now since Fy — Kp(n + 1) is surjective, it follows
that FY ® S?Kp — S®Kp(n + 1) is surjective and we get Ext%(Ip/13,S*(Kg)) =0 . We
deduce that

a = OhOmB<IB/I%, IA/B) — OeXt}3<[B/Z%, IA/B)

o -1
:ZSQ(nM—)\) — ) (g — A+ (n+1-N)
i=1

1

=

7

which proves the first dimension formula. Finally since it is straightforward to write down
the minimal resolutions of F)Y ® S?Kg(—\), i =1,2 and S*Kg(n+1—\) from (2.7) and
(2.8), we get the second dimension formula as well and we are done. O

It is also of interest to see the vanishing of the groups (Ext’(Ip/I%, S’ Kp(—))) above.
Lemma 3.2. With notations as above, let dy = max;{ng;}. Then, for i =0 and 1,
oExty(Ip/15, S?Kp(—)\)) = oExthy(Ip, S2Kz(—A)) = 0 provided A > 3dy — 2n — 2

and
oHomp (I3, S?Kp(—\)) = 0 provided X\ > dy + 2dy — 2n — 2.
Proof. Using (2.2), we deduce that ¢Extk(Ip, S2K5(—A)) = 0 provided we can show
(FY @ S2Kp(—\))o = 0, i.e. provided (cf. (2.7))
(Fy ® S*(Fy)(—2n — 2))-x = 0.
This follows easily from the first assumption of the lemma since F)' = @ R(ng;). Using
FY = ®R(n1;) we get the vanishing of the Hom-group from (F)Y ®5*(Fy)(—2n—2—X))o =

0. Finally since dy > dy, the first assumption also implies the vanishing of the Ext’-group
for i = 0 and we are done. OJ

Next we will make b more explicit. Firstly note that, if depth;,) B > 3, we have
(3.6) oExty(La5/ 155, A) = oExtp(la/p, A)

and hence (H*(B, A, A) & (Exty(Ia/p, A). Indeed by a well-known spectral sequence
it suffices to see HomA(Tor?(IA/B,A),A) = 0. Since, however, I4/p is invertible in
U =Y — Z and the intersection of U with any irreducible component of X is non-empty,
we get the assertion.
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Lemma 3.3. If depth; ;) B > 3, then (Exty(Ia/p, B) = oExth(S*Kp(—\),Kp) = 0,
and
b= OhOITlB(SSKB(—)\), KB) - OethlB(SSKB(—)\), KB) =
dim(S?’Fg)U - d1m(F1 X SQFQ)U + d1m(/\2F1 X FQ)U - dlm(/\?’Fl)v
where v = X\ + 2n + 2.

Proof. Since depth;,) B > 3 and depth; ) Kp > 3, we have by (2.1),

Extl (15, B) = Extb, (S2Kp(—)), B) = HX(U, Hom(S2K5(—\), B))
=~ (U, Hom(S* K p(—)), Kp)) 2 Ext(S*Kp(—)), Kp),

and correspondingly for the Hom groups. Hence we get the first expression of b above.

Moreover Ext} (14,5, B) = Exty(S?Kp(—A\)® Kp, K5) by the spectral sequence of [14],
Satz 2.1 and (Ext}(S®Kp(—\), K) = 0 by (2.8). If A is the kernel of the surjective map
S*Kp(—\) @ Kp — S*Kp(—\), then Aly = 0 and since Ext}(A, Kp) — Extg, (A, Kp) is
injective by (2.1), we get Exth(A, Kp) = 0 from Ext,, (A, Kp) = H2(U, Hom(A, Kp)) =
0. Then the exact sequence

— Ext}(S*Kp(—\), Kg) — BExt5(S?Kp(—\) ® Kp, Kp) — Exth(A, Kg) —

shows that Ext%(S2Kp(—A)® Kp, Kz) = 0 and we get the vanishing of both Ext*-groups
of the lemma.
Finally using Gorenstein duality twice (i.e. over B and over R) we get

0Exte(SPKp(—N), R(—n — 1)) = (Ext5?(S*Kp(-)), Kp)

for i = 2 and 3 and we have ¢Ext%(S*Kp(—\), R(—n — 1)) = 0 for i = 0 and 1. Hence if
we apply the contravariant functor (Hom(—, R(\ + 2n + 2)) to the exact sequence (2.8),
we obtain a complex (where v = A 4 2n + 2);

(3.7) 0— (S°F), = (L ®S*F), — (N ® Fy), — (N°Fl)y, — 0,

which is exact except at the spots which correspond to oExt%(S2Kg(—\), R(—n—1)) # 0.
Therefore, the alternating sum of the dimension of this complex must be b and we are
done. 0

By using (2.1) as above we get the following information about the number e :=
oexth(La/, La/B);

Lemma 3.4. ]f depthI(Z)B Z 3, then ohomB(IA/B,]A/B) = 1, OEXt]lg(IA/B,IA/B) =0
and there is an exact sequence

(3.8) 0 — Ext}(La/p, Lasp) — HX(U, B) — Homp(Ia/p, H} 5 (Ia/p)) — Exth(Lap, La/p)-

In particular
(i) if depth; ;) B > 4 then Exty(La/p, Lasp) =0, ie. e =0,
(i) if depth; ;) B =3, I(Z) = m and B has a semi-linear resolution, i.e.

(3.9) 0= R(-s—2)2"®R(-s -1 - R(-s— 1" ®R(—s)* = R— B —0



then

o () s () (1)

Remark 3.5. (a) Suppose depth; ) B > 3. Since ExtQB(IA/B, B) =0and Ext}B(IA/B, Ia/g) =
0 by the lemmas above, the sequence

0 — Extp(Ia/p, B) — Extp(Ia/p, A) — Exti(La/p, La/s) — 0,
deduced from 0 — I4/p — B — A — 0, is exact. The following sequence related to
(3.8) is also useful in computing e;
(3.10) 0 — Extp(Ia/p, A) — HN(U, Hom(Ia/p, A)) — Homp(La/p, Hyz)(A)) —

Note that the corresponding sequence for gExty; (14 /B, B) implies

— ~ —V
oExty(Ia/p, B) 2 H' (U, Hom(Ia/p, B)) = H' (U, 145 ).

(b) Let T — S be a small Artin surjection with kernel a and let ¢g : Bg — Ag (resp.
Br) be a graded deformation of B — A to S (resp. of Bg to T), see Proposition 2.2
and Example 2.3. By (3.6) and [11] (see [21], Sect. 1.1 for a general introduction) the
group oExty (1 A/B,A) @ a contains the obstruction o(ig; Br)o of deforming g further
to Bp. Since (1a/p,B) is unobstructed along any graded deformation of B and since
0(1s; Br)o maps onto the obstruction in OExtQB(IA/B, I4/B) ®y a of deforming kerg to
Br, it maps to zero!! It follows that o(¢g; Br)o sits in OExt}B(IA/B, B) ®y a, i.e. we say
that oExtj(14/p, B) contains all graded obstructions of deforming B — A to any given
deformation of B.

Proof. By (2.7) 14/ = S?2Kp(—\) is a maximal CM module and we have depthy(z) La/p >
3. Hence, by (2.1),
Ext!(Ta/p, La/p) = Extb, (Ia/p, La/p)
=~ HY(U, Hom(La/p, Lap)) = HX(U, B) = H} ;) (B) = 0
and
oHom(I/p, La/5) = HY(U, B)g = By = k.

In the same way, by using (2.1), we get (3.8).
Now we will use (3.8) to show (i) and (ii). (i) is clear. To see (ii) it suffices to show
oHomp (a5, H3(14/8)) = 0 because, by (2.4) and duality,

W(Y,B) = dim(Kp)o = Y ( > ) - > ( b )
1<i<p—1 K 1<i<p "

and n = 4 and we get the expression of e in the lemma. We have I4,5 = S2Kp(—\). To
see gHomp(S?Kp, H3(S?K3g)) = 0 it suffices by (2.7) to show

oHomp (S*(Fy'), Ho(N*(FY'))) = 0,

i.e. to prove oH2(S*(Fy) @ A%2(FY)) = 0. Since, however, ¢H32(R(t)) = 0 for t > —4, we
are done. O
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Now we come to the two main theorems of this section. Recall that B = R/Ip has
normal module Ng := Hompg(Ig, B) and minimal resolution

0— Fy =@ R(—nay) = F1 == Bl R(—n1;) = R— B—0

and that A is defined by (3.1), i.e. A = B/(S?Kg(—\)). We include a criterion of
unobstructedness which we may apply if we are able to compute h°(Ny) (Ny the normal
sheaf of X = Proj(A) C P).

Theorem 3.6. Let B be a codimension 2 CM quotient of R = klxg,...,x,], and let
U = Proj(B) — Z < P" be a local complete intersection such that depth;, B > 3.
Let X = Proj(A) C P be the codimension 3 ACM scheme defined by (3.1). Let hiy :=
dim (H'(R, A, A) and let v =X+ 2n+2. Then

b—1+dim(Np)o —a—e = h’(Nx) — h% < dimx) Hilb P",

where e == gexty(Ia/p, Ia/p) and
. —MN1;—N1;— N1k +tn+v —Ni1i—MN1i—Nor+n+wv
b—1+dim(Np)o—a = — Z ( Li ™ Py — Pk )+ Z ( Li = M1 = N2k )
1<i<j<k<p " ffi?gﬁ n
SRSp—

—N14i — N2, — N2k +n-+wv —N2,; — N2 j *n27k+n+ﬂ na j —nqun
- + 0> + )

1<i<p 1<i<j<k<p—1 1<i<p
1<5<h<p—1 === 1<G<p—1

+ Z Niq — N2y +n _ Z ni,j; 771171‘4*71 . Z N2q — N2 +n
1<z n 1<i < n 1<ij<p—1 "
1§]§ﬁ‘11 SLISH VRS
Z Nig+nNi;+nie+n—o n Z Ny +ni;+nor+n—v
1<i<j<p 1<i,j<p
k<j 1<k<p—1

_ Z (nl,i + N2, + Nok —l—n—v) n Z (n% + noj + Nk —|—n—v)
n - n

Moreover if l°(Nx) +e=b—1+ dim(Np)y — a, then X is unobstructed.

Proof. A general theorem of Laudal, which establishes a lower bound for dimension of the
hull of any deformation functor, implies, thanks to Theorem 1.3 and Theorem 2.2 of [18],
that hly — h?% is a lower bound for the dimension of the hull of the graded deformation
functor of R — A. Since Theorem 3.6 and Remark 3.7 of [18] (or one may use [8],
Proposition 1 since A is CM) implies that the graded deformation functor of R — A is
isomorphic to the local Hilbert functor of (X = Proj(A) C P"), we get

dim(x, Hilb P" > bl — h%.
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Now to see b — 1 — e + dim(Ng)y — a = hly — h%, we consider the diagram

0
!
oHom(Ip, Ia/B)

L

H°(Np)
(3.11) 1

oHOHl(IA/B,A) — OI‘I1 — OHOIHR(IB,A) — OHQ(B,A,A) — 0H2*>0
1
oExt' (I5/1%,14/5)

!
0

where H' = H'(R, A, A) (cf. [21], Section 1.1). Note that we have used Lemma 3.1 to
see that
oH*(R, B, A) = Ext'(Ip/Ip,A) = oExt*(Ig/I},1ap) =0

and the fact that B is licci and Kg|U locally free to see
oExt'(Ip/I%, B) & (Ext'(Ip/I5® K, Kp) =0 for 1 <i < 2.
Using the vertical sequence in the diagram, we get ghompg(I/p, A) = dim(Ng)o — a by the
definition of a. Hence it suffices to show that
ohomp(Ia/p, A) — oh*(B,A,A)=b—1—ce.
Since one knows that ¢ H2(B, A, A) & (Extp(Ia/5, A) by (3.6) and we have oh?(B, A, A) =
e+ oextyp(la/p, B) by Remark 3.5(a), we conclude by Lemma 3.4.

It remains to compute b, a, and dim(Ng)o in terms of n;,;. Thanks to Lemma 3.1, we
get

(3.12) a= Z <n17i T ‘l'nnl,k +n— U) B Z (nl,i +ny —l—nnz,k +n— v>

1<i<j<p 1<i,5<n
k<j 1<k<p—1
n Z Ny +Noj+MNag +N—0 Z Nog +Noj+Nog + N —0v
1<i<p 1<i,j,k<p—1
1<jk<p—1 i<j>k
Using Lemma 3.3, we get
(3.13)
b— Z —MNi1s; — N1 — N1k +n+wv + Z —Nii — N1 — Nak +n+wv
1<i<j<k<p 1<i<j<p
1<k<p—1

_ Z (—nu —MNgj —Nag +n+ ’U) 1 Z <—n27i —MNgj —Naok +n 4+ U) ‘
n n

1<i<u 1<i<j<k<p—1
1<j<k<p-—-1

Moreover one knows by [8] that

(314) dlm(NB)O _ Z (nQ,j - ZLi + n) I Z (nl,i — ZQJ + TL) B

1<i<p 1<i<p
1<5j<p—1 1<j<p—1
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Z (nu — nLj + n) _ Z (ng’i — ngd‘ + n) X 1
1<i,5<p 1<i,j<p—1

Putting (3.12), (3.13) and (3.14) together we get what we want. O

Looking to the very first part of the proof above, we see that the lower bound is actually
a lower bound for the dimension of the moduli space parameterizing graded quotients A of
R with fixed Hilbert function. We get the bound because the local ring of this space at (A)
is isomorphic to the local ring of Hilb P™ at (X'). There is also another very natural moduli
space to consider, namely the Hilbert-flag scheme D parameterizing graded surjections
B — A of R with fixed Hilbert functions. If we write a as a = a® — a* where

(3.15) a' = gexty(Ip/Ih, 1a/p),

one knows that the local ring of D at (B — A) is isomorphic to (resp. a subring of) the

local ring of Hilb P" at (X) provided a® = a' = 0 (resp. a” = 0). Note that Lemma 3.2

gives a simple criterion for the vanishing of a® and a, i = 0,1. The main ingredient of our

next result is that we can prove that b—14-dim(Ng)o is a lower bound for dim Op (p_. 4).
To this end, let us fix some more notation. We denote by

a: H'(Np) — oHom(Ip, A) — oH*(B,A,A) 2 oExth(lap, A)

the composition of maps appearing in (3.11); see (3.6) for the last isomorphism. If
depth; ;) B > 3, we see by Remark 3.5 that « factors through Exty (145, B) giving
rise to a map

o : H(Ng) — oExth(Ia/5, B).
We have

Theorem 3.7. Let B be a codimension 2 CM quotient of R = k[xg, ..., x,], char(k) # 2,
and let U =Y — Z — P", Y = Proj(B), be a local complete intersection such that
depth; ;) B > 3. Let X = Proj(A) C P" be the codimension 3 ACM scheme defined by
(3.1). Then
b— 1+ dim(Np)p — a” < dim(x) Hilb P,

where dim(Npg)o and a® are given by (3.14) and (3.15) with v = X+ 2n + 2, and b is
given by (3.13) , or by b = h°(U,wy%(N\)) — hY(U,wy*(N)). Moreover suppose that o is
surjective (e.g. oExty(Ia/p, B) =0). Then,

and X is unobstructed if this upper bound is sharp. In particular, if a® = a' = 0 and o
18 surjective, then X s unobstructed and

dim(x) Hilb P" = b — 1 + dim(Np),.

Proof. Let k[e] := k[z]/(z*) be the ring of dual numbers. We claim that b—1+dim(Ng),

is a lower bound for dim Op p_4). Indeed if v € H O(JV/B) corresponds to a deformation
Bc of R — B to kle], then a(y) = o(B — A; Be)o by [11], see also the proof of Theorem
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9.4 in [19] and see Remark 3.5 for notations. Let AL , be defined by the cartesian
diagram

0A119—>A - HO(]%)

| ] |
0]’]1 — OHOHIR(]B,A)

of morphisms appearing in (3.11). Then ¢AL  , is the tangent space of the Hilbert-flag
scheme D at (B — A) ([21], Sect. 1.1). Moreover, if B is unobstructed as a graded
algebra, then coker a0 contains all obstructions of deforming B — A as graded algebras by
a result of the unpublished thesis of the first author (cf. [22], (1.9) for a closely related
result). By Remark 3.5, coker o’ C coker a contains all obstructions of deforming B — A
in the case (I4/p, B) is unobstructed along any graded deformation of B. Then we can
again conclude by Laudal’s theorem ([26], Theorem 4.2.4) that

(3.16) dim gAp_ 4 — dimcoker o’ < dim Op (- a).
Now looking once more to (3.11) and the proof of Theorem 3.6, we easily get
(3.17) dim ¢A} 4 — dimcokera’ = b — 1+ dim(Ng),

and the claim is proved.

Let p : D — Hilb P™ be the second projection morphism, i.e. induced by p((B" — A’)) =
(Proj(A’)). Since the tangent space of the fiber p~!((Proj(A))) is oHomp(Ip/I%, 14/5) at
(B — A) ([18], Theorem 1.6 or [21], Proposition 4) i.e. an a’-dimensional vector space,
we get dim Op (p—.4) — a’ < dimx) Hilb P" and hence the lower bound of the theorem.

Finally suppose coker(a’) = 0. Looking at (3.11) and using the definition of a’ and
0AL . we get

' (Nx) = dim (H' < dim ¢Ap 4, —a®+a'.

Since dim(x) HilbP" < h°(Nx) we get the upper bound from (3.17). Moreover if the
upper bound is sharp, we deduce dim(yx)HilbP" = h°(Nx), and it follows that X is
unobstructed. Since we get the final conclusions by observing that the upper and lower
bounds coincide under the assumption a’ = a' = 0, we are done. 0

Remark 3.8. (a) Comparing the lower bounds of Theorem 3.6 and Theorem 3.7, we
remark that a = a® — a'. Hence if ¢ > a! then the lower bound of Theorem 3.7 is larger
and conversely if e < a.

(b) Moreover note that if o' is surjective, we see from the proof above that e =
dim oH?(R, A, A). In particular if X is licci, then e = 0 ([19], Proposition 6.17).

Corollary 3.9. Let B be a codimension 2 CM quotient of R = k[xy, ..., x,], char(k) # 2
and let Y := Proj(B) < P" be a local complete intersection such that dimY > 2. Let
X = Proj(A) C P™ be the codimension 3 ACM scheme defined by (3.1) with A > 0. Then
X is unobstructed and

For the numbers a and e above, we have a = 0. Moreover if dimY > 3 then e = 0.
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Proof. By Theorem 3.7 it suffices to show a® = a! = 0 and (Exty(S?Kp(—\), B) = 0.
The first assumption is taken care of by Lemma 3.2. Moreover using the l.c.i. assumption
on Y we get that I/(VB is locally free, and hence that

(3.18) oExtL(S2Kp(—)), B) = HY(Y, S2K},(\) & H™Y-1(Y, S* K p(—\))Y,
which vanishes for A > 0. Finally if dimY = 3, it follows from Lemma 3.4(i) that e = 0,
and we are done. O

One may prove the following result directly from Theorem 9.4 of [19] by using the fact
that (S2Kp(—\), B) is unobstructed along any graded deformation of B (Example 2.3).
We, however, get the corollary by combining Theorems 3.6 and 3.7.

Corollary 3.10. Let Y = Proj(B), U =Y —Z — P" and X = Proj(A) be as in Theorem
3.7 and suppose depth;,) B > 3 and OEX‘GE(IA/B, A) =0. Then X is unobstructed and

Moreover the number b of (3.13) is also equal to b= ohom(I4/p, B) = hO(U, wy?(N)).
Proof. Using Remark 3.5 (a), we get e = 0 and that o is surjective. It follows that

the upper bound of Theorem 3.7 and the lower bound of Theorem 3.6 coincide and we
conclude by Theorem 3.7. O

Remark 3.11. In this remark we will use (3.18) to make the assumption A > 0 of
Corollary 3.9 into an explicit bound provided the number of minimal generators of I is
w =3 (and I(Z) = m). Firstly we consider the exact sequence of locally free sheaves on

Y,

(3.19) 0 — Kp(m) — @2, B(~n1;) — Ip/I} — 0
where m :=n+1— Z?:1 n1,, associated to the exact sequences (3.2) and (3.3). Dualizing

-~V
it and building the exact sequence of S*>(Kp )(—2m) in the usual way, we get the sequence

0— N2(I5/13)" — (Ip/13)" ® (@:B(m,)) — S*(@:B(n1,) — S*(Kp )(~2m) — 0
which simplifies to the following exact sequence of locally free Oy-sheaves
—~ — ~ 9, >V
(320) 0— KB(TL + 1) — @iNB(nl,i) - @ing(nu + nl,j) — S (KB )(—Zm) — 0.

If dimY = 3 and hence n = 5, we have by (3.20) an injection H'(Y, 52(5(7;)()\)) —
H3(Y, Kg(n + 1+ 2m + ), which vanishes if 6 4+ 2m + A > 0, i.e. A >2-32 ny,; —
18. Combining with Lemma 3.4(i) and Remark 3.5 (a) we get oExty(Ia/p, A) = 0 and
Corollary 3.10 applies. Hence X is unobstructed (indeed ¢ H*(R, A, A) = 0) and

provided

3
A>2) ny;— 18
=1

We have (3.21) with a = 0 if A > max{3dy — 12, 2377, ny,; — 18} by Lemma 3.2.
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If dimY = 2 and n = 4, we can use (3.20) to see that H*(Y, 52([/(7;)()\)) = 0 provided
H?(Y, ]f\FB(nM +2m + A)) = 0 for any i. Using (2.2) and (2.6) we see that H*(Y, Ng(v))
vanishes if H4(P*, FY @ Fy(v)) = 0, i.e. for v+ s > dy — 5 where s = min{n;}. Hence
H\(Y, SQ(lf(\/Bv)(/\)) = 0 provided 25 4+2m+\ > dy —5,1.e. A >2-30  ny;—2s+dy— 15,
Combining with Lemma 3.2 and Theorem 3.7, we get that X is unobstructed and that
(3.21) holds with a = 0 provided

3
A >max{3dy — 10, 2) ny; — 25+ dy — 15},

i=1

Sometimes the Kodaira vanishing theorem, or related arguments, show H'(Y, wy2(\)) =
0 more effectively than the arguments of Remark 3.11.

Example 3.12. Let Y = Proj(R/Ig) be a smooth Castelnuovo surface in P* and let
X ~ —2Ky + AH, A > 0, be an effective divisor on Y. In the usual basis of Pic(Y) = Z°,
then X, := —2Ky corresponds to (6;2%) and H to (4;2,17). By Kodaira vanishing
theorem, or simply by Ky H = —3 < 0, we get

H'(Nx/y)" = H(Y,Oy (=X + Ky)) = 0.

Hence, H'(Y, Oy (X)) = 0 for any A > 0 while Remark 3.11 implies the vanishing of the
same group for A > 2> ny; — 25+ dy — 15 = 1, because of

0 — R(—4)? — R(-3)?® R(—2) — Iz — 0.

In this case we have (Ext'(I4,5,4) = 0 by Remark 3.5(a) and Corollary 3.10 applies for
A > 0. We get that X is unobstructed (indeed ¢H?*(R, A, A) = 0 by Remark 3.9(b) and
Lemma 3.4) and

dimx) Hilb P" = h%(Oy (X)) — 1+ °(Ny) —a =

X(X - Ky)/2432—a=35+5AA+3)/2—a.

By Lemma 3.2, a = 0 provided A > 3 and we have a = 6, -2, -2 for A = 0, 1, 2
respectively by (3.12). Hence dimx) Hilb P" = 29, 47, 62 for A = 0, 1, 2 respectively and
35+ 5A(A +3)/2 for A > 3. Note that if d and ¢ is the degree and genus of the curve X,
we have h°(Ny) — h'(Nx) = 5d + 1 — g which is equal to 29, 47 and 60 for A = 0, 1 and
2 and more generally equal to 29 + (41X — 5A?)/2 for A > 0. Thus

hY(Nx) =5\ — 13X+ 6 —a for A > 0.

4. IDEALS GENERATED BY SUBMAXIMAL MINORS OF SYMMETRIC MATRICES

The goal of this section is to write down lower bounds for the dimension of Hilbf)(g (P™)
being X C P" a codimension 3, arithmetically Cohen-Macaulay scheme defined by the
submaximal minors of a ¢ x ¢ homogeneous symmetric matrix. We will also analyze when
the mentioned bounds are sharp. A classical scheme that can be constructed in this way
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is the Veronese surface X C P5. Indeed, the Veronese surface X C P° can be defined by
the 2 x 2 minors of the symmetric matrix

To T1 T2
Ty X3 T4
Tog T4 Ts

Let us first fix the notation we will use throughout this section. From now on, X C P
will be a codimension 3, arithmetically Cohen-Macaulay scheme defined by the submax-
imal minors of a ¢ x ¢ homogeneous symmetric matrix A = (fji); =1+ where f;; €
k|zo, ..., x,] are homogeneous polynomials of degree a; + a; and let A = R/I(X) be the
homogeneous coordinate ring of X. We denote by

2aq a+ay --- a1+ a
a) + as 2ay N )
ar+a; as+a; --- 2a,

the degree matrix of A. The determinant of A is a homogeneous polynomial of degree
¢ =2(ay+az+---+a;). Note that a; + a; is a positive integer for all 1 <1 < j <t while
a; does not necessarily need to be an integer.

Let B be the matrix obtained by deleting the last row, let Iz = I;_1(B) be the ideal
defined by the maximal minors of B and let 14 = I;_1(A) be the ideal generated by the
submaximal minors of A. Set A= R/I4 = R/I(X) and B = R/Ip.

Remark 4.1. Assume char(k) # 2. After a basis change that preserves the symmetry of
A, if necessary, we ha