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Introduction and main results,

The Hilbert scheme of space curves H(d,g) has received much attention over the
last years after Grothendieck showed its existence [G]. For so-called special curves it has
turned out that the structure of H(d, g) is difficult to describe in detail, and questions related
to irreducibility and number of components, dimension and smoothness has been hard to
solve.

For particular classes of space curves, some results are known. In 1975 Ellingsrud
[El] managed to prove that the open subset of H(d,g) of arithmetically Cohen Macaulay
curves (with a fixed resolution of the sheaf ideal 1) is smooth and irreducible, and he
computed the dimension of the corresponding component. A generalization of this result in
the direction of smoothness and dimension was already given in [K2] (see theorem 3i,i’ of
this paper) while the irreducibility was later nicely generalized by Bolondi [B]. More
recently, Martin-Deschamps and Perrin have given a stratification H, , of H(d,g) obtained by
deforming space curves with constant cohomology [MDP1]. Their strata H, , is large in
H(d,g) provided the Hartshorne-Rao module M = & H'(I(»)) is small. Indeed if the graded
module M is concentrated in at most two consecutive degrees (i.e. its diameter is two or
less), then H,, is smooth and irreducible and its dimension is known. We get back
Ellingsrud’s result because H,, = H(d,g) at arithmetically Cohen Macaulay curves (i.e. at
curves with M = 0). However, in the case the diameter is 1 or more, H, , can sit inside
H(d,g) in different ways, and we can not get a complete picture of H(d,g) from H_ , without
studying the imbedding in detail.

This is what we do in this paper. We get complete results only in the diameter 1 case,
thus generalizing Ellingsrud’s results (and the study of the case M = k of [MDP1]) to

Theorem Let C be a curve in PP, lee M = H.l(I)) and E = H.'(0.) and suppose M has
diameter 1 or less. Then H(d,g) is smooth at C (i.e. C is unobstructed) if and only if (at
least) one of the following conditions hold,

i) Homp(l , M} =0 forv=0 and v = -4
ii) JHomgM , E) =0 forv=0 and v = -4, or
iii) oHomp(l , M) = 0 and Homp(M , E) = 0.

Moreover if C is unobstructed, then the dimension of the Hilbert scheme at C is

dim H(d,g) = 4d + chomy(l , E) + shomy(l , M) + jhomy(M , E)
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{Once we know a minimal resolution of /., we easily express these Hom -groups as certain
graded Betti numbers and we compute the dimension of H(d,g) at C to be
4d + &%*(0) + r(a,+b,), cf. definition 1 and corollary 6).

More generally we show in section 2 that the impact of H, , in H(d,g) is equipped
with three Yoneda pairings (inducing corresponding cup-products, see propositions 7 and 8),
some of which are essentially considered in [W1] and [F]. These are extremely easy to
handle because they live on the Hom-level, and, as formulated here, they are given by just
taking simple compositions. It turns out that the vanishing of @/l three pairings are necessary
for unobstructedness, and quite close (resp. equivalent) to the sufficient conditions of theorem
3 in the diameter 2 case (resp. in the diameter 1 case). To appreciate such results, one should
recall how hard it "classically" ([Mu] and [K2]) has been to prove obstructedness because
one essentially had to compute a neighborhood of (C S P*) in H(d,g) to conclude. The
Yoneda pairings of proposition 7 and 8 are related to two other pairings, as indicated in
(2.11). To get equivalent conditions when the diameter is 2 as well, we probably just need
to include their Massey-products [L2] and the Massey-product which corresponds to the
Yoneda pairing of proposition 7 and 8.

In theorem 3 we also compute dim. H(d,g). The technique used in section 1 to prove
theorem 3, especially the following generalization of the local Gorenstein duality;

JEXt (N, , N) = Extg (N, , N,

(-) = Hom(- , k), and the spectral (resp. exact) sequences involved (1.1}, is important for
the whole paper, and it can be used to give new proofs and additional informations of some
main results in [MDP1] as well, cf. (1.6) and (1.21).

In section 3 we are concerned with curves which admit a generization or are generic
in H , (resp. in H(d,g)). Inspired by ideas of [MDP1] we prove a rather general theorem,
telling that we can kill certain repetitions in a minimal resolution ("ghost-terms") of the
homogeneous ideal I(C), under deformation. Hence curves with such simplified resolutions
exist. One result of particular interest is

Theorem Ifa curve Cin H._, (or in H(d,g)) is general enough, then C admits a minimal free
resolution of the form .

where o: L, — L, is given by the minimal resolution of the Hartshorne-Rao module M, cf.
(3.2) and where F, and F, are without repetitions (i.e. without common direct factors).

Restricting to general Buchsbaum curves, we prove that L, and F; (and L, and Fy(-4)
in some cases) have no common direct factor as well. Moreover we get a somewhat
complete picture of the existing generizations of Buchsbaum curves, allowing us in many
cases to decide whenever an obstructed curve is contained in a unique component of H(d, g)
or not. Moreover we show that any Buchsbaum curve whose Hartshorne-Rao module has
diameter 2 or less, admits a generization in H(d,g) to an unobstructed curve. It follows that
any irreducible component of H(d,g) is generically smooth in the diameter 1 case.

There are also other classes of curves where questions related to the structure of
H(d,g) is quite well understood. One such class consists of curves which sit on a smooth
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cubic surface. In the appendix we discuss the existence of non-reduced components of H(d, g)
in general, and we relate the discussion to a conjecture on non-reduced components for a
maximal class of curves on a smooth cubic surface (cf. [K1] and {E]). We further prove the
conjecture in most cases by generalizing the results of the mentioned papers to (see the
appendix for notations):

Theorem Let W be a maximal irreducible family of smooth connected space curves, whose
general member sits on some smooth cubic surface and whose corresponding invertible sheaf
is given by (6,m;,..,mg), 6 = m, =.. = mgswhere 6 = m; + m, + m,. Let W be the closure
of Win H(d,g).

i) If mg = 3 and (5,m,,...,mg) # (AN+9,N+3,3,..3) for any N\ = 2, then W is a
generically smooth, irreducible component of H(d,g).

i) Ifmg =2, mg =4, m = 5andd = 21, then W is a non-reduced irreducible
component of H(d,g). _

iii) Ifmg=1,ms = 6, my = 7and d = 35, then W is a non-reduced irreducible
component of H(d,g).

Since the case mg = O is treated by Dolcetti and Pareshi in [DP], and the case my; < 0
cannot occur, we now have a pretty good picture of the structure of H(d,g) for generic
elements of this class of curves. However, as we may see from the theorem, for some values
of (§,my,..,mg) (in fact infinitely many), the conjecture is still open.

This paper was written in the context of the group "Space Curves" of Europroj, and
main results were lectured at its workshop, May 1995, at the Emile Borel Center, Paris. The
author thanks the Center for its hospitality and prof. O. A. Laudal at Oslo and prof. G.
Bolondi at Sassari, for interesting discussions on the subject.

Notations and terminology. A space curve C is an equidimensional, locally Cohen
Macaulay subscheme of P = P° of dimension 1 with sheaf ideal . and normal sheaf N, =
Hom,p(Ic,00). If F is a coherent Op -Module, we let H'(F) = HY(P,F), HXF) = ¥, H(F®W),
hi(F) = dim Hi(F), and x(F) = I (-1)' K(F) is the Buler-Poincaré characteristic. Moreover
M = M(C) is the Hartshorne-Rao module H.(I) and E = E(C) is the module H.!(O.). They
are graded modules over the polynomial ring R = k[X,,X;,X,,X;1, where k is supposed to
be an algebraically closed field of characteristic zero. The postulation v (resp. deficiency p,
resp. specialization ¢) of C is the function defined over the integers Z by y(v) = yo(v) =
h°c(v)) (resp. p(v) = pe(v) = h'(IL), resp. o(v) = oc(v) = h'(0L»)) ). Put

5(C) = min {n | h°Un)) = 0},
¢(C) = max {n | h'(Ln)) # 0},
e(C) = max {n | W'(OLn)) = 0},

where ¢(C) is the index of speciality (Put c(C) = - o for arithmetically Cohen Macaulay
curves). A curve C such that mM(C) = 0, m = (X,,..,X;), is called a Buchsbaum curve.
C is unobstructed if the Hilbert scheme of space curves of degree d and arithmetic genus g,
H(d,g), is smooth at the corresponding point (C S P), otherwise C is obstructed. The open
part of H(d,g) of smooth connected space curves is denoted by H(d,g)s, while H,, =
H(d,g),, (resp. H , resp. H, ,) denotes the subscheme of H(d,g) of curves with constant



4

postulation « and deficiency p (resp. constant postulation -y, resp constant postulation + and
Rao module M), cf. [MDP1]. The curve in a small enough open irreducible subset of H(d,g)
is called a generic curve of H(d,g), and accordingly, if we state that a generic curve has a
certain property, then there is an open dense subset of H(d,g) of curves having this property.
A generization (C’ € P) of (C S P) in the Hilbert scheme H(d,g) may be thought of as the
generic curve of some irreducible subset of H(d,g) containing (C & P).

For any graded R-module N, we have the right derived functors H, ‘(N) and
Jxt, (N, -) of T (N) = ¥, ker(N, > T'(P, N"(v})) and T (Homy(N , -)), respectively (cf.
[SGA 2], exp. VI or [H2]) where m = (X,,..,X3). We use small letters for the k-dimension
and subscript v for the homogeneous part of degree v, i.e. .ext,'(N,,N,) = dim JExt,'(N,,N,).

1. Preliminaries. Sufficient conditions for unobstructedness.

In this section we recall the main technical tools of this paper, and we review some
partially known results for unobstructedness of space curves. At most places we include
proofs, also because we need parts of the arguments (e.g. the exact sequences which appear)
later.

Let N; and N, be graded R-modules of finite type. Then there is a spectral sequence
([SGA 2], exp. VD)

(1.1) E}? = Extf(N; , H(N,) converging to Ext,’"(N,, N,),
and a duality isomorphism ([K2], th. 2.1.4)
(I-'l) vExt;:(Nz » N u—v—4Ext;_i(Nl » N,

(- = Homy(- , k), for any integer i and v. Moreover there is a long exact sequence
([SGA2], exp. VI)

(13) =, Ext,(N, , N) - Extz(N, , N) ~ Exto (N, , Ny(v)) - Ext,' (N, , N -

which in particular relates the deformation theory of (C < P), described by H'(N) =
Extyp(17, I") for i = 1,2, to the deformation theory of the homogeneous ideal I = I(C),
described by oExtRi(I, D), in the following exact sequence

(90 ~Beeit , D ~ BN ~Exl , D~ Exd , D ~ HN0) ~Ex , D-0

Observe that the map o: Ext,’(, ) = Hom(I,H D) - Ext(I, I) factorizes via
Jxt (M, M) in a natural way ([W2], th. 2.3), the factorization is in fact given by certain
edge homomorphisms of the spectral sequence (1.1) with N, = H *I) = M, N, =1 and
p+q = 4, cf. (1.17) and (1.18) where this map of factorization occurs.

To compute the dimension of the components of H(d,g), we have found it convenient
to introduce the following invariant, defined in terms of the graded Betti numbers of a
minimal resolution of the homogeneous ideal I of C:

(1.5) 0 ——> @ R(-ny) —> B R(-ny) —> G R(-ny) —> [ —> 0
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Definition/lemma 1 If C is any curve of degree d in P°, we let
5w = 24 Wlletn+v)) - D Wllefng+v) - 2 W(letna+v)
Then the following expressions are equal

Xl 1) - ext®o(l, 1) = 1-8°(0) = 4d + §*(0) - 8'(0) = 1 + 8%(-4) - §'(-4)

(1.6) Remark. Those familiar with results and notations of [MDP1] will recognize I-8(0)
as &, and 8'(-4) as €_, in their terminology. By lemma 1 it follows that the dimension of the
Hilbert scheme H_, of constant postulation and Rao module, which they show is
8, + €5 - hom(M,M), is also equal to I + &(-4) - Jhom(M,M).

Proof of lemma 1. To see the equality to the left, we apply ,Homg(- , I) to the resolution
(1.5). Since Homyg(I , I) = R and since the alternating sum of the dimension of the terms in
a complex equals the alternating sum of the dimension of its homology groups, we get

a7 dimR, - ext!(1, 1) + ext?I, ) =8 ,vE Z

If v = 0 we get the equality of lemma 1 to the left. The equality in the middle follows from
[K2], lemma 2.2.11. We will, however, indicate how we can prove this and the last equality
from (1.2) and (1.3). Indeed by (1.2), ext,“(I, I) = , ext(I, I}, hence

(1.8) ext, 2, 1) - ext*1, 1) +dimR,, = 8-4),vE Z

by (1.7). Combining (1.7) and (1.8) with the exact sequence (1.4), we get

(1.9) (";3) - XN W) = 8% - 3%-v-4) , veLl

because dim R, - dim R, = (”;**). Therefore it suffices to prove
(1.10) 8°(-v-4) = 3'(v) - 8%(») , v -4

Indeed using (1.9) and (1.10) for v = O we get the equality of lemma 1 in the middle
because x (N, = 4d holds for any curve (cf. rem. 1.13) while (1.10) for v = -4 takes care
of the last equality appearing in lemma 1.

To prove (1.10) we use the spectral sequence (1.1) together with (1.8). Recalling M
= H () and E = H*(I) we get Ext,X(I, I) = Hom(l , M) and Exi’(I , E) = FExt,’ (I, 1)
= 0 and an exact sequence

Q.u)o ~ Exty(I,M) ~ Ext>(I,I) - Hom(I,E) ~Exta(I,M) ~ Exty(,]) ~ Ext'(I,E) - 0

where we have used that v > -4 implies Hom(l, H,'(I)} = 0. As argued for (1.7), applying
Hom(-, M) (resp. Hom(-, E)) to the resolution (1.5), we get
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pA 2
(112) 8'0) = Y (-Diext’td , My , (resp. 8% =Y (-Dext'l , E})
i=0 i=0

4
So 8'(v)-8*(v) equals Y (_1)"-vext,:;(1,[) by (1.11), and since Ext,*T, 1) =, Hom(l , I)*
iw2

= R,/ we get (1.10) from (1.8), and the proof of lemma 1 is complete.

(1.13) Remark. In [K2], lemma 2.2.11 we proved x(N.(v)) = 2dv + 4d for any curve and

any integer v by computing 8°(v) for v > > 0. Indeed using the definition of &(v), the

sequence 0 = I = Op = O~ O and ¥, ¥ (-1 Jn; = 0 and applying Riemann-Roch to

x(O(n;+v)) we get easily

(1.14) 5°(v) = DDA(1) x(Opfry+ v) - (dv + 1-8), v>> 0

while duality on P and (1.5) show that the double sum of (1.14) equals -x(I.(-v-4)). Hence
W) = (%) + x(Of-v-4)-(dv +1-g), v>>0

and now x(N(v}) = 2dv + 4d follows by combining with (1.9).

Proposition 2 Let C and C’ be curves in P° which are linked (algebraically) by a complete
intersection of two surfaces of degree f and g. If

HAWm) =0 forv=fg,f-4 and g -4,
then C is unobstructed if and only if C’ is unobstructed.

One may find a proof in [K3], prop. 3.2. The proposition allows us to complete the
proof of the following result:

Theorem 3 If C is any curve in P° of degree d and arithmetic genus g, satisfying (at least)
one of the following conditions:

i) JHomp(l , M) = 0 forv=0andv = -4
ii) JHompM , E) =0 forv=0andv = -4, or
iii) oHomo(I , M) = 0, JHomz(M , E) =0 and Ext’(M , M) = 0,

then C is unobstructed. Moreover, in each case, the dimension of the Hilbert scheme H(d,g)
at (C € P) is given by

i) dim.H(d,g) = 4d + 8(0) - 8'(0) , provided i) holds

i’)  dim. Hd,g) = 4d + 8%0) - 8'(0) + shomy(LM) + Jomy(I,M) -exty (M, M),
provided ii) holds

i’y dim. H(d,g) = 4d + 8(0) - 8'(0) + homy(LM) , provided iii) holds.
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Proof. 1) To see that C is unobstructed we just need, thanks to the duality (1.2), to interpret
the exact sequence (1.4) in terms of deformation theory. Indeed by (1.1) and (1.2);

(1.15) Ext,’(1, ) = JHom(l, M), and JExt2(I, 1) = JExt I, 1) = Hom(, M)

Now (1.4) and the vanishing of the first group of (1.15) imply that the local Hilbert functor
at C, Hilb., and the deformation functor of deforming the homogeneous ideal I as a graded
R-module, Def,, are isomorphic. The functor, Def;, (which one may see is isomorphic to the
local Hilbert functor of constant postulation at C introduced in [MDP1]) is smooth because
oExt? (1, 1) vanishes, cf, [K2], prop. 2.2.12 or {W1] for details. This proves i), and then i’)
follows at once from lemma 1.

iii) One may deduce the unobstructedness of C from results in [MDP1]. However,
since we need the basic exact sequences below later (for which we have no reference), we
give a proof. Indeed for any curve we claim there is an exact sequence:

(1,10 0~ T | ~Bxta , D) P~ HomyM , E) ~Exts(M , M) ~Exi(l , D

where T, , is the tangent space of the Hilbert scheme of constant cohomology H, , at C. To
prove it we use the spectral sequence (1.1) and the duality (1.2) twice, i.e. we get an
isomorphism, resp. a surjection

B, D) = Fxt X, 1) = Homd, M = Ju’M, I
(1.17)
Bl: OEXZRI(I ] I) = —4Ex£m3(l ] I)v ->> -4ExrRI(I ’ M)V = OEXImJ(M ) I)

Now replacing I by M as the first variable in (1.11) or using (1.1) directly, we get
Q.ﬁs)o oExtg(M , My ~ Ext (M , D) E>t,,Hom(1\4 , E) = Extx(M , My ~Exta(M , I)

which combined with (1.17) yields (1.16) because the composition § of 8, (arising from
duality used twice) and 3, must be the natural one, i.e. the one which sends an extension of
JExt!(I, 1), (i.e. a short exact sequence) onto the corresponding connecting homomorphism
M= HXI)-E = HJ>I). And we get the claim by [MDP1], prop.2.1, page 157, which
tellsker 3 =T, .

To see that C is unobstructed, we get by (1.16) and the vanishing of Homy(M , E}
an isomorphism between the local Hilbert functor of constant cohomology at C and Def,. The
latter functor Def, is isomorphic to Hilb. because Homg(I , M) = 0 (cf. the proof of 1)),
while the former functor is smooth because Ext’(M , M) contains in a natural way the
obstructions of deforming a curve in H_, (cf. [MDP1], th. 1.5, page 135). This leads easily
to the conclusion of iii). Moreover note that we now get iii’) from lemma 1 because
hO(Ne) = gext’z(l, 1) and gext?o(1, 1) = homy(l , M).

ii) The unobstructedness of C follows from proposition 2. Indeed if we take a
complete intersection Y 2 C of two surfaces of degree f and g such that the condirions of
proposition 2 hold (such Y exists), then the corresponding linked curve C’ satisfies
Homp(I(C’) , M(C’)) = Homy(M(C), E(C)) for v = 0 and v = -4 and we conclude by
proposition 2 and theorem 3i).
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It remains to prove the dimension formula in ii’). For this we claim that the image
of the map o » Ext,’(1, 1) = Homy(l , M) - JExt;?(I , I) which appears in (1.4) for
v = 0, is isomorphic to ,Ext,*(M , M). Indeed o factorizes via JFxt,2(M , M) in a natural
way, and the factorization is given by a certain map of (1.16). Now Homy,M , E) =0
for v = 0 and -4 implies that the maps Ext.*(M , M) — Ext.’(I , I) of (1.16) are injective
for v= 0 and v = -4, Dualizing one of them (the map for v = -4) we get a surjective
composition;

oHome(l , M) = Ext (1, 1)’ > LExt (M , M) = Ext*(M , M)
R

which composed with the other injective map above is precisely «. This proves the claim.
Now by (1.4) and the proven claim;

W(NY = gext! (1, 1) + dim ker « = ext (I, I) + Jiomg(l , M) - sext,2(M , M)
and we get the dimension formula by lemma 1 and we are done.

(1.19) Remark. a) (1.15), (1.16), (1.17) and (1.18) are valid for any curve in P°. Moreover
if M, = 0, we get ;Hom(M , H,*1I))} and one may see that the spectral sequence which
converges to oExt,*(M , I) (cf. (1.17) and (1.18)) consists of at most two non-vanishing
terms. Hence we can continue the exact sequences (1.18) and (1.16) to the right with

OEx£m4(M » I) = OEXtZ(I ’ I) - OEx{RI(M ’ E) g OExtRj(M ’ M)-

b) The proof of theorem 3 implies also the following resuit, valid for any curve C.
With notations as in the proof, we have:

i) oHom(I(C), M(C)) = 0 implies Defy, = Hilb, i.e. H, = H(d,g) atC
) oHomg(M(C), E(C)) = 0 implies H, , = H  (i.e. as schemes) at C

¥.0

One objective of this paper to prove that the conditions i), ii), iii} of theorem 3 are
necessary for unobstructedness provided M has diameter 1. Moreover, we shall in section
3 see what happens to the unobstructedness of C when we impose on C different conditions
of being "general enough”. One result is already now clear, and it points out that the
condition iii) of theorem 3 is the most important one for generic curves:

Proposition 4 Let C be a curve in P°, and suppose C is generic in the Hilbert scheme
H(d,g) and satisfies JFxt2(M , M) = 0. Then C is unobstructed if and only if

oHomp(I , M) = 0 and (Homy(M , E) = 0

Proof One way is clear from theorem 3. Now suppose C is unobstructed and generic with
postulation -y and deficiency p. By generic flatness we see that ., = H, = H(d,g) near C
from which we deduce an isomorphism of tangent spaces T, ,, = oExt;/(I, I) = H°(N). We
therefore conclude by the exact sequences (1.16) and (1.4), recalling that o - ,Ext, 21, I) —
oFxt2(I , I), which appears in (1.4) for v = 0 factorizes via JExt.*(M , M), i.e. a = 0.
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(1.20) Remark. In section 3 we will encounter the open subscheme Hy(d,g) of H(d,g) of
curves C satisfying diam M(C) < 2, and the subset

U={CE Hyd,g) | Homyl, M) =0 and HomuM , E) = 0}

Since the isomorphisms of (1.19b) extend to isomorphisms in some neighborhood, hence to
isomorphisms of their tangent spaces which in turn lead to the vanishing of the Hom-groups
appearing in U (cf. the proof of proposition 4), we see that U is an open subset of Hy(d,g).
By theorem 3, H(d,g) is smooth along U and, by proposition 4, U has a non-empty
intersection with every reduced component of H,(d,g).

(1.21) Remark. Combining (1.16) and (1.18) we get a surjective map T, > Ext (M, M).
Moreover dualizing the exact sequence of (1.11) (with v = -4), the surjective map above fits
into the exact sequence

k - Hom M , My ~_Hom,I , E)’ - Ty’p—’oExt,i(M LM -0

and k — Homg(M , M} is injective provided M # 0. We can use this surjectivity (and some
considerations on the obstructions involved) to give a new proof of the smoothness of the
morphism from H, , to the "scheme" of Rao modules ([MDP1], th. 1.5, page 135). Since
shom(l | E) = §*(-4), cf. (1.12), the exact sequence above also leads to the dimension
formula of H, ,, we pointed out (1.6), cf. [BK] for the generalization of this argument to the
Hilbert scheme of surfaces in P*,

2. Necessary conditions for unobstructedness.

In this section we will prove that the conditions 1), ii), iii) of theorem 3 are both
necessary and sufficient for unobstructedness provided M has diameter 1. In terms of
obstructed curves, we can state the result as

Theorem 5 Let C be a curve in PP, let M = HJ' (1) and E = H.(0O.) and suppose M has
diameter 1 (or less). Then C is obstructed if and only if (at least) one of the following
conditions hold

a) oHomp(l , M) # O and JHomu(M , E) # 0 , or
b) oHoma(M , E) # 0 and Homg(l, M) # 0 , or
c) oHomp(l , M) # 0 and _HomgM ,E) # 0.

Moreover if C is unobstructed, then the dimension of the Hilbert scheme at C is
dims H(d,g) = 4d + 6*(0) + shomg(l , M) + homz(M , E)
Even though we prove theorem 5 only when the Rao module has diameter 1, the most

important contributions for proving the “converse" of theorem 3 are given by proposition 7
and 8 which are valid in the diameter 2 case as well. In that case, however, we have not
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been able to establish coincidentally necessary and sufficient conditions.

To state theorem 5 in a simple way, we rephrase the result in terms of some
invariants of a minimal resolution of the homogeneous ideal I = I{(C). To do this, observe
that the assumption on the diameter is equivalent to requiring M = H(I.(c)) for some integer
c. So C is a Buchsbaum curve and the minimal resolution of M is well known ((MDP1],
page 41). Moreover using Rao’s result ([R], theorem 2.5), the minimal free (graded)
resolution of I has following form

(200 ~ R(-c-4% -+ R(-c-2)P"OR(-)*BP, ~ R(-c-4) " DR(-c)>*®P, ~ I + 0
where P;, for i = 0,1, is supposed to contain no direct factor of degree c and c+4.
Corollary 6 Let C be a curve in P° whose Rao module M # 0 is concentrated in degree c,
and let a, and a, (resp. b, and b,) be the number of minimal generators (resp. relations) of
degree c+4 and c respectively, cf. (2.1). Then C is obstructed if and only if

ab, # 0 orab;, # 0 orap, # 0

Moreover if C is unobstructed, then the dimension of the Hilbert scheme at C is

dim. H(d,g} = 4d + 8*(0) + r(a, + b,)

Proof. Applying Homyg(- , M) to the minimal resolution (2.1) we get at once
(2.2) iomp(l , M) = ra, and homg(l , M} = ra,

while the duality (1.2) and the spectral sequence (1.1) (which degenerates for v # -1 and
-2) lead to

(2.3) wExXt (T, M) = Ext,> (M, 1)) = HomyM,E) , v #-1,-2
Interpreting _, .Ext; (I , M) via the minimal resolution of I as in (2.2), we get

(2.4) Jompg(M , E} = rb; and _homy(M , E) = rb,

and we conclude easily.

Proposition 7 Let C be a curve in P, let M = H.'(I)) and E = H.'(O.) and suppose
Xt (M, M) = 0. If the obvious morphism

oHomu(l , M} X HomyM , E) --> Homg(l , E)

(given by the composition) is non-zero, then C is obstructed. In particular if the diameter
of M is I, then C is obstructed provided

Jdomp(l , M) # O and Homp(M , E) # 0
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Proof. It is well known (cf. [L1]) that if the Yoneda pairing (inducing the cup-product}
<--> 1 Extop(ls, 1) X Extod (e, 10) = Extop(Ic, 1),

given by composition of resolving complexes, satisfies <A,A> = 0 for some A, then C is
obstructed. If we let p;: Extop (I, 1) = JHomg(I, M) and p,: Extyp (1., 1) = JHomg(M, E)
be the maps induced by sending an extension onto the corresponding connecting
homomorphisms, then <-,-> fits into a commutative diagram

Exf(l., 1) X Exid(l., I -> Exf(., 1)

@s) lel J{pz 0 J{

Homy(l , M) X JHomyM , E) -> JHomg(l , E)

where the lower horizontal map is given as in proposition 7 (cf. [F]}). By (1.4),

ofExt'y(I , I) = ker p,, and p, is surjective because o = 0 for v = 0. Moreover since the
composition Extp'(I , 1) < Ext'(I. , I)) = JHomg(M , E) is surjective by the important
sequence (1.16), there exists (\; ,N\,) € Ext'(I., I) X Extg! (I, I) such that the composed
map p,(A\,)pi(A)) is non-zero by assumption. Using A, € ofExty! (I, I) = ker p,, we get

PaA; + MJpiN + N) = paAIpiN) + PPN

i.e. either <A, + A,A + A,> or <A, ,A\ > are non-zero, and C is obstructed.

Finally if M = M, has diameter 1, the minimal resolution (2.1) of I leads to (Homyg(I , M)
= M. 2?2 Therefore a, # 0 and there exists a non-trivial map ¢ € Homz(M , E) by
assumption. It follows that ¥(m) # 0 for some m € M,, i.e. the element

((m,0,..,0),{) € Homy(l, M) X Homy(M , E)
maps to a non-trivial element of (Homg(I , E), and we conclude by the first part of the proof.

(2.6) Remark. Let C be a curve in P* whose Rao module has diameter 1. From (1.4) and
(1.16), cf. the proof above, we see at once that Homg(I , M) # 0 and (Hom(M , E) # 0
if and only if we have the following strict inclusions of tangent spaces

™ T, s BExtid, )  H(NJ

where Extp!(1, I) is the tangent space of the functor Def;, i.e. of the Hilbert scheme of
constant postulation H, at C. By proposition 7, C is obstructed if (*) holds, cf. [MDP1], page
193 for the case M = k. '

Along the same lines we are able to generalize a result of Walter ([W1], theorem 0.5) to
curves whose Rao module has diameter 2 or less. Indeed if the diameter of M is 1, Walter
proves proposition 8a) below and he computes the completion of Oy, ¢ in detail under the
extra assumption (Homg(l , M) = 0.
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Proposition 8 Let C be a curve in PP, let M = H/'(1)) and E = H.(0O.) and suppose
Ext (M , M) = 0.
a) If the obvious morphism

aHomg(l , M) X JHomg(M , E) --> Homy(I , E}

(given by the composition) is non-zero, then C is obstructed. In particular if the diameter of
M is 1, then C is obstructed provided

AHomp(l , M) # 0 and Homy(M , E) # 0
b) If the morphism
oHomgp(l , M) X Homuy(M , E) --> Homg(l , E)

(given by the composition) is non-zero, then C is obstructed. In particular if the diameter of
M is 1, then C is obstructed provided

oldomp(l , M) # 0 and _Homyg(M , E) # 0

Proof. Step 1. We start by proving a) under the extra temporary assumption M, = 0. Denote
by p,’ the restriction of p, (see (2.5)) to Extz (I , I) via the natural inclusion (Exz;'(I , I} -
Ext'(I. , 1)) and consider the commutative diagram

<o JExt L 1) X GExt (1, D) -> JExi (I, 1)

@.7) 1 ip; 0 ii

T,, X JHomyM , E) -> JFxt'(M , E)

where <-,-> is the Yoneda pairing. Indeed the restriction of (Ext /(I , I) to T, ,in (2.7)
makes the lower horizontal arrow well-defined in the commutative diagram above because
of the natural map 7,, - gt (M, M) of (1.21). Due to the exact sequence (1.16),
continued as in (1.19a), the map p,” is surjective and i is injective by the assumption
oExti (M, M) = 0. Hence the pairing <-,->, of factorizes via

(2.8) @1 T,, X JHomg(M , E) -> JFExt (I, I)

and vanishes if we restrict ¢’ to Homg(I , E)* X ;Homy(M , E) via the map of remark 1.21
(using the identity on (Homy(M , E)), because Homy(I , E)’ maps to zero in jExt,' (M , M).

To prove a) it suffices to prove <A,A>, # 0 for some A. We do this, we claim that
there is another pairing ¢ # 0, commuting with <-,->,, which essentially corresponds to
¢’ above except for the exchange of variables, i.e.

2.9) ¢ : JHomy(M , E) X T, -> ofxt(l, 1)
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where T, ,, = Homg(l , E)/HomegM , M), cf. (1.21). Indeed as in (2.5) there is a
commutative diagram

JExe Y1, D X JExtd, D) -> L Ext, 1,1

e

dHomg(l , M) X Homp(M , E) = Homg(l , E)

$a,,
4ExtR2(I , M)

where three of the vertical arrows are given by the spectral sequence (1.1) (cf. (1.11)) and
where the lower pairing is the non-vanishing map of proposition 8. Dualizing, we get the
commutative diagram

ot (1, ) X JExt (I, ) -> LExt,}I, 1)

b

oHomg(M , E} X (kerd, ;) — L Homg(l, M)’

where the non-vanishing lower arrow can be identified with the map ¢ of (2.9) because
LGB, M)y = Ext,YM , I) = JHome(M , M). Using the duality (1.2), we see ¢ commutes
with the Yoneda pairing <-,->,, and the claim follows easily.

Now since ¢ # 0 and p,’ is surjective, there exists (A;, N) € JHom(M , E) X T,
and N\,’ € Ext'(I, I) such that p,"’(A,") = A, and such that <A’ N> = (A ,A) # 0.
Note that <X\, ,A>, = 0 for any A € Extp/(I, I) because <\, ,A> = @’ (A ,p,’(N) =
0 by (2.8). It follows that

i.e. either <A, + NN + A > or <N, A\ > are non-zero. Finally since the map o of
(1.4) factors via oExt?o(M , M) for v = 0, it follows that the map (Ext,*(I , I) = Ext*(I;, 1)
is injective and maps obstructions to obstructions, i.e. the Yoneda pairing <-,->, and the
corresponding pairing <-,-> of (2.5) commute and vanish simultaneously. C is therefore
obstructed.

b) To prove b) we use step 1 and proposition 2. Indeed let C be a curve as in b) and
let Y 2 C be a complete intersection of two surfaces of degree f and g such that the
conditions of proposition 2 hold and such that H'(I.(f+g)) = 0, H'(O(f-4)) = 0 and
H'(O(g-4)) = 0 (such Y exists). Then we claim that the corresponding linked curve C’
satisfies the conditions given in step 1. Indeed using

oHomy(I(C) , M(C)) = Homg(M(C"} , E(C’))
(2.10) HomgM(C) , E(C)) = Homg(I(C’) , M(C’))
JHomp(I(C) | E(C)) = Homp(I(C)/I(Y) , E(C)) = Homg(I{C)/I(Y) , E(C’))



14

we get the claim because JHomg(I(C’)/I(Y) , E(C’)) = JHomg(I(C’) , E(C’}) is injective and
H'(I(f+g)) = H'(.(-4)). It follows that C’ is obstructed by step 1, and so is C by
proposition 2. Moreover if the diameter of M is 1, we conclude easily by arguing as in the
very end of the proof of proposition 7.

a) Finally using the same idea as in b), we prove that b) and proposition 2 imply a).
Indeed by proposition 2 we can see that a) and b) are equivalent by making a suitable
linkage, and the proof is complete.

(2.11) Remark. i) Since it is well known that the tangent space, resp. the obstruction space
of the functor Def; of deforming the homogeneous ideal I, is oExt,'(I , I), resp. sits in
oExt 21, I}, we have by step 1 of the proof above that Def; is smooth (i.e. the Hilbert
scheme of constant postulation, H,, is smooth at C) provided M, = 0 and the conditions of
proposition 8a) hold.

i) Note that the pairing of proposition 8a) and the Yoneda pairing <-,->, of (2.7)
vanish provided  Homg(l , M) = 0. Hence ,Homg(l , M) = 0 leads to more than the
vanishing of the pairing of proposition 8a) do. Indeed since

T,, @ Home(M , E} = (Extg'(I, 1) as k-vectorspaces,

the vanishing of <-,->, implies also that, properly interpreted, the cup-product of two
elements from Homy(M , E} is zero. By linkage, we prove a corresponding "dual" result,
replacing Homg(l , M) by Homgx(M , E) and visa versa everywhere in the argument.

Proof of theorem 5. If a), b) or c) are satisfied, then C is obstructed by proposition 7 and 8.
Conversely if C is obstructed, then we conclude easily by theorem 3.

It remains to find dim. H(d,g). By the first part of the proof, C is unobstructed if and
only if i), ii) or iii) of theorem 3 hold. So it suffices to compute dim; H(d,g) in each of these
3 cases, for which we use the last part of theorem 3 and (1.12). We get

510) = grom(I , M) - extd (I, M) + ext(1, M)

Computing Ext*(I , M) via the minimal resolution (2.1) of I, we see that the group is
vanishes, while (2.3) implies qext; (1, M) = Jhom(M , E). So in the diameter 1 case we have

(2.12) 8'(0) = Jom(l , M) - shomM , E) ,

and now the dimension formulas of i), ii’) and iii’) of theorem 3 lead all to the same
dimension formula, i.e. the one given in theorem 5. This completes the proof.

(2.13) Remark. We have by proposition 7 and 8 the following three Yoneda pairings

oHomyp(l , M) X (Homy(M , E) —-> Homg(l , E)
oHome(I , M) X Homp(l , E)’ -— ,Homg(M , E)’
oomg(M , E) X Homy(l , E)' -— Homy(l , M)’

To see how the right hand sides contribute to H'(Ng), we suppose (Exti/(M , M) for i = 2
to simplify, and we recall
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oExt(LM) = Ext,’(M,I)" = Hom(M,M)" = Ext;'(M,M) = 0

and (Extp (LM) = Ext,>(M,I) = Hom(M,E)’ because ,Ext.:(M,M) = FExt,*(M,M) = 0
fori = 1,2. Now (1.4), resp (1.11), leads to the exactness of the horizontal, resp. vertical,
sequence in the diagram

ofxty' (I, M) = ,Hom(M , E)*

{

0 Ext’1, I)» H'(NJ->  Ex’d, ) - 0

u ¢

Hom(l , M)* JHom(l , E)

In the proof of theorem 5 we could have used this diagram to find dim. H(d,g) once we have
proved that C is unobstructed.

We will end this section by showing that there exists smooth connected space curves
in any of the three cases a), b) and c) of theorem 5. The case b) is treated in [W1], where
Walter manage to find obstructed curves of maximal rank (see also [BKM]). By linkage we
can transfer the treatise in [W1] to the case ¢) and we get the existence of obstructed curves
of maximal corank, whose local ring Oy . can be described exactly as in [W1] . However,
since we in the next section will see that a sufficiently general curve of H,, does not verify
neither b) nor c), the case a) deserves special attention. We shall now see that there exist
many smooth connected curves satisfying the conditions a);

(2.14) Example. We claim that for any triple (r,a,,b,) of positive integers there exists a
smooth connected curve C with minimal resolution of the form (2.1) and diam M(C) = 1,
such that s(C) = ¢(C) = ¢, h%I(c)) = @, , h'{(c)) = 1, h'(0O(c)) = b; and a, = 0,
b, = 0. Hence

ome(l , M) = ra, # 0 and Jromg(M , E) = rby #= 0

(cf. (2.2) and (2.4)). By corollary 6 these curves are obstructed. To see the existence, put
a=gagandb = b,. Ifa = 1, we consider curves with (-resolution

(2.15) 0- 0F-2)51 DOo(-4/®* -0 B B O-3)%! > I(c) >0

By Chang’s results ([C] or [W1], th. 4.1) there exists smooth connected curves having
Q-resolution as above. Moreover ¢ = I + b + 2r, the degree d = ( °,**) - 3r - 7 and the
genus g = (c+I)d -(°,**) + 5. If a > 1, curves with Q-resolution

(2.16) 0 - O(-1)%2 @ 0(-2)% @ O(-4)% - 0% B Q® G 0(-3)P! > I(c) = 0

exist, they are smooth and connected ([C] or (W1], th. 4.1), c=a +b +2r+1, d =
(3*%) - 3a - 3r - 6 and the genus g = (c+1)d - (°;%%) + 3a + 3. We leave the verification
of details to the reader, recalling only the exact sequences we frequently used in the
verification;
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(2.17) 0 Q=0-1)¥ -0-0,and 0> 0(4)—> O0-3)%->0(-2)% -Q-0

(Putting the two sequences together, we get the Koszul resolution of the regular sequence
{XO’XIaXZaXS})°

We will analyze these curves a little further, using Laudal’s description of the
completion of Oy, ,,  [L1]. This completion is kK[[H°(N)1V o(H' (N}, where o is a certain
obstruction morphism (giving essentially the cup- and Massey-products). Now, consulting for
instance the proof of proposition 8, we see that the dual spaces of Homg(I , M)’ and
oflomg(M , EJ)’ inject into H’(N_)” and their intersection is empty. This implies

H(NY' = T, @ Homg(l , M)’ @ Homy(M , E)’ as k-vectorspaces,

and we can represent kK[[H°(N"1] as K[[Y,,.. Y,..Z,},.., 2, W,;,.., W, 11, letting {Y,,..Y,}, resp.

{Z-..2,}, resp.{W,,,..,W,} correspond to a basis of T, ’, resp. (Homy(l , M)’, resp.
oHomp(M , E)’. Since a;, = 0, b, = 0, we get

sHomp(l , M) = 0 and HomzM , E) = 0

(cf. (2.2) and (2.4)). By (2.13) h'(No) = Jhomy(I , E) = a,b,, and we can use proposition
8 and its proof, see (2.11), to conclude that, modulo mg,® (m, the maximal ideal of the
completion of Oy, o), we have

(2.18) OH(d,g),C/mO3 = k{[Y,,..Y.Z2,,...Z,,. W,y,.., W /L

ar*

where the ideal &£ is generated by the components of matrix given by the product

Zi];"':er wl]a"':wlb
(2.19) ZytyeeosZocl| Wapseo s Wy

Za]:---:zar er:"-)wrb

Note that (2.19) corresponds precisely to the composition given by the pairing of proposition
7. (We believe that the Massey products corresponding to (2.19) vanish, i.e. the right-hand
side of (2.18) is exactly the completion of Oy, o)-

The simplest case is (r,a,,b,) = (1,1,1), which yields curves C with s(C) = 4, d=
18 and g = 39 (Sernesi’s example [Se] or [EF]), while the case (r,a,,b,) = (2,1,1) yields
curves C with s(C) = 6, d = 32 and g = 109. More generally, the curves of the case (r,1,1)
satisfy h'(No) = a,b; = 1, i.e. the ideal & of (2.18) is generated by the single element

(?. ,10) 2 Z; Wy

For Sernesi’s example (r = 1), we recognize the known fact that this curve sit in the
intersection of two irreducible components of H(d,g), while for r > 1, the irreducibility of
(2.20) can be used to show that C belongs to a unique irreducible component of H(d,g). In
the next section we prove the irreducibility/reducibility by studying in detail the possible
generizations of a Buchsbaum curve.
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3. The minimal resolution of a general curve.

In this section we study generizations of space curves C and how we can simplify the
minimal resolution (1.5) of I{(C). The general philosophy should be that a sufficiently general
curve of any irreducible component of H(d, g) has as few repeated direct factors "as possible"
in consecutive terms of the minimal resolution. We prove below a general result in this
direction (theorem 9), cancelling direct free factors in the middle part of (1.5). In particular,
if the Rao module M = H'(I(c)) for some integer c, i.e. if the minimal resolution of I =
I(C) has following form, cf. (2.1); 7

(2.1)0 = R(-c-)® - R(-c-)*"DR(-0)®*DP, - R(-c-&)*®R(-)>*®P, - I - 0

(the P;’s contain no factor of degree ¢ and c+4), we get ab, = 0 and ab, = 0 fora
general curve of H, ,. Moreover, for Buchsbaum curves, we prove another result (proposition
13} cancelling direct free factors to the left in the resolution (1.5). In particular, a general
curve of H(d,g) with minimal resolution (3.1) must satisfy tb; = 0 and the "dual" ra, = 0
(theorem 15), and this observation implies that any irreducible component of H(d,g) is
generically smooth in the diameter 1 case. Finally we remark that the proofs of theorem 9
and proposition 13 are quite close to the proofs of "les lemmas de générisation simplifiantes”
appearing in [MDP1], page 189, although they treat the very special case M = k.

To give theorem 9 an appropriate interpretation, recall that once we have a- minimal
free graded resolution of the Rao module M = M(C);

(3.2) 0 »L, 5L, »L,»L, L, >M—0,

there exists a minimal resolution of the homogeneous ideal I(C) of free graded R-modules
of the following form

(3.3) 0>L,-“%% . @F, —F, »I(C)»0,

i.e. where the composition of L, - L; @ F, with the natural projection L; @ F, - F, onto
the second factor is zero. cf. [R], theorem 2.5. Note that since minimal resolutions are
isomorphic, any minimal resolution of I(C) of the form (3.3) have well-defined modules F;
and F,. Our result tells that, after a generization in the Hilbert scheme H, ,, of constant
postulation and Rao-module, F, and F, have no common direct factor (in which case v and
M determines F, and F,, e.g. the graded Betti numbers of the whole minimal resolution).

Theorem 9 Let U be the set of curves C of the Hilbert scheme H_ ,, whose modules F; and
F, of the minimal resolution (3.3) of I(C) are without common direct free factors. Then U is
an open dense irreducible subset of H_ .

Corollary 10 Let C be a curve in P° whose Rao module M # 0 is concentrated in one
degree only, and let a; and b, be the numbers given by (3.1). If C < P’ is generic in H,,
(or in H orin H(d,g) ), then

ab, =0 and ab, =0
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In particular, C is obstructed if and only if ab; # O.

We get the corollary as a simple consequence of the theorem and corollary 6. The
corollary generalizes [BKM], prop. 1.1 which tells that a curve of maximal rank (or maximal
corank) of diam M(C) = 1, which is generic in H_,, is unobstructed.

To prove the theorem and a later proposition, we need a lemma for deforming a
module N, which basically is known. Loosely speaking it tells that if we can lift a three term
resolution with augmentation N to a complex, then the complex defines a flat deformation
of N. In the case N = I(C) where C has codimension 2 in P, we also know that a

deformation of an ideal I(C) is again an ideal, i.e.

Lemma 11 Let C be a curve in PP = P2 whose homogeneous ideal I{C) has a minimal
resolution of the following form

(L) 0 - ®R(-n,) -*~ OR(-n,) -¥~ ®R(-n) ~ KC) ~ 0

Let A be a finitely generated k-algebra, B the localization of A in a prime ideal p, B/pB =
k the residue field, and suppose there exists a complex

(L") OR(-n,) -*~ OR,(-n,) -**~ ®R(-n,) , R, = ROB

such that Ly " &, (B/pB) = L°. Then (Lg°) is exact, g is injective and the cokernel of ¥y is
a flat deformation of I(C) (as an ideal, so coker(yy) S Ry defines a flat deformation of C
c P°). Moreover for some a € A-p, we can extend this conclusion to A, via Spec(B} -
Spec(d,), i.e. there exists a flat family of curves Coppyy S P X Spec(d,) whose
homogeneous ideal 1{C,,) has a resolution (not necessarily minimal) of the form

a

L,) 0~ @R, (-n) ~ DR, (-n,) ~ ®R, (-n,) ~ KC,) ~ 0

Proof (sketch). If E = coker ¢ and E, = coker ¢y, then one proves easily that
E,8,(B/pB) = E, Tor,(E;B/pB) = 0 and that ¢ is injective. By the local criterion of
flatness, Ej is a flat deformation of E. Letting Qp = coker (Egz - Rg(-n;;)), we can argue as
we did for Ej; to see that Q, is a flat deformation of I{C) and that L, " is exact.

To prove that Q, is an ideal, we can use the isomorphisms H"'(No) = Extop (17, 17)
fori = 1,2 (cf. [K2], 2.2.6), interpreted via deformation theory, to see that we essentially
get the existence of the desired morphisms i: Q™ - R™; and i = H.°(F). For this important
observation, we remark that one may give a direct proof using Hilbert-Burch theorem (cf.
[MDP1], page 37). Indeed if F, = @""'R,(-n;;) and n = - ¥ n;, then one may deduce the
existence of T from the complex

E, ~ Fy « WEY(m) ~ WED'() ~ 05 = R,

because one knows that the corresponding complex over R (i.e. with B = k) and the
sequence 00— E~ — F~ = I(C}~ >R~ (F = @ 'R(-n;) ) essentially coincide (Hilbert-
Burch).

Finally we easily extend the morphism i and any morphism of the resolution L; "~ to
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be defined over A,., for some a’ € A-p (such that L,,.” is a complex). By shrinking
Spec(A,) to Spec(A,), a € A-p, we get the exactness of the complex and the flatness of
[{C,,) because these properties are open.

(3.4) Remark. We can simplify some later proofs by observing that the composition of two
generizations (the first one starting with C € P°) is again a generization of C € P? in the
following sense. Let Cg,y S Py ( Spec(T) integral and K = Q(T) the quotient field) be
a flat family of curves over k containing the member (C € P°) and let C, = P, be the
pullback of Cy,,.qy € P77’ via Spec(K) -> Spec(T) (i.e. essentially the first generization). The
second generization which is a deformation of (Cy € P;’), corresponds to a flat family of
curves Cypry & P’ (Spec(A) an integral K-scheme of finite type; A = K[\,,..,\]) over K
which we suppose is obtained as in lemma 11 by deforming the minimal resolution of I(Cy)
to I(C,) flatly. As in the very last part of the proof of lemma 11 one extends morphisms, the
exactness of the complex and the flatness of I(C,) to the integral domain S: = T\[A,,..,A/], for
somet € T and a € T[A,,..,Al, i.e. we have an irreducible flat family of curves over
Spec(S) and (C < P°) belongs to the closure of the image of Spec(S) in H(d,g).

Proof of theorem 9. If H_,, is non-empty, we first claim that U is non-empty, i.e. that there
exists a curve C’ whose F, and F, of any minimal resolution of I(C’) of the form (3.3) are
without common direct factors. To prove the claim, we can use the ideas of the proof of the
"lemma de générisation simplifiantes" appearing in [MDP1], page 189. Indeed if U is empty
and if C is a curve of H,_,, with as few common direct factors among F, and F, of rank one
as possible, we consider

0 - L, % L ®F®R(-m) ¥~ F®R(-m) ~ KC) ~ 0

Then we can change the number O of the component of the matrix of Y which corresponds
to R(-m) -> R(-m) to some A (A an indeterminate of degree zero). Keeping (o,0) unchanged,
we still have a complex which by lemma 11 implies the existence a flat family of curves over
Spec(A,), A = k[A], for some a € A-(A). Since any curve C’ of the family given by
Spec(4,,) has a minimal resolution with fewer common direct factors among F; and F, that
C had, and since we may interpret the Rao module M(C”) as ker H.((c™,0)" (e.g. the whole
family given by Spec(A,) has isomorphic Rao modules), we get a contradiction, and the claim
is proved.

Since H_ ,, is irreducible ([B] or [MDP1], page 134), it suffices to prove that U is
open in H_,,. Take an arbitrary curve C of U. Let Spec(D) be a neighborhood of (C S P)
in H , - H(d,g), and let C, be the restriction of the universal curve of H(d,g) to Spec(D).
Using that I(C,,) is D-flat, we can deform (lift) the minimal resolution (3.3) of I(C) to a
resolution of I(Cp,) for some d € D ([MDP1], page 140). Hence for any C’ of Spec(D,) we
get a resolution (not yet known to be minimal);

3.5) 0L, %> L, BF, = F, =I(C’) -0

Now, since any curve C’ of Spec(D,) has the same Rao module M and since we by
construction know that F, and F, are without common free factors, we claim that the
resolution (3.5) is minimal for any C* of Spec(D,) (and that ¢,= (¢,0)' up to an isomorphism
of L; @ F)). Indeed if it is not minimal, we can make it minimal by "removing" redundant
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factors. But we can not remove a free factor from L, because by Rao’s theorem, cf. (3.3),
I(C’) admits a minimal resolution having L, to the very left. Similarly if the modules L; and
F, of (3.5) have a common redundant (maximal) free factor F # J, we deduce a minimal
resolution of the form

0L, (L,/F) @F, - F/F -=I(C’)->0
Arguing as in the proof of Rao’s theorem, i.e. observing that
0 -L)—~L} -L'—>L’>L - Ext;M,R) -0

is a minimal resolution of Ext;’(M , R) and that (L,/F)’ @ F," L (L) = Exty’(M , R)
— (0 is exact (the entries of ¢ are in (X, X,,X,,X3) ), we get

(L/F) BF, = L, @F’, for some free module F’,

(and that ¢ = (0,0)") which leads to a contradiction because F, does not contain F while L,
does. This proves that F = & (and that ¢ = (0,0)Y), i.e. the resolution of (3.5) is minimal,
as claimed. It follows by the definition of U that Spec(D,;) < U, i.e. that U is open in H_,,,
and we are done.

(3.6) Remark. We can easily extend the arguments of the first part of the proof above
(replacing A by a diagonal matrix of indeterminates or just using remark 3.4) to get:

Let C be a curve in P° with postulation v and Rao module M and suppose the
homogeneous ideal 1{C) has a minimal free resolution,

0~ P, 9% p@F, -~ F,~ IC) ~ 0

If there exists a direct free factor F satisfying F, = F,” @F and F, = F,” @F, then there
is a generization C’S P° of C S P in the Hilbert scheme H_, whose homogeneous
ideal I(C’) has a minimal free resolution of the following form

0~ P, . p®F - Fy, -~ ICH -0

Now we restrict to Buchsbaum curves, in which case we will be able to, taking
suitable generizations in H(d,g), simplify the minimal resolution of I(C) further. To see that
this simplification is related to the vanishing of some important groups studied in the
preceding sections, we start with a lemma. We recall first the notation

H(d,g) = { C € H(dg) | diam M(C) < i} and Hi(d,g) = H{d,g)NH(d,g)s

where H(d,g); (resp. H. ) is the closed subset of H(d,g) (resp. H,) consisting of Buchsbaum
curves. Note that H(d,g) is considered an open subscheme of H(d,g). Moreover recall also
that, in the Buchsbaum case, the minimal resolution (3.2) of M is just given as the direct sum
of the Koszul resolution associated with the regular sequence {X,, X;, X, X,}. The matrix
associated to ¢ will have the form
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X,0,...,0
G.7) o= 0,X,...0
00,...X

where X is (X,,X,,X;,X;) and each "row" is a 4 Xr matrix, r = Zr; and r; = dim M(C),.

Lemma 12 Ler C be a curve of Hy(d,g), whose homogeneous ideal I = I(C) has a minimal
[free resolution of the form (3.3);

t
0->L, "L, PF, -F, »1-0,

with o as in (3.7). Then L, and Fy-4) (resp. L, and F)) are without common direct free
facrors if and only if JHomg(l , M) = 0 (resp. JHomz(M , E) = 0).

Proof. Indeed since C is Buchsbaum, we get easily from the resolution (3.3) that
oHomp(I , M} = JHomg(F, ; M).

The latter group vanishes if and only if L, and Fy(-4) are without common direct free factors
because M = ker H2((¢”,0)) with o as in (3.7). Moreover we have by the duality (1.2);
oExte' (M , M) = LExt (M, M). Using (3.2), (3.3) and the trivial module structure of M,
we get

Fxt M, M) = L Homgl;, M), and _Ext)'(I, M) = ,Homp(L;DF, , M)

Combining with the exact sequence (1.18), cf. (1.17), we get an isomorphism
Homg(F, , M)’ = Homy(M , E),
i.e. also (Homy(M , E) vanishes as claimed in the lemma.

Proposition 13 Let C be a Buchsbaum curve in H(d,g) with postulation -y and suppose the
homogeneous ideal I(C) has a minimal free resolution of the form (3.3); -

+
0->1L, 9> L; @F, > F, =I(C)~0,

where o is given as in (3.7). If L, and F; have a common free direct factor F; Ly = L/@F
and F, = F,’@F and F,’ and F, have a common direct factor G, then there is a generization
C’S P of C<S P inH,_gsuch that I(C’) has a minimal free resolution of the following
form,

0->L, =L, BF /G = (F/G) =I(C’)~>0

Moreover, if U is the subset of H,, , consisting of curves C’ whose module F, of the minimal

resolution (3.3) of 1(C’) has no direct factor in common with L, and F, (i.e. with L, @ Fy),
then U is an open dense subset H_ ,, and for any curve C’ of U we have an exact sequence

0 = Homg(M(C’) , E(C’)) > oExt2(M(C’) M(C’)) = oExg (I(C’) , 1(C"))
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Proof Thanks to remark 3.4 and remark 3.6, it suffices to prove the existence of a
generization C’ as in the proposition where F = R(-m) and G = J. As observed by Martin
Deschamps and Perrin ((MDP1], page 189) we can easily change the O component in the
matrix of (¢,0)' which corresponds to R(-m) - R(-m), to some indeterminate A\, changing
four columns of the matrix A associated to L, @ F, — F, (by adding Ay where -yX is the
column of A which corresponds to the image of R(-m) in F;) as well to get a complex (cf.
[MDP1], page 189, for details). By lemma 11 we get a flat irreducible family of curves C’
over some Spec(k[A],,) having the same graded Betti numbers, hence the same postulation,
as C. Moreover M(C) = ker H.*((¢”,0)) and using the corresponding expression for M(C’),
we see that the module structure of M(C’) is trivial. Since A is invertible in Spec(k[A],), we
can remove a redundant factor of the resolution of I(C’), i.e. we have a generization C* with
properties as claimed in proposition 13.

To see that U is an open dense subset of the closed subscheme /. ; (which we here
give the reduced scheme structure) of H_ , we observe that the first part of the proof implies,
for each irreducible component V; of H_,, the existence of a curve C; of V; (which does not
belong to any other component) such that C; € U. Hence it suffices to prove that U is an
open subset of H_ ,. If we restrict to Hy(d,g)s, the openness follows easily from lemma 12
and remark 1.20. To prove this part more generally, we take, as in the proof of theorem 9,
an arbitrary curve C of U and we deform (lift) the minimal resolution of I{C) to some open
non-empty set U’ of H_ ; such that any C’ of U’ is a Buchsbaum curve with a resolution (not
yet known to be minimal) of the form

(3.8) 0L, %>L,OF, —F, »I(C’)—>0

It suffices to prove that the resolution (3.8) is minimal. To prove the minimality, we use thet
C’ is Buchsbaum and that there exists a minimal resolution of the form; 0 — L (C’) -9
Ly(C’) @ F,(C’) = Fy(C’) =I({C’}) =0, with ¢ as in (3.7). We get

(3.9) Ly(C)-1) = (L (C))*

By construction we know that (3.8) have no redundant factors cancelling factors of L, against
F,, or F, against F,. From (3.9) we then get that L; and L,, and I; and F,, have no
redundant factors, because if they had, we could remove them to get a minimal resolution.
But the cancellation a factor R(-m) of L;, m as large as possible, against the same factor of
either L, or F; will imply the existence of a direct factor R(-m-1) of L,(C") which contradicts
(3.9) because F, does not contain R(-m). The resolution (3.8) is therefore minimal.

Finaily the exact sequence follows from (1.18) by the arguments of the proof of
lemma 12 because F, and L, have no direct factor in common, i.e. JHomy(F, , M(C’)) = 0,
and we are done.

Corollary 14 Let C be a curve in P° whose Rao module M # 0 is concentrated in one
degree only, and let a; , b, and r be the numbers given by (3.1). If C € P is generic in H_,
then

by =0, ab, =0 and ap,=0

In particular, the schemes H_ and H(d,g) are smooth at C. Moreover if C is generic in
H{d,g), then we also have ra, = 0.
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Proof. 1If C is generic in H,, then C belongs to the set U of proposition 13. Hence we
immediately have a;b, = 0, a,b, = 0 and rb; = 0. Moreover, by corollary 10 we see that
H(d,g) is smooth at C. By lemma 12 and remark 1.19b we get an isomorphism between H._
and H, at C. The former scheme is smooth because JFExt,(M , M) = 0. Hence we get the
corollary because ra, = 0 follows from (2.2) and remark (3.10) below.

(3.10) Remark. By [K3], cor. 3.6, and proposition 2 of this paper we get that the linked
curve C;’ of a generization C’ of C is a generization of the linked curve C, of C, provided
we link the whole family of curves by complete intersections of type (f,g), with f and g as
in proposition 2. Using this, we get:

Let C be a Buchsbaum curve with diam M(C} < 2 and deficiency p. Keep the
notations and assumptions of proposition 13 and suppose furthermore that L, and (F/G)(-4)
have a common direct factor G'. If

F = R(-c-)®P®R(-c-3)%" | G/ « R(-0)®"OR(-c+1)®"

then there exists a generization C’’ in H(d,g), whose postulation v... (resp. deficiency p..,)
is given by vycolc-i) = yofc-i) - oy (resp. peufc-i) = polci) - ey - Biy)) for i = 0 and
1. In particular there exists a generization C’S P° of C © P satisfying

olomy(I(C”) , M(C"’)) =0 and Homp(M(C”), E(C”’)) =0

Indeed if we combine the first formula of (2.10) with two formulas of the proof of lemma
12 where the groups of (2.10) appear, we see that the free direct part of Fy/G with generators
in degree ¢ and c-1 in the resolution of I(C’), is equal to the corresponding part of F,(C;’)}(4)
in the minimal resolution of I{C,’) of the linked curve C;’. Applying proposition 13 to the
linked curve C;’, we get a generization of C;’ (hence a generization of C; by (3.4)) with
constant postulation where G’ is "removed" in its minimal resolution. A further linkage,
using a complete intersection of the same type as in the linkage above (such a complete
intersection exists by [K3], cor. 3.7), gives the desired curve C*’, leaving some easy details
on the verification of ~.. and p.. to the reader. We remark that the second formula of
(2.10) also give some information, briefly mentioned in the arguing of (3.15).

Even though we can extend the next theorem to Buchsbaum curves satisfying
oExte(M , M) = 0, we have chosen to formulate it for the somewhat more natural set
H,(d,g)p of Buchsbaum curves C with diam M(C) < 2. Since H({d,g) = H{(d,g), S
H,(d,g)s, the theorem below remains true if we replace H,(d,g); by H,(d,g), and it is
probably this restricted version to H,(d,g) which is the most striking.

Theorem 15 Let U be the subser of H,(d,g)y consisting of curves whose minimal free
resolution (3.3) are such that the modules of all three sets

{Fp Fp} {L,, Fz} and {L4, Fo('4)}
are without common direct factors. Moreover let U, , be the subset of U of curves with

postulation -y and deficiency p. Then U (resp. U, ) is an open dense (resp. open irreducible)
subset of Hy(d,g)y and H(d,g) is smooth along U.
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Proof. With the preparations we now have done, the proof is a straightforward application
of remark 1.20, lemma 12, proposition 13 and remark 3.10. Indeed since the set U of
theorem 15 is the intersection of the corresponding set of (1.20) with H(d,g)s by lemma 12,
it follows that H(d,g) is smooth along U and that U is open in H,(d, £)s by (1.20). Moreover
U is dense in H,(d,2); by (3.10).

To see that U, is open as well, we observe that we can define U, , as a subset of the
set U of proposition 13, in which case we see that U, is open in H, ; by its proof (any curve
of the set U’ of the proof of proposition 13 has (3.8) as its minimal resolution, hence the
same deficiency p, and we get the openness from U’ S U, ). It follows that the set U, of
theorem 15 is open in H,(d, g), because by (1.19b) and lemma 12, H, and H(d,g), hence H ;
and H(d,g)p, are isomorphic for any curve of U, ,. Since the irreducibility of U, , follows
from the irreducibility of H_ ,, where M is Buchsbaum of deficiency p, we get the theorem.

(3.11) Example. In [BKM] we proved the existence of an obstructed curve of H(33,117) of
maximal rank with l-dimensional Rao module. Since the degrees of the minimal generators
of I(C) are given in [BKM] and M = H'(I(5)), we easily find the minimal resolution to be

0 - R(-9) ~ R(-10)®2@®R(-9)DBR(-8)®* -~ R(-NDBR(-8)DR(-7®° -~ I(C) ~ 0

By proposition 13 there exists two different generizations C, (resp. C,) of C, obtained by
removing the direct factor R(-9) from L, and F; (resp. from F, and F;). The curves C; belong
to the open set U of theorem 15 and to separate U, ,’s. Taking the closure of U, ,, we easily
find two different components of H(33,117); whose generic curves have the "same minimal
resolution” as C; and C, (any curve of U, , has the same graded Betti numbers) and whose

intersection contain C, i.e. we get the main example of [BKM] from theorem 15.

We should have liked to generalize theorem 15 to the arbitrary case of diameter 2 by
dropping the Buchsbaum assumption (e.g. to prove that the set U of remark 1.20 is dense
in H,(d,g)). In particular if we could prove a result analogous to proposition 13 for curves
whose Rao module M is the generic module of diameter 2 {cf. [MDP2] for existence and
minimal resolution), we would be able to answer affirmatively the

(3.12) Question. Is any irreducible component of H(d,g) whose Rao module of its generic
curve is concentrated in at most two consecutive degrees, generically smooth?

We have tried, using general deformation theory, to get a generalization of theorem
15, and we briefly mention the following result, the details of which we leave to the reader;

(3.13) Remark. 1f we define the size of obstructedness, 1L(C), of H, at C to be
1(C) = wxt'(I 1) - dim. H,, we have by deformation theory;

D 0= 1(C < home(l, M), and
i) H, is smooth at Cif and only if 1 (C) = 0.

because JExt*(l , I) = _Homg(l , M). Suppose JFxt*(M , M) = 0. Using (1.16), we get

dimc H,, = dime H,  if and only if  ghom,(M , E) < [ (C)
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By linkage we get a corresponding "dual” result. In particular we get back proposition 4, and
moreover that a generic curve of H(d,g) which satisfies ,Extz*(M , M) = 0 must also satisfy

Jome(M , E) < Jhomp(l, M) and  omg(l , M) < home(M , E)

As we see from theorem 15 and lemma 12, the two smallest groups of these inequalities
vanish, provided the curve is Buchsbaum (and general enough) which certainly is a better
result under this extra assumption.

For the rest of this section we restrict to curve whose Rao module has diameter one.
Since the module L, of (3.2) is equal to R(-c-4)®", we have by proposition 13 a good grasp
on the existing generizations of C in H(d,g). We can for instance use the preceding results
to find many existing generizations of a non-generic curve of H ,, (cf. example 3.11),
indicating that our results so far can be used to analyze the case of a non-generic curve of
H_ ,, far beyond the treatise of [W1] and [BKM]. As an illustration of the main results of this
section, we will, however, restrict to curves which are generic in H_ ,, or more generally
to curves which satisfy a;b, = 0 and a,b, = 0, e.g. to the case

(314) a; = 0 ; b2 = 0 al’ld ((12 # 0 or bl # 0)

where proper generizations as in remark 3.10 occur, to give a rather complete picture of the
existing generizations in H(d,g) (caused by simplifications of the minimal resolution). Let
n{C) = (r,a;,a,,by,b,) be an associated 5-tuple. Only for curves satisfying a; = 0 and b, =
0 we allow the writing n(C) = (r,a,,b,) as a triple. We remark that any curve D satisfying
n(D) = n(C) and yp(v) = yc(v) for v # ¢, belongs to the same irreducible family H_ ,, as
C, i.e. a further generization of C and D in H_, lead to the "same" generic curve. Now
given a curve C with n(C) = (r,a,,b,), we have by (3.10):

For any pair (i,j) of non-negative integers such that r-i-j = 0, a,y-i = 0
(3.15) and byj = 0, there exists a generization C; of C in H(d,g) such that
n(Cy) = (r-i-j,a,i,b)-j).

Note that if we link C to C, as in proposition 2, we get, by combining (2.10), (2.2) and (2.4)
that the 5-tuple n(C) = (x(C),a,(C),a,(C),b,(C),b,(C)) is equal to (r,b,,b,,a,,a;) where
n(C) = (r,a;,3,,b;,by). In particular if C satisfies (3.14), then the linked curve C, does (the
equalities among some of the other integers which we get, are already proved in (3.10)).

As an example, let n(C) = (4,3,2) (such curves exist by (2.14)). By (3.15) we have
10 different generizations C; among which two curves correspond to the triples n(Cy) =
(0,1,0) and n(C;;) = (0,0,1), i.e. they correspond to two generic curves by theorem 15.
Pushing this argument further, we get

Proposition 16 Let C be a curve in P’ whose Rao module M # 0 is concentrated in degree
c, let a, and a, (resp. b, and b,) be the number of minimal generators (resp. relations) of
degree c+4 and c respectively, c¢f. (3.1), and suppose

a,=0,b,=0 and ab, # 0
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a} Ifr < a, + b, then C sits in the intersection of at least two irreducible components
of H(d,g). Moreover, the generic curve of any component containing C is arithmetically
Cohen Macaulay, and the number n(comp, C) of irreducible components containing C satisfies

minfa,,r} + min{b,r} -r + 1 < nfcomp,C) < r + 1

In the case s(C) = e(C) = ¢, we have equality to the left.
b) Ifr = a, + b, and s(C} = e(C) = c, then C is an obstructed curve which belongs
to a unique irreducible component of H(d,g).

Proof. We firstly prove b). Since s(C) = ¢ and since the number s(C) increases under
generization by the semicontinuity of h°(I.(v)), we easily get s(C’) > c. Hence h’(Io(c)) =
a,” and by, = 0 by using (3.1) for any generization C’ of C in H(d,g) where n(C’) =
(r’,a,’,a,’,b,’,b,’) and where we allow r’ = 0 to correspond to the arithmetically Cohen
Macaulay case of C’. Similarly ¢(C) = ¢ implies h'(Oc(c)) = b,” and a,” = 0. Applying
this considerations to C’ = C, we get x(I.(c)) < O by the assumption r = a, + b,.

Now let C’ be the generic curve of an irreducible component containing C. By
corollary 14 we get r’a,” = 0 and r’b,” = 0 which combined with x(/o(c)) < 0 yields a,’
= 0 and b,” = 0. Hence n(C*) = (r-a,-b,,0,0,0,0) for any generic curve of H(d,g). Since
vo(v) = vc(v) for v # ¢ by semicontinuity and the vanishing of H'(/(v)), any such C’
belongs to the same irreducible component of H(d,g) by the irreducibility of I .,c.
Moreover C is obstructed by corollary 6, and b) is proved.

a) Suppose r < a, + b,. To get the lower bound of n(comp,C) (which in fact is =
2), we use (3.15) to produce several generic curves of H(d,g) which are generizations of C.
Indeed let m(a) = min{a,,r} and m(b) = min{b,,r}. By (3.15) there exist generizations C,,
Ci,-+,Cruge +mey-r SUch that n(Cy) = (0,a,-m(a),b;+m(a)-r), n(C,) = (0,a,-m(a)+1,b, +m(a)-r-
1,..; "Cp@imms = (0,3, +m(b)-r,b,-m(b)). Since the curves C; are arithmetically Cohen
Macaulay and have different postulations, they belong to m(a) + m(b) - r + 1 different
components, and we get the minimum number of irreducible components as stated in the
proposition.

To see that the generic curve C’ of any component containing C is arithmetically
Cohen Macaulay, we recall that r’a,” = 0 and r'b,” = 0 by corollary 14 as in the first part
of the proof. Suppose r’ # 0. Then a,” = 0 and b, = 0. To get a contradiction, we remark
that the terms of the minimal resolution of I(C) and I(C’) which determines y.(v) = yc(v)
for v < c are equal, from which we get h%(J.(c)) + b,” = h°(I.(c)) - a,. Hence h’(I-(c))
< h(I(c)) - a, and similarly we have the "dual” result h"(Oc(c)) < h'(Oc(c)) - b,. Adding
the inequalities, we get

xUe(e)) + hle(e)) < x(©) + W) - 3, - b, < x(I(0)),

i.e. a contradiction because x(/..(c)) = x(I(c)).

Now using the fact that the generic curve C’ of any irreducible component containing
C is arithmetically Cohen Macaulay and that H_.,,., is irreducible, we prove easily that
n{comp,C) < r + 1 because there are at most r + 1 different postulations v... Indeed since
M(C’) = 0, yo(v) = v(v) for v # ¢ and

Yele) + oc(c) = xUcAc)) = xUc(C))= vc(€) + ac(0) - 1
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where oo(v) = h'(Oc(v)), we see that the different choices of v are realized in degree v =
c only, and that they are given by +.(c) = vy.(c)-1 where i is chosen among {0,1,2,..,1}.

Suppose s(C) = e(C) = c. Since in this case y.(c) = a, and o(c) = b, by
arguments as in the first part of the proof, we can easily limit the (at most) r+1 different
choices of the postulation y..(c) = v(c)-i above by choosing

m@) <1 <r-mb)
i.e. n{comp,C) equals precisely m(a) + m(b) - r + 1, and we are done.

(3.16) Example. Now we reconsider some particular cases of example 2.14, even though
proposition 16 is well adapted to treat the whole example in detail. Recall that for any triple
(r,a;,b,) of natural numbers, there exists a curve C with n(C) = (r,3,,b,) and s(C) = ¢(C)
= ¢(C) by (2.14). In particular

a) For every integer r > 0 there exists a smooth connected curve C, with triple n{(C)
= (r,r,r), of degree d and genus g as in (2.14), which is contained in r + 1 irreducible
components of H(d, g);. Moreover the generic curves of all the components containing C are
arithmetically Cohen Macaulay.

b) For every r > 0 there exists an obstructed, smooth connected curve with triple
(r,a;,by) = (2t,t,1) or (2t+1,t,t), of degree d and genus g as given by (2.14), which belongs
to a unique irreducible component of H(d,g)s by proposition 16. In particular the obstructed
curve C with (r,a,,b,) = (2,1,1) belongs to a unique irreducible component of H(32,109);,
confirming what we saw in (2.14).

Appendix: Non-reduced components of H(d,g)s

So far we have studied curves C with strong restrictions of the Rao module M(C).
We have proved (theorem 15) that if the diameter of M(C) of a generic curve C of H(d,g)
is < 1 (and some weaker statement in the diameter 2 case), then the corresponding
irreducible component is reduced (i.e. generically smooth). So there are no non-reduced
components under these assumptions, and maybe no non-reduced component in the diameter
< 2 case at all (cf. Question (3.12))?

In the following we shall see that the diameter < 2 case is special with regard to the
existence of such components because once the diameter is greater, there are lots of non-
reduced components ([Mu], [K2], [K1], [GP2], [E] and [F]). Indeed the Rao module in the
well-known example of Mumford has diameter 3, and any diameter = 3 occurs for this
phenomena (combine (4.5) below with theorem 17 to conclude). The mentioned papers deal
mostly with curves on a cubic surface, but one may, as pointed out in [K2], use linkage
(proposition 2 of this paper) to find non-reduced components whose generic curve C sits on
a smooth surface of any degree s(C) = 6. In the paper of Fleystad [F],there is a nice treatise
of the case where M is a complete intersection from the point of view of cup-products.

In this appendix we will, however, extend the results of {K1] and {E] considerably
by making some computations. Indeed these papers prove the following conjecture under
some assumptions;

(4.1) Conjecture. Let W be a maximal irreducible family of smooth connected, linearly
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normal space curves of degree d and genus g, whose general member C is contained in a
smooth cubic surface, and let W be the closure in H(d,g). Then W is a non-reduced
irreducible component of H(d,g) if and only if

d= 14, 3d-18 < g < (d4)/8 and HY(A3) # 0

This conjecture, originating in [K2], is here presented by modifications proposed by
Ellia [E] and Dolcetti, Pareshi [DP], because they found countrexamples which heavily
depended on the fact the generic curves were not linearly normal (i.e. the curves satisfied
H'(I(1)) # 0). Note that in (4.1) the maximality of W is taken with respect to the degree
of the cubic surface, i.e. the general curve C’ of any proper closed subset of H(d,g)
containing W satisfies s(C’) > 3.

Now recall that a smooth cubic surface S is obtained by blowing up P? in six general
points [H1]. Taking the linear equivalence classes of the inverse image of a line in P* and
-E; (minus the exceptional divisors), i = 1,..,6, as a basis for Pic(S), we can associate a
curve C on S and its corresponding invertible sheaf O¢(C) with a 7-tuple of non-negative
integers (6,m,,..,my) satisfying

4.2) 5 = m,

v

.=mg and 6 =m; +m, + m,
The degree and the (arithmetic) genus of the curve are given by

d=38-3m , g =(62_1) _i[’:)

i=1

The explicit size of the interval where M(C) is non-vanishing is known in terms of
(6,m,,..,mg) (cf. [K4], page 314 or [GM], rem. 2.7). Using this, one may verify the
following facts for a curve C whose corresponding 7-tuple (8,m,,..,mg) satisfies (4.2);

4.3) Ifmg = 3 and (§,my,..,mg) ¥ (A+9,A+3,3,..3) for any A = 2, then H'(I.(3)) =
0. In particular if a curve (effective divisor) on a smooth cubic satisfies
g > (d*-4)/8, then
H'(13)) = 0
([K1], lemma 16 and corollary 17).
4.4) Ifmg > 1 and (§,m,,..,mg) # (A+3,A+1,1,..1) for any XA = 2, then H'(I.(1)) =
0. Moreover, in the range d = 14 and g = 3d-18, we have

H'(I1.(3)) # 0and H'(I,(1)) =0 ifandonlyif | < mg < 2.

4.5) If (6,m,,..,mg) # (A+3t,A+t,t,..t) and (Bt,t,t,.,t,t-A) forany A = 2andany t = 0,
then the diameter of M(C) is

diam M(C) = 26 - m, - m; - m, - ms - 2m, - 2 (+ 1 in the exceptional cases)
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Using (4.3), the fact that H'(/o(3)) = 0 implies unobstructedness ([K1], theorem 1)
and dim W = d+g+18 (for d > 9), one may easily see that the conditions of (4.1) are
necessary for W to be a non-reduced component. The conjecture therefore really deals with
the converse, and by (4.4), we may as well suppose mg = 1 or 2. For both values the main
theorem of this section tells that the conjecture is true under weak assumptions, thus
generalizing the results of the papers [E] and [K1] to:

Theorem 17 Let W be a maximal irreducible family of smooth connected space curves,
whose general member sits on a smooth cubic surface S and corresponds to the 7-tuple
(6,m,,...mg), 8§ = m, >..>m; and & = m; + m, + m;, of Pic(S). Let W be the closure
of Win H(d,g). Then

i} Wisa generically smooth, irreducible component of H(d,g) provided

me = 3 and (B,m,,..,mg # N+9N+3,3,..3) forany A = 2.

i) W is a non-reduced irreducible component of H(d,g) provided;
a) ms=2,m; =4, m=5andd = 21, or
b) mg=1,m; =6, m, = 7and d = 35, or
c mi=1,m=5m=7m,=8andd = 36.

In the exceptional case (A+9,A+3,3,..3) of i) and in some other cases where m; =
1 or 2 and ii) is elsewhere not satisfied, we have HYO.(3)) = 0, in which case W is
contained a unique irreducible component of H(d,g) and the codimension of W in H(d,g) is
h!'(1.(3)), cf. [K1], th. L. For the case m; = 0, see [E], rem. VL.6 and [DP].

To prove theorem 17, we will need the following two results;

Proposition 18 (Ellia) Let d and g be integers such that d = 21 and g = 3d - 18, let W be
as in theorem 17 and suppose the general curve C of W satisfies H'(I.(1)) = 0. If C’is a
generization of C in H(d,g) satisfying H°(Io(3)) = 0, then H’(I.(4)) = 0.

Proof. See [E], prop. VI.2.

We remark that Ellia uses the important proposition 18 to prove the conjecture
provided d > 21 and g > G(d,5) where G(d,s) is the maximum genus of smooth connected
curves of degree d not contained in a surface of degree s-1. His result is in most cases better
that the one in [K1] which requires g > 7 + (d-2)%/8, d = 18, because G(d,5) = d*/10
+ d/2 + €, € a correction term, cf. [GP1]. There is, however, quite a lot of cases where
theorem 17 imply the conjecture while this result of Ellia does not.

Lemma 19 Ler C be a curve sitting on a smooth cubic surface S, whose corresponding
invertible sheaf is given by (6,m,,..,mg), 8 = m; =..= mgand & = my; + my, + my Ifvis
a non-negative integer such that v < my and v < mj, then
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6 -
ROLL)) - B )) = (;’] -y ('""2 v}
r+l

Where r is the unique integer such thatv > m,.;,, v < m, (S0 3 < r < 6 and r = 6 means
v < m; for any i).

Proof. 1t is not difficult to prove the lemma using the proof of [K1], lemma 18. Indeed one
shows h'(O(v)) = h%O4(C)(-v-1)) = h%L) where L corresponds to (6-3v-3,m;-v-1,..,m-v-1,
-1,..,-1). Since the number of sections of L is easily found, and x(L) is known, we get the
lemma, cf. [K1] for details. One may continue the proof and see that h%(I.(v)) = (7). One
may also get the lemma from [Gi], rem. 2.7.

Proof of theorem 17 1) is a special case of [K1], theorem 1.
ii) By [K1], (2.7) and lemma 13, one may see that

(4.6) dim W + R (I.(3)) = h°%N,).

Since hi(I(3)) = 0, it suffices to prove that W is an irreducible component of H(d,g)
because if it is, then dim W < h%N,) implies that the general curve C of W is obstructed,
i.e. W is non-reduced. _

a) To get a contradiction, suppose W is not a component. Since W is a maximal
family of curves on a cubic surface, there exists a generization C’ of C satisfying
h%I.(3)) = 0. By semicontinuity, h'(Oc(4)) < h'(O(4)). Combining with x(Ic(4)) =
x(I=(4)), it follows that h°(J..(4)) - h'(Io(4)) = h°%I(4)) - h'(J(4)). However, by lemma 19,
we have h’%(I(4)) - h'(Io(4)) = 1, hence h%(J.(4)) = 1. Since the curve is linearly normal
by (4.4), this inequality contradicts the conclusion of proposition 18.

b) Again it suffices to prove that W is an irreducible component of H(d,g). To get
a contradiction we suppose there is a generization C’ of C satisfying h°(i..(3)) = 0. By
semicontinuity of h'(Ou(v)) and lemma 19, we get

Kl (v) - Ble(v) = KUct) - W) = (7) - ) for 1 < v <6,

Hence h%I.(6)) - h'(Io(6)) = 5. Since s(C’) = 5 by proposition 18 and (4.4), C’ is
contained in a complete intersection of bidegree (5,6) or (6,6). Hence d < 36 and we have
a contradiction except when d = 35 or 36. In the case d = 36, C’ is a complete intersection
satisfying h°(J.(6)) = 5, and if d = 35, we can link C’ to a line C’’ satisfying h'(O-(2))
# 0, i.e. we get a contradiction in both cases, and we are done.

¢) The proof is similar to b), remarking only that in this case h’(/..(6)) = 4 and
h°(I(7)) = 11 by lemma 19, i.e. C’ is contained in a complete intersection of bidegree
(5,7) or (6,6), and we conclude as in b).

(4.7) Remark. We see from the proof that once we have proved that W isa component, it
is automatically non-reduced by the assumption H'(Io(3)) # 0 (e.g. it is non-reduced if and
only if H'(I.(3)) # 0).
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Also the proof of [K1] deserves renewed attention because it admits some interesting
extensions. Indeed, in [K1], we showed that the set W of theorem 17 was a component by
proving that 34-g+d*/4 was an upper bound for the dimension of any component of H(d,g)s
whose general curve is contained in a quartic integral surface F (cf. [K1], prop. 20 where
unfortunately the weak assumption on the singular locus "Sing(F)NC is finite" is missing).
We deduced there that W was a component in the case d+g+18 > 33-g+d¥4. An
interesting observation concerning this proof is, however, that it is rather straightforward to
generalize it to get;

Proposition 20 Let V be an irreducible component of H(d,g)s containing a curve C which
sits on some integral surface F of degree s = 4. If Sing(F}NC is a finite set and if g <
d/2(d/s+s-4), then

2 2
dimVsma.x{d—-g+ 5+3 —l,i—+ s43) )
s 3 25 3

We get a somewhat better bound for dim V if we include the Clifford index of the
normal bundle of C in S, S a desingularization of F. Now combining this result with
proposition 18 we can prove that the set W of theorem 17 is a component in the case

d? d
g>max{=— - = + 18, GWd,6)} , d > 26
10 2

1.e. the conjecture 4.1 holds in this range by remark 4.7 (and we can weaken the part
g > G(d,6) of the assumption above by using proposition 20 for s = 6). More importantly,
we can by exactly the same proof treat some other maximal irreducible families than those
of curves on a smooth cubic surface. For instance, for families of curves on a smooth quartic
surface, one knows that (4.6) holds (replacing 3 by 4, cf. [K1], lemma 13). Therefore we
can use proposition 20 for s = 5 (the case s = 6 can be excluded because the genus turns
out to satisfy g > G(d,6)) to prove that the corresponding W is a component in the casc
given by; '

Proposition 21 Let W be a maximal irreducible family of smooth connected space curves,
whose general member C sits on a smooth quartic surface, and let W be the closure of W in
Hdzg). If

d > 31 and g > 21 + d%/10,

then W is an irreducible component of H(d,g). Moreover W is non-reduced if and only if
H'(1.(4)) # 0.
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