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INTRODUCTION.

The study of particular surfaces in P* has received some attention over the last years
after Ellingsrud and Peskine managed to show that there are only finitely many surfaces of
non-general type (i.e. finitely many such components of the Hilbert scheme), cf. [EP], [Ra],
[DES] and [P]. If for instance the degree d > 66, there is no surface in P* of non-general
type at all [BC].

In the present paper we study the Hilbert scheme H(d,p, ) of all surfaces of degree
d and arithmetic (resp. sectional) genus p (resp. ) from a different angle. Recall that, for
space curves C & P* = Proj(R), Martin-Deschamps and Perrin have given a stratification
H(d,g),, of the Hilbert scheme H(d,g) of space curves of degree d, genus g obtained by
deforming curves with constant cohomology [MDP1]. They also proved the smoothness of
the "morphism" ¢ : H(d,g), ,~> E, = isomorphism classes of R-modules M of finite length,
given by (C € P) > M = @ H'(I{v)), they gave a scheme structure to H(d,g), ,, = ¢ (M)
and computed its dimension. Earlier Rao proved that any R-module M of finite length
determines the liaison class of a curve C, up to a shift in the grading. Note that Rao’s resuit
is related to the surjectivity of ¢, while the smoothness implies infinitesimal surjectivity as
well. For surfaces in P* there is a recent result of Bolondi [B2], similar to that of Rao,
telling that a triple D' = (M,;,M,,b) of modules M; of finite length and an extension b €
oEx£(M,, M,) determines the liason class of a surface X such that M; = @ H{(I(v)) modulo
some shift in the grading. Therefore it is natural to consider the stratification H, 6 =
H(d,p,),,of H(d,p,), similar to the one in the curve case, and to ask if the corresponding
¢ H, ,— V = isomorphism classes of R-modules M; and M, commuting with b, is smooth
and irreducible. We prove in this paper that the answer is yes (theorem 1.1), thus extending
Bolondi’s result in this direction. It follows that the fiber H(d,p,7),, := ¢"(D) is smooth
and irreducible and we compute its dimension (corollary 2.7). In section 3 we also determine
the tangent space of H, , (resp. V,) at (X € P* (resp. at D), from which we deduce a local
isomorphism H , = H(d,p, ) (theorem 3.7) under certain restrictive conditions (e.g. natural
cohomology) and a smoothness criterion for V, (proposition 3.4). The liaison result we prove
in theorem 4.1 turns out to be helpful in determining the structure of H, , and its dimension.
Note that the irreducibility of H , follows from an earlier work of Bolondi [B1] while, in
the special case of arithmetically Cohen- Macaulay surfaces (i.e. surfaces with M; = 0 for
1 = 1,2), both the irreducibility and the smoothness of H, , follow from [E]. To see more
generally how H, , determine H(d,p,), it is desireable to study the imbedding H.,
H(d,p, ) in detail as we did in [K3] for the Hilbert scheme of curves. The corresponding
problem for H(d,p, 7) will eventually be carried out in another paper. Indeed as we will see
in what follows, the technical problems in describing the stratification of H(d,p,), the
tangent spaces of H,yo . and V, etc. are much more complicated than in the curve case,



justifying this limitation.

We also limit the extent of this paper by omitting proving that H(d,p,7),p is a
scheme, although it seems quite natural to generalize the work of [MDP1] so far. Indeed the
"morphism" ¢ : H,,— V,to the "scheme" (i.e. stack) V, has a natural nice description in
terms of the hulls of the local deformation functors at a given point (X € P*. In this local
case H(d,p, ), p corresponds to the hull of the local fiber functor. Even though we have not
proved the existence of all this as schemes, we allow a thinking and a terminology as if they
were schemes, knowing that the statements have a precise interpretation in terms of their
corresponding "completed local rings", i.e. their hulls. Only the irreducibility is problematic
from this local point of view, but this case is already taken care of in the literature by [B1]
and [BM1]. To limit the size of this paper, we only sketch the proof of some other results
(e.g the tangent spaces of H, , and V,) as well.

Due to the importance of the works of Martin-Deschamps and Perrin and its
consequences for the Hilbert scheme H(d,g) of curves ((IMDP1], [MDP2]), we hope the
corresponding theory for the Hilbert scheme H(d,p, =) of surfaces, of which we take a first
main step, will turn fruitful. In our treatise we have frequently used a natural spectral
sequence converging to the right derived functor Ext,'(N, -) of I',,(Homg(N, -)) and the duality

Exty My, N) =, Exty" (N, N

In [K3], section 1, we felt this allowed a simple treatment of H(d, g), , because it avoided the
extensive use of the various resolutions of [MPD1]. In this paper we have not been able to
avoid such resolutions (e.g. (5) below) to prove our theorems for H(d,p, ), ,, because we
needed them to see the factorization of some main maps. We could probably present all the
theory of this paper using different kinds of resolutions, as in [MDP1]. We are, however,
not sure this would really simplify the treatise if one is familiar with spectral sequences, but
it might be helpful in seeing the commutativity of some diagrams induced from the spectral
sequence where we sometimes implicitely have assumed it by "naturality” of the maps.

The investigations of this paper started several years ago as a common project with
prof. G. Bolondi at Sassari. As the reader will see, Bolondi’s paper [B2] is a main source
of idea for the work presented here. It was prof. G. Bolondi who introduced me to the idea
of extending the results of [B2], as Martin-Deschamps and Perrin do for space curves, to get
a stratified description of the Hilbert scheme H(d,p,n), and who pointed out the interesting
things to be proved. Parts of the paper are also a natural continuation of [BM1] and [BM?2].
As time has pasted it is the author of this paper who has carried out the investigations, and
as agreed upon by Bolondi, should be the sole author of this paper. I thank prof. G. Bolondi
very much for many stimulating discussions while preparing this work and prof. E. Ballico
and the University of Trento for their hospitality during my visits in June 1994 and May
1995. This paper was written in the context of EUROPRO].

0. PRELIMINARIES AND TERMINOLOGY.

We need to recall and generalize some results of [K3] and [B2], but first we establish
some terminology. A surface X is an equidimensional, locally Cohen-Macaulay subscheme
of P = P* of dimension 2 with sheaf ideal I, and normal sheaf Ny = Homp(ly,0y). If F is

a coherent Op -Module, we let H(F) = H'(P,F), HX(F) = ¥, H(F(¥)), h(F) = dim H(F),
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and x(F) = T (-1 A(F) is the Buler-Poincaré characteristic. The arithmetic genus p is
defined by p = x(0y)-1, while the sectional genus 7 is given by x(0x(1)) = d-7+1+x(0,),
leading to Riemann-Roch’s theorem:

X(O,0) = Yd? (m-1-%ad)v + x(Oy).

Moreover M; = M(X) is the "deficiency modules" H.i(L,) for i = 1,2 (playing the role as
the Hartshorne-Rao module of a curve), E = E(X) is the module HX(Ox) and I = I(X) =
H.(1,) is the (saturated) homogeneous ideal. They are graded modules over the polynomial
ring R = k[X,,X,,..,X,], where k is supposed to be an algebraically closed field of
characteristic zero. The postulation v (resp. deficiency p = (o',0%), resp. specialization o)
of X is the function defined over the integers Z by y(V) = yx(v) = h%I(V)) (resp. p(v) =
px() = (0'(,0*(v)) where p'(v) = H(L(v)) for i = 1,2, resp. o(¥) = ox(¥) = K (Ox())).
Put

sX) = min { n | K(L(n)) # 0},

eX) = max { n | K(O«m) # 0},

A surface X is unobstructed if the Hilbert scheme H(d,p, =) is smooth at the corresponding
point (X € P), otherwise X is obstructed. The open part of H(d,p,w) of smooth surfaces is
denoted by H(d,p, )s, while H, , = H(d,p, ), , (tesp. H,, resp. H, ,, resp. H , where D
= (M;,M,,b)) denotes the subscheme of H(d,p,n) of surfaces with constant cohomology
given by v and p, (resp. constant postulation <y, resp. constant 4y and p,, resp. constant
postulation v and deficiency modules isomorphic to M; and commuting with b €
oExt2(M,,M,)). Note that we can work with H. ;, as a locally closed subset of H, , (cf. the

arguments of [BB], cor.2.2, and combine with (0.1) below), even though we have not proved
the representability of the corresponding functor.
Let X be a surface in P* and let

) 0> P, =% P, —="> P, % > P, > M, >0,
0-» Q5 —P Q4 —m 0; P Qo 0 M,-0

(for short g, : P, —» M; - 0 and 7, : Q. - M,) be minimal free resolutions over R. Let K,
and L. be the ith syzygies of M; and M, respectively, i.e. K; = ker ¢, and L; = ker 7.
Recall that syzygies has nice cohomological properties, for instance

) M, =H)K) and HXK, = H)K)

0,
Mz = -3( L 3) and H‘l( L 3) = th( L 3)

0

These resolutions have some strong connections to the minimal resolutions of I = I(X);
©) 0> & R(ny) = & R(-ny) > &, R(-ny) > &, R(-n) > 10

and the following minimal resolutions of A = H.%0,);

4) 0P, —%>pP —%s P’ -1 P, OR->A~>0

where the morphism P, @ R - A of (4) is naturally deduced from P, - M,, recalling the
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exact sequence R - A - M, — (. The connections we have in mind can be formulated and
proved for a family of surfaces with constant cohomology (at least locally which is the case
we frequently need later), e.g. we can replace the field k by a local k-algebra S. Now, in
[B2], Bolondi uses some ideas of Horrocks [Ho] to define the element b € Ext,2(M,, M,),
and conversely, given D = (M;,M,,b) where M, are R-modules of finite length, he constructs
a surface X by defining some shift I(h), h € Z, of I = I(X) in terms of an exact sequence
0-1L; =K, = I(h) > 0 where L;’(resp. K,’) is isomorphic to the syzygy L, (resp. K;) up
to some R-free module F; (resp. Fy). Up to liaison this construction is the inverse to the first
approach which defines (M;,M,,b) from a given X. To prove the main smoothness theorem
of the next section in an easy way, we need to adapt the treatise above slightly by
determining F; and Fx more explicitly. Using ideas of Rao’s paper [R], we can prove

Proposition 0.1 Let X be a surface (i.e. locally Cohen-Macaulay and equidimensional) in
P&, flat over a local noetherian k-algebra S, and let M, = M,(X), M, = M,(X) and I(X) be
flat S-modules. Then there exist minimal R-free resolutions of M, I(X) and A = H.%(Oy) (with
R = S[Xy,X1,..,X)), as in (1), (3) and (4). Moreover let Ly’ = ker o,’ and let K’ be the
kernel of the composition of o, and the.natural projection Py @R — Py, ¢f. (4). Then there
is an exact sequence

©) 0->Ly—"=K’ — IX) >0

of flar graded S-modules and a surjective morphism d : JHomy(L,’, K,") = Exts’(M,, M),
defining a triple (M,,M,,b) where b = d(b’) (coinciding with the uniquely defined
"Horrocks’ triple” of [Ho] or [B2]). Moreover Ly (resp. K.’) is the direct sum of the 3.

syzygy of M, (resp. 1. syzygy of M) up to a direct free factor, i.e. there exist R-free modules
F, and Fy such that the horizontal exact sequences in

0 - Kl, — PL’ — P0
Si ° Sl ° I
0->K ®F,—> P, ®F, —"% p,

are isomorphic. Similarly, the exact sequences 0- Qs —9- Q, ®F, > L, ® F, >0
and 0 - Py’ —» Py’ = Ly’ = 0 are isomorphic as well.

Remark 0.2 The proposition above, defining the "Horrocks’ triple" (M;,M,,b) from a given
X, can be regarded as our definition of the "morphism" ¢ : H ,6 - V, = isomorphism
classes of R-modules M, and M, commuting with b.

Proof We obviously have minimal resolutions of M;®gk, I(X)®:k and A®k as described
above with R = k[X,,X;,..,X,], cf. (1), (3) and (4), and these resolutions can easily be lifted

to the minimal resolution of the proposition by cutting into short exact sequences and using
the flatness of the modules involved.

By the definition of K’ there is a commutative diagram

\ o |jj o ¥ o i
0__>K1’__>P1,__>P0—_>M1_)0
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and we get easily the exact sequence (5) by the snake lemma. Comparing the lower exact
sequence in the diagram above with the following part of the minimal resolution of M;;
- P, » P, = M, - 0, we get the commutative diagram of the proposition because X; is the
1. syzygy of M,.

To prove the corresponding commutative diagram for L,’ and L;, we sheafify (5), and
we get M, = H2( L ;). Recalling the definition of L;’, we have the exact sequence

HX P )Y = HXPy) >M = Ext (M, R(-5) >0
which we compare to the minimal resolution
Q; — Q5 — Exty’(M;, R) — 0

obtained by applying Hom,(-, R) to the resolution Q, = M,. Recalling H4( P ;’)'(5) = P,
we easily get the conclusion, as in the proof of th. 2.5 of [R].

Finally to define the morphism d and to see that the defined triple (M;,M,,b) is the
one given by Horrocks’. construction (seen to be unique by [Ho]), one may consult [B2] (for
the case S = k which, however, easily generalize to a local ring S). The important part is
as follows. The definition of K,’ and K, imply immediately Ex(M,,M,) = Exf(M,, K;) =
Ext'(M,,K,’). Next, by Gorenstein duality, we know Exti(M,,R) = 0 fori # 5. Hence the
definition of the syzygies L, lead easily to Ext*(M,, K;) = Exf(Lo, K;") = Ext'(L,, ;") and
to a diagram

oHomy(Qs, Ky') = gHom(Ls, Ky’) = (Ext'(Ly, Ky') = 0
©6) ¢ !
oHom(Ly', Ky)  oExte (My, M)

where the horizontal sequence is exact and the first vertical map is injective and split. We
let d be the natural composition, and we get the conclusions of the proposition.

For any graded R-module N, we have the right derived functors H,'(N) and
JExt XN, -) of T,(N) = B, ker(N, » T'(P, N ())) and T, (Homg(N, -))), respectively (cf.
[SGA 2], exp. VI or [H]) where m = (X,,..,X,). We use small letters for the k-dimension
and subscript v for the homogeneous part of degree v, e.g. ,ext,(N,,N,) = dim Ext,'(N;,N,).

Let N, and N, be graded R-modules of finite type. As in [K3] (cf. [W2] or [F] for
a related treatise), we frequently need the spectral sequence ([SGA 2], exp. VI)

Q) Ef? = Extg(N, HAN)) = Ext,! (N, Ny

(= means "converging to") and the duality isomorphism ([K2], th. 2.1.4)

(®) JExt, (N, N) “-v-sExt;-i(Nl’ Ny,

valid for any integer i and v. Moreover there is a long exact sequence ([SGA2], exp. VI)
€) ~ Ext,(N,, N)) - Exty(N;, N,) ~ Exty (N,, Ny(v)) ~ Exti 'V, Ny -

which in particular relates the deformation theory of (X € P), described by H''(Ny) =
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Ext,/( I, I)fori= 1,2, to the deformation theory of the homogeneous ideal I = I(X),
described by (Exz;'(I, I), in an exact sequence

(10) 0 ~Bxtxd, D - HWN,) ~Ext2d, D - Eayd, ) ~ H'N,0) ~Extad, D~

To compute the dimension of the components of H(d,p, ), we introduce the following
invariant, defined in terms of the graded Betti numbers of a minimal resolution (3) of I(X)

Definition/proposition 0.3 If X is any surface in P? of degree d and sectional genus «, we
let

J0) = 24 Wl ) - 2 Bdng+v) - 20 H(lng ) + 24 H(lng+v)
Then the following expressions are equal
oextz' (I, I) - gext’(, D) + gext’(I, ) = 1 - 8%0) =

x(Ny) - 8*(0) + 8%0) - 8'(0) = 1 + &(-5) - 8*(-5) + 8(-5)

Moreover
x(Ny(V) = dvV* + 5dv + 5Q2d + 7 - 1) - & + 2x(0y)

Indeed, the first upper equality follows easily by applying ,Homg(- , I) to the
resolution (3) because Homig(I, I) = R and because the alternating sum of the dimension of
the terms in a complex equals the alternating sum of the dimension of its homology groups.
The other equalities involving &(v) follow from (7), (8) and (9) as outlined in [K3], lemma
1 in the curve case (the surface case is technically more complicated because the spectral
sequence of the proof; E/? = Extf(I, H,%(])), contains one more non-vanishing term. The

principal parts of the proof are, however, the same). Similarly the arguments of [K3], remark
1.13, lead to the formula

X(Nx() = x(Ox¥) + x(O-v-5)) - &
for any surface X (i.e. locally Cohen-Macaulay and equidimensional), from which the final

formula of proposition 0.3 follows easily. We omit proving the final formula because our
main application is smooth surfaces where the known formula

X(N(v) = dV + 5dv + 5(d - 0 + 1) - 2K* + 14x(0y

and the double point formula @® - 10d - 5H.K - 2K* + 12x(0,) = 0 imply the result of the
proposition.

Finally we will use the spectral sequence (7) and the duality (8) to give an
interpretation of &'(-5) and 6%(-5) provided X satisfies some natural variant of having "natural
cohomology". More precisely we have

Proposition 0.4 Let X be any surface in P?, and suppose its modules M,, E and H,’(R) are
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supported to the left of M, (i.e if (M}), # O for some v, then (M), = Qforp =2 v, E, =0
and v > -5). Then we have

sExtg(I, MY = (Ext (M, M), foranyi

In particular (Exti(M;, M) =0 fori = 4 and

3 .
81(=5) = ¥ (1)L exty(M,, M,)
i=0

Proof Wehave Extg(I, My)¥ = JExt, ' (M;, ) = JExt#(M;, H,5((I))) for p+q = 5-i. Since
H ) = M,, H*Il) = E and H () = H,’(R), and (Ext?(M,;, F)) =0forp = 0and F =
M,, E and H,’(R) by assumption, the spectral sequence above degenerates and we get

SExtx (I, My)' = oExty™(My, H,(D)

Applying Homg(- , M) to the resolution (3), we get §'(-5) = L, (-1)' sext{(I, M,), and we
conclude easily.

Proposition 0.5 Let X be any surface in P*, and suppose its modules E and H,’(R) are
supported to the left of M, (i.e (M,), # O implies E, = 0 and v > -5). Then we have
SExt (I, My’ = JHomg(M,, M,) and there is an exact sequence

0-oExti(M,, M) ~_Ext’(, M,)" ~Hom(M,, M) -~ Ext(M,, M) ~_Ext'(I, M,)’

~ Ext'(M,, M)-"~ Ext*(M,, M))~_Hom(I, M,)"~ Ext’(M,, M,) - Ext*(M,, M,)~0
Moreover (Ext’(M,, My) = Exty’(M,, M) and Exti(M,, M,) = 0 fori > 4. In particular

2 ] 4 ' .
8%(-5) = Y (-Diyexty(M,, M) - ¥ (-1 extzx(M,, M)
i=0 i=0

Proof 1f we replace M, by M, in the spectral sequence in the proof of proposition 0.4, we
get a spectral sequence with two non-vanishing terms from which we get the long exact

sequence of the proposition and the other statements as well. We conclude by combining with
0*(-5) = Li(-1) sext'(, My).

Remark 0.6 The isomorphism Ex’’(I, My)' = JHom(M,, M,) and the exactness of the first
five non-vanishing terms of the long exact sequence of proposition 0.5 are valid for any
surface X. In particular we have in general that



E( 1) ext'(I, M) = E (-1)'gext' (M. ~lom(M,, M,) - dim coker d,

Proposition 0.7 Let X be any surface in P*. Then we have Exti(I, E) = 0 fori = 2,3 and
8%(-5) =_shomy(l, E) -_sextp(I, E)
Moreover if My # 0 or M, # 0, then (Exti!(I, E) = Exty’(I, M,).

Proof The arguments of this proof require a more sophisticated use of the spectral sequence
(7) that earlier. Indeed one knows that E? = Ext.P(I,H,%(I)) = sExt,?*%(I,I) converges to
zero if p+q = 6 by the duality (8). Recalhng E=H*D)and pd I < 3, we get two
surjective connecting homomorphisms

E/”® = sExti(I, H,'(D) — E;"* = Extg (I, E), E;” — E*

which leads to _Ex¢(I,E) = 0 fori = 2,3 because H,’(I) = H,’(R) vanish in degree v >
-5. Moreover combining with §(-5) = E;(-1)! sext’(I,E), we get the expression of §*(-5).
Finally we consider the connecting homomorphism

Ej = sBxtg'(I, E) —> E;” = Exty'(1, My).

This map is surjective (i.e. its cokernel E;° = 0) because E;>* = 0 by the duality (8) and
we know E /2 is the cokernel of E;>° — E >3 where E;>° = 0. To see the injectivity (i.e.

that E;* = E_'* = 0), we consider the spectral sequence Ef? = Ext,P*9(1,I) above for
p+q = 5 and the duality (8) which tells

ES*@E ¥ BEM = FEu 1 1) = Homd, Iy = k

If M, # 0, one checks that E.** = E}? = k, while the case M, = 0, M, # 0 leads to

E, > = E;}** = k (these isomorphisms will become quite clear in section 2, cf. (2.6)), and
we are done.

1. THE SMOOTHNESS OF THE "MORPHISM" ¢ : H - V, .

In this section we prove the smoothness of ¢ (locally). We shall see that the

preparations we have made in the preceding section (e.g. proposition 0.1) allow a rather easy
proof of

Theorem 1.1 The "morphism” ¢ : H,, = isomorphism classes of R-modules M, and
M, commuting with b, is smooth (i.e. for any surface X in P, the corresponding local
deformation functor of ¢ is smooth at (X S P).

Proof Let T - S — k be surjections of local Artin k-algebras with residue fields k such that
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ker(T->S) is a k-module via T — k. Let X; S Pg* (defining the "Horrocks’ triple"
(M,s,M,s,bs) as in proposition 0.1), resp. (M,3,Myr,by), be given deformations of X < P*
to S, resp. of (M;s,Myg,bg) to T. To prove the smoothness at (X S P*), we must show the
existence of a deformation X; € P;* of X € Pg*, whose corresponding "Horrocks’ triple”
is precisely (Myr,Mar,br).

Since Xg € Pg* is flat over S, we have by proposition 0.1 minimal resolutions of M,
I(X,) and Ag over Rg = S[X,,Xj,..,X ] as in (1)-(4), flat S-modules Lg, K5, L;¢’, K¢’ fitting
into the exact sequence (5) and a surjection d defined as the composition (cf. (6))

oHomg(Lss’,Kis”) — (Homg(Lss, Ki5") —> OE“RI(Lzs, Ky) = OEXtRz(MZSrMIS)
(12) w w v v

bs’ Bs bs bs

"on the S-level" (B85 is simply the image of bg’ via the map of (12)) which lifts the
corresponding resolutions/modules/sequences on the "k-level". Since M;; are given
deformations of Mg, we can lift the minimal resolutions 0.5 : P.g = M;g and 7.5 : Q.g = My
further to T, thus proving the existence of deformations L;;, Kir, Lsr’, Kt of Lig, Kjs, Lsg’,
K, resp. (the free submodules F; g and Fis of L’ and K¢’ are lifted trivially). So we have
a diagram (6) and hence a sequence (12) "on the T-level" where the elements b;’ and 8, are

not yet defined. The element by € (Ext'(L,r, Kir') = oExtg®(Myr,M;r) is, however, given and
if we consider the diagram (cf. (6))

oHomy(Qs1,Ki1") = (Homg(Lsr, Kir”) = oExtg (Lyr, Kir') = 0
v o Vo 0 v
oHomy(Qss,Kis") = (Homg(Lss, Kis') = oExtg (Lys, Kis™) = 0

of exact horizontal sequences and surjective vertical maps, we easily get a morphism 8; €
oHHom(Lsr, K;1’) such that a(By) = Bs. Since L, = L;s @D F; g we can decompose the map
bs’ as (Bs,vs) € oHom(Lss', Ks'), and taking any lifting vy : Frr = K,y of s, we get a map
br’= (Br,yr) € oHom(Lsy’, Ki7') fitting into a commutative diagram.

Ly @ Fpp = Lyy” T—s Ky’
{ o {
Lys @ Fg = Ly e K5

Once having proved the existence of such a commutative diagram, we can define a surface
X of P* with the desired properties, thus proving the claimed smoothness. Indeed it is
straightforward to see that coker by’ is a (flat) deformation of coker by’= I(X,) to T.
However, in codimension 2 one knows that an Ry = T[X;,X;,..,X,}-module coker by’ which
lifts a graded ideal I(X;) is again a graded ideal I; (we can deduce this information by
interpreting the isomorphisms H'(Ny) = Extj( I, I) fori = 1,2 in terms of their
deformation theory from which we see that coker b * is a sheaf ideal, and we conclude by
taking global sections, cf. [K3] of [W1] for further details). Hence we have proved the
existence of a surface X; = Proj(R./I;), flat over T which via T - S reduces to X;. By the

construction above the corresponding "Horrocks’ triple" is precisely the given triple
(M, 1,My1,b1), and we are done.
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Remark 1.2 Theorem 1.1 implies the smoothness of the fiber H, , = ¢™((M;,M,,b)), D =
(M;,M,,b) while [BM1] implies its irreducibility as well. Indeed [BM1], cor. 3.2 tells that
the family of surfaces in P* belonging to the same shift of the same liaison class, with fixed
postulation, form an irreducible family, from which we see that H, j, is irreducible.

2. THE FIBER OF THE "MORPHISM" ¢ : H,, - V, .

In this section we describe the fibers H, ;, = H(d,p,7),p = ¢'(D), D = M;,M,,b),
of ¢ locally at (X < P* and we compute its dimension. As in the preceding section the exact
sequence (5) and proposition 0.1 play an important role. Indeed, let X S Pg* be a
deformation of X € P* to the dual numbers S = k[¢]. Then we have the fundamental exact
sequence (5);

0- Lss’_bs," Ky — IX)—>0

To describe the fiber of ¢, we suppose M;; = M®,S and by = b®,idg are the trivial
deformations of M;, i = 1,2, and b respectively. Since L5’ and K¢’ are syzygies of M,g and
M, resp. up to some free factor, we can suppose L’ and K¢’ are trivial deformations of
L;’ and K;’ resp. as well. Hence we expect that the fiber of ¢ is essentially given by
oHomy(Lss’, Kis’) modulo isomorphisms and that its tangent space 7., = T(d,p,7),p at

(X < P% is correspondingly described by (Homi(L,’, K;’) modulo automorphisms. More
precisely we have

Proposition 2.1 Let X be a surface in P?, and let L,’, K, b’: L,’— K’ and the morphism
d: Homg(Ly’, K\*) = Extz2(M,, M,) be as in proposition 0.1 (with S = k). Then the tangent
space T, , of the fiber of ¢ at (X S P*) is given by

T,p = ker d / (Homg(Ly’, Ly’)" + (Homg(K;’, K\’)") [ ker d
where we have denoted the natural image of a set H in JHomg(L;’, K;’) by H".

Remark 2.2 If M, "parametrizes" pairs (M;, M,) modulo isomorphisms, then it is rather
clear from the proof of proposition 2.1 that

oHomg(Ly’, K;*) / ((Homg(Ly’, Ly’)" + (Homg(K;’, K;’)")

is the tangent space of the fiber of the composition H, , —*—~ V, > M, where the natural
V, = M, is essentially given by (M;,M,,b) - (M;,M,).

Proof Let o be any element of (Homg(L,’, K,”) which maps to zero in (Ext(M,, M,) via d,
and consider the morphism b’+ex : L@, S — K,’®,S where S = k[e] = k @ ke. By for
instance the very last part of the proof of theorem 1.1 it is clear that coker(b’+ea) is the
graded ideal I(X;) of a deformation Xy € P¢* of X € P* satisfying M5 = H,(I(Xy)) =
H, (K ®,S) = M;®,S and M,; = M,&,S. Hence there is a well-defined map ¥: kerd - T, ,.
If W = Homg(Ly’,Ly’)" + (Homg(K;’,K;’)", it is rather straightforward to see that ¥ (W ()
ker d) = O (cf. the cohomological argument below) and that ¥ is surjective. It remains to
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prove that the induced map

¥’ : ker d/(W() ker d) —— T,

is injective for which we use a cohomological argument. Indeed it suffices to prove that the
composition of ¥’ with T, ;, = oExtg'(I(X), I(X)) is injective (We will see later that the tangent

space T, of H, at X is precisely oExt,'(I(X), I(X)), an observation which we do not really
need in this proof). Hence it is sufficient to prove that the map

oHomg(Ly’, Ky*) / (Homg(Ly’, Ly’)" + oHomy(Ky’, Ky)*) — oExty'(I(X), I(X))

(which is well-defined by (13) below) is injective. Now the exact sequence (5) "on the k-
level" leads to a commutative diagram

> oHomy(Ky', K;") - Homg(K,’, IX)) > oExtz (K, L)
v v v
(13) 0 —=gHomg(Ly', Ly’) - oHomg(Ly’, K;") > oHomg(Ly’, 1(X)) > oExtz'(Ly’, Ly’)
v v
ofxty (I(X), Ky*) = oExtz (I(X), I(X))

of exact horizontal and vertical sequences. It suffices therefore to prove that (Exzz'(K;’, Ls’)
= (. By (7) and (8), however, we have Ef? = Ext(L,’,H,%(K,")) = sExt, Ly, K,’) =
oFxte (K,’, L) where p+q = 4. Since pd Ly’ < 1 we need only check the vanishing of the
terms Ef*? for p < 1, for which we recall that K, is a first syzygy of M;, leading to
H(K, = H* K, = 0by (2) and hence to H,’(X;") = H,*(K,’) = 0 and we are done.

Remark 2.3 We can suppose the morphism d: Homy(Ly’, K;) —> Exti?(M,, M;) of
proposition 2.1 coincides with a certain connecting homomorphism of the spectral sequence
Epf = Extf (K’ ,H,Ly)), cf. (7) and the proof above. Indeed since H,%(L;’) = 0 for
g < 3 and H*Ly) = M, by (2), the spectral sequence Ef”*? = Ext’(K;’, L) =
oHomg(L5’, K;’)’ has two non-vanishing terms, leading to the exact sequence

0 > sBxtz'(K,", My) = JHomy(Ly’, K,')' > sHomg(Ky’, H,’(Ly")) > sExtz*(Ky’, M) > 0

(the surjection to the right follows from (8) which implies sFxt,%(K;’, Ls’) = 0). Dualizing

and using Ext; (K, My)' = oExt,'(M,, K') = oExty’(M,, H,(K,)) and M, = HXK,),
cf. (2), and similarly Ext2 (K, M,)' = Ext;'(M,, M,), we get an exact sequence

0 > oExtg' (M, My) > sHomy(K’, H,’(Ly"))" — Homg(Ly’, Ki") —%> oExtg(M,, M;) - 0

where we have identified the morphism to the right with d.

Applying the spectral sequence argument of remark 2.3 also to Homg(L;’, L3’),
oHomg(Ly’, I) and (Homg(Ly’, K;’), we can express T, ,, in terms of the local cohomology
groups of I = I(X) only. Indeed we have

Theorem 2.4 Let X be a surface in P, and let Ly, K’, b’: L;y—> K, and the surjection
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d: JHomy(Ly, K,") = JExt,}(M,, M,) be as in proposition 0.1 (with S = k). Then there exists
natural surjective maps

A; ¢ JHomy(K,’, K\) — JHomyx(M,, M)
A; o oHomg(Ly’, Ly’) — (Homg(M,, M,)

and two homomorphisms

d, : JHomg(M,, My) — oExtg(M,, M)
dy : JHomg(M,, My) — Extg’(M,, My)/im d,

such that do®N\; = d composed with some obvious maps. Moreover if M, # 0, then the
tangent space T, ;, of the fiber of ¢ at (X < P fits into the following two exact sequences

0T, > Homg(Ls’, Ky') ((Homg(Ly', Ly’)" +cHomg(K,’, Ky’)") = coker d, - 0
0 = k - ker d, = sHomy(I, E)' sExtg?(I, My)' = T, , =0
where we have denoted the natural image of a set H in ;Homy(Ls’, K;’) by H".

Remark 2.5. The lower fundamental exact sequence of theorem 2.4 has an interesting
analogue in the Hilbert scheme H,, = H(d,g),, of space curves of constant cohomology
which we can relate to the "morphism” ¢ : H ,— E, = isomorphism classes of R-modules
M, given by (C € P°) - M = H.\(1). Indeed if E = H."(0) and M # 0, then the tangent

space T, , of H , at (C & P?) is determined by an exact sequence (cf. [K3], rem.1.22 for
details)

0 = k = Homy(M, M) > ,Homg(l, E)* = T, , = (Extg'(M, M) > 0
and the tangent space T, ,, of the fiber of ¢ at (C & P°), is just ker(Z, , = (Extz'(M, M)).

Proof We will first describe (Homg(Ls’, K,’)(Homg(Ls’, Ly)° (as ime, in (16) below).
Indeed we observe that (Homy(L,’, N) = Ext,’(N, L;’)" for any R-module N of finite type.
As in remark 2.3 we use the spectral sequence (7) to get an exact sequence

0 = sExt’(N, My)' - sHomg(N, H, (Ly"))" - (Homg(Ly’, N) = sExtg (N, My)* = 0

and we have (Exti (N, M,)' = Ext,”(M,, N) for i =1,2. Letting N successively be L;’, K,
and I = I(X) in the exact sequence 0 - L’ K, I - 0, we get a big commutative diagram
(where we have given names to some morphisms)

0 > oExt,’(M,, Ly’) = sHomg(Ly', H, (Ly"))' > oHomg(Ly’, Ly’) = oExt,'(M,, Ly’) —= 0
i i i i

(14)0 = oExt,’(My, K\)y> sHomg(K,', H,’ (L") = Homg(Ly’, Ky') - oExt,'(M,, K;") = 0
! Voo Voo, y

0 - sExt’(I, My)' — sHomy(I, H'(Ly))' - Homyly, ) — oExt,' (M, 1) >0
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Note that (Ext,, (M,, Ly’) = JHomg(M,, H,'(Ly)) = Homy(M,, M;) and oExt,'(M,, K;') =
oBxt (M, HXK,")) = Ext(M,, M,) because H,/(L;’) for i < 3 and H/(K,’) for 3<j<4
vanish. The right upper corner of the big diagram (14) can therefore be identified as

oHomy(Ly’, L) —*2~> (Hom(M,, M,)
i o V d,
oHomy(Ly’ , Ki’) — > Exte(M,, My)

(15)

with d as in proposition 2.1. Denoting by A\, and d, two of the morphisms of (15), we remark
that the composition d,®A, is as claimed in the theorem. Now observing that the map ¢, of
(14) is surjective, we easily deduce that ime, = (Homg(L,’, K;’)/(Homg(L;’, Ly’)" fit into an
exact sequence

(16) 0 - Extx¥(I, M,)Y - Homg(I, H3(L)) — im ¢, - cokerd, =0

Next we will show that T := (Homg(L;’, K;’)/ ((Homg(Ls’, Ly’)" +Homg(K;’, K;’)")
fit into an exact sequence (cf. (19) below) which leads to the exact sequences of the theorem.
To do this, we consider the diagram (13) of the proof of (2.1), recalling that (JHomg(K,’, K,")
- JHomy(K,’, 1) is surjective. We get

T = imp, | JHomg(Ky’, K’ )ime, = imp, | Homg(K,’, Dime,
and that Hom(K;’, I) = Hom(Ly’, I) (cf.(13)) factors via ime, - Hom(L;’, I). Note that

Hom(K’, ) = Ext,’(I, K’)" and using the spectral sequence (7) converging to
sExt,’(I, K;’), we get the upper horizontal exact sequence in the following diagram

OHomR(I ’ I)
i
17) 0 — sHomy(l, HXK,"))' - Homg(K., I) > sExtg’(I, M))' -0
{ o] { o] \/
0 = Ext.(I, My)' —» Homy(, H>(Ly)) ——> im ¢, ——> cokerd, — 0

J
sHomg(I, H,"(I))"

The lower horizontal sequence is found earlier and so the dotted arrow in the diagram (17)
exists. Moreover the exactness of the vertical sequence to the left follows from 0 - 1L,’—»
K,’- I - 0 which induces an exact sequence

(18) 0 — H,() — H,’Ly) — H,(K,)

We observe that Extz’(I, M))" = Ext, (M,, I) = JHomg(M,, M,) and that the right side of
the commutative diagram (17) can be identified with

oHomg(K’, ) —*-> (Hom(M,, M)
J o v od
im ¢, — cokerd, = Extg(M,, M,)/d,(;Hom(M,, M,))
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where d; corresponds to the dotted arrow and where \ maps y : K’ I onto H,2(\) : M; =
HXK;) > HXI) = M,. Since ;Hom(I, I) = k, it follows that the composed map

oHomy(I, ) —> JHomg(K,’, I) —"-> ;Hom(M,, M,)

is injective if and only if M, # 0,in which case it follows that the composition sExt;*(I, M,)*
- Homg(I, H (L)) - sHomg(I, H,*(I))' of maps of (17) is injective. Mainly by the snake
lemma, we get the exact sequence (provided M; # 0)

(19) 0 Homyl, I) - ker d, - sHom (I, E)l sExt.X(I, My)* = T —*— coker d, - 0

where E = H,*(I) and d’ is induced by d.

Now we get the two exact sequences of the theorem if we can show that T, ,=ker d’.
Letting A\, be the composition of the surjective (;Hom(K,’,K;") - (Hom(K,’,I) with A\, we see
that A; and A, are both surjective. The reader may now easily prove that T. 5 is as claimed
and that d,®A, "commutes with d", and we are done.

Remark 2.6 i) If M; = 0, we get by the proof above an exact sequence
oHomy(, I) > sExt (I, M;))" — sHomyI, E) - T.,—>0

where (Homy(I,I) - Extz*(I,M,)' is isomorphic to k = (Hom(M,,M,), a map which is
injective if M, # 0. If, however, M, = 0 as well, then T, , = Homyl, E)'.
il) Consider the spectral sequence

(20) Ept = sExeg(l, H, (D) = sExt,?™ (1, 1)

which we frequently will use in the next section. Looking to i) we recognize the morphism
in "the middle" as the dual of a certain connecting homomorphism of E/*, i.e. the exact
sequence of i) is simply the dual of 0 - E>! » E)>¢ - E,>* > E>* - 0 (provided M; = 0
and M, # 0). If M; # 0, the middle term of (19) is still E>* . We claim that ker d, =
(Es*%". Indeed by (14) and (15), coker d, S Ext,‘(M,, I) = Exi'(I, M,)'. Then we
recognize the dual of the connecting morphism d,, : E,”* - E,** as the composition
SExt (I, MY)Y = JHom(M,, M) —%— coker d, S Ext'(I, M,)", whence the claim. Pushing
these arguments just a little further, we see that the final exact sequence of theorem 2.4 is

just 0 » EZ? —» E* - E2% » E>* — ( (provided M; # 0). In any case the discussion
above shows

T, = (E>Y

¥

Corollary 2.7. Let X be a surface in P*, and let

dy : sExtg(I, My)' = Homg(M,;, My) —> Extg’(M,, My)/d,(;Hom(M,, M,))

be the map of theorem 2.4. Then

dimT,, = 1 + 8%(-5) +_sexty(I, M,) -_sextx(I,M,) - dimkerd, =



15
2 . _ 2

1+ 83(=5) +Y (-D)exty(M,, M;) =Y chomy(M,,M,) - dim coker d,
i=0 j=1

Proof. If M, # 0 or M, # 0, we have by theorem 2.4 and remark 2.6i);
dimT, , = shom(I, E) -_sexti(I,M,) - dimkerd, + 1

Then first formula follows therefore at once from proposition 0.7 while the second follows
from remark 0.6. If M; = 0 and M, = 0, we conclude by remark 2.6i) and proposition 0.7
because, by (7) and (8), sextz'(I, E) = sext,’I, I) = 1 in this case.

Now we consider an example of a surface X of P* where V, is trivial at the
corresponding (M,,M,,b). Since X also has natural cohomology as in proposition 0.4 and
0.5, it follows from results of the next section that H, ;, is actually the whole Hilbert scheme
Hd,p,m),ie H,=H, , = Hdp,) at (X & P¥.

Example 2.8 Let X be the smooth rational surface with invariantsd = 7, 7 = 4 and K? =
-2, cf. [DES] for existence. In this case the graded module M, is 1-dimensional and
supported in degree 2, M, = 0, and I = I(X) admits a minimal resolution

0 = R(-7) > R(-6)® - R(-5)®° > R(-4)* @ R(-3) » 1> 0

We easily get Jrom(M,, M;) = 1 and coker d; = 0 because Ex~(M,, M;) = 0. Recalling
H(0-1)) = 7 = 4 and K} (Ox(-2)) = d + 27 -1 = 14, we get by corollary 2.7 and the
definition 0.3 of 8°(-5);

dimT, , = 1+8%-5) -1 = h*(0y(-2)) + 6h*(Oy(-1)) - 10h*(Oy) = 38

Lazardsfield and Rao [LR] have shown that space curves C satisfying (C) < s(C)-4
are minimal and unique in their biliaison class, a result which rather easily generalizes to
surfaces (cf. [PRa], lemma 4.1). For curves with ¢(C) < s(C) -4 we see that the group
+Homg(I, E) of remark 2.5 is zero. By the same remark we get at once 7, = 0 (and
oHomg(M, M) = k provided M = H.\(I.) # 0) which is the infinitesimal variant of the
uniqueness of Lazardsfield and Rao. Theorem 2.4 shows that the same infinitesimal variant

is true for surfaces in P*. Including also the corresponding information on the deficiency
modules M;, we get

Corollary 2.9. Let X be a surface in P, let D = (M,,M,,b) be its "Horroks’ triple” and
suppose e(X) < s(X) - 5. Then (Exty(M,, M)) =0 for i = 0,1 and

T,V‘D = O .

Moreover if M, # 0, then d, is injective and kerd, = k. If M; =0 and M, # 0, then
ker d, = Hom(M,, M,) = k.
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Proof. Indeed e < s-5 leads to sExty(I, E) = 0 for i > 0 by using the minimal resolution
(3). The last exact sequence of theorem 2.4 implies therefore T ;, = 0. Moreover if M; #
0, we have sExt;(I, M;) = 0 and ker d; = k by theorem 2.4 and Extz*(I, M) = 0 by
proposition 0.7. We conclude easily by remark 0.6. If M; = 0 and M, # 0, we combine
remark 0.6 and remark 2.6i) to conclude, while the case M; = 0 and M, = 0 is trivial.

3. THE TANGENT AND OBSTRUCTION SPACES OF H,, AND V, .

In this section we determine the tangent spaces of H,, and V, at (X £ P* and
(M;,M,,b) respectively and we compute its dimensions. We will give a criterion for V, to be
smooth at (M;,M,,b). Since ¢ : - V, is smooth by theorem 1.1, this leads to a cntenon
for H, , to be smooth at (X < P]) At some places we only sketch the proofs. Indeed the
proofs require varied, at most places standard but technical, use of the spectral sequence (7),
as in the preceding section. In general the spectral sequence does not degenerate, the part of
the sequence we consider can consist of three or even more non-vanishing terms (which is
a good reason for skipping bothering technical details), but still it formalizes the information
we need to prove our theorems. Some consequences (related to H(d,p, 7)) of our results may
also be deduced from [KS5], section 1. We end this section by considering an example.

Let X be a surface in P* with graded ideal I = I(X) and let D = (M,,M,,b), M; =

(D), be its "Horroks’ triple". Recall ([K2], section 2.2) that (Ext;'(Z,]) is the tangent space
of H at X & P* because a deformation in H, keeps the postulation constant, i.e. it
corresponds precisely to a graded deformation of I. Moreover there exists maps

i 1 oty (I, 1) — oHomy(H./(D), H.'(D)

taking an extension 0 =1 - E =1 — 0 of  Exz!(I, I) onto the connecting homomorphism
& = &' in the exact sequence

HXE) > Hi(}) —> BB > H(E)
cf. [MDP1]. For graded homogeneous ideals I = H.%(J) we see that the composition E —
HY( E) - H.O(]) is surjective, i.e. we get ¢, = 0. Moreover note that if 5! and & are both
zero for some i, then the exact sequence 0 - I - E = I — 0 above defines an extension

0 — Hil) —> HI E ) —> Hi) — 0

Hence there is a well-defined morphism V¥; :

ker(oBut (I,D) —i-1,%~> oHom(H." (1), HA(D) X Hom(HL (), H. (D) — ot (D, H D)

Definition/proposition 3.1 The rangent space of H, (resp. H, ,, resp. H, ) at (X S P,
resp. of V, at D = (M,,M,,b), is

OEXIRI(I: I)’ ( resp' OEXIRI(I’ I)pl = ker b1, resp' OEXIRI(L I)p = ker (‘Pls‘PZ) )s
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resp. Ty,p = coker(T,p, = oExty'(, D),).

where p = (p;,p,). Hence there exists natural maps

¥, @ oExtg'(, D, - ofxty (M, M,)
¥, 1 Extg'(l, D, - oExty'(M,, My) ,

as defined above. Abusing the language, we let ¥, (or ¥,,) denote the restriction of ¥, to
oExt'(1, 1), as well.

Proof. The first three tangent spaces are proved by the base change theorem as in [MDP1]
while the last is due to theorem 1.1 of this paper (cf. theorem 2.4) because a smooth
morphism is surjective on its tangent spaces. We shall make T, , more explicit later.

Remark 3.2 1In the preceding section we frequently used the spectral sequence E/4(M) =
Jxtf(M,H, (1)) of (7) and the duality in (8), especially

Ep = EPD = sExté (L, HAD) = sBa,2 0, ) = oxtg (L, D)

If H,%(]) is of finite type (i.e. q < 3), we can use (8) once more to get Ext f(I, H, () =
ofxt, S (H, D), D) <= JExt(H,XI), H,’**(I)). This implies the set-up

OEXtRl(I’ ) B SRS oExtZ (H. (1D, qu+1-p(1))

) 5Ext,,,4(1, I)v u
!
(B = BT HADY = Ext,HAD, D)

As we partially have seen by considering resolutions in the preceding section, the dotted
arrow a = a? is well-defined on appropriate quotients of subspaces of (Ext;'(I, I) given by

its spectral sequence, in which case the restriction/factorization of a9 is nothing but the
obvious map. In particular we have

a»? = ¢, a’? = ¢, (i.e. commutes with ¢,)
1) a'? (restricted to (Extg'(I,]),;) = ¥, (cf. proof of 3.3) etc.

In the preceding section we studied the fiber of ¢: H ,— V, at (X S P*) and in (2.6)
we characterized it as (E,>%", with E/? as in (3.2). We could, however, proved this
characterization and theorem 2.4 using the spectral sequence and the local duality twice
(properly interpreted, cf. (3.2)). The direct approach we chose to prove theorem 2.4 (via
lemma 2.1 and the exact sequence 0 - L;’» K;’» I — () led, however, to some extra
information, namely to the factorization of Extz’(I, M,)" = sExt;'(I, M,)" via d,. Similarly,
interpreting (3.2) in terms of deformation theory, we can get a quicker proof of the main
parts of theorem 3.5 below, but the approach via 0 - L;’-» K= I — 0 still give some
additional information, related to the factorization of some main maps. We will need
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Proposition 3.3 Let X be a surface in P,

i) Then there exists morphisms e; (induced from the spectral sequence (3.2)) fitting
into a commutative diagram

OExtRl(Ir I)p _W2_> OEXIRl(MZ’ MZ)
V¥, o A
oExty (M, My) —*1-> (Extg(M,, M)

such that the induced map (Extg'(I, I), — (Extg'(M,, My) Xg, oExty'(M,, My) where Ex =
oExt:(M,, M,), is surjective.
ity The map e, fit into a commutative diagram

()EXIRl(Mb Ml) —1-> OEXtRS(M’l, Ml)
i o i

-5ExtR2(I) Ml)v _— -5HomR(I’ MZ)V

of natural maps of the spectral sequence of (3.2) where the left (resp. right) vertical map is
an edge homomorphism of the spectral sequence (EF**(M,) (resp. (EF?(M,) to which also
e, belongs) while the lower horizontal map is the dual of a connecting homomorphism of
SEPAD). In particular if é, (resp. e;’) is the composition of e, with the natural JExty’(M,, M)
- coker e, (resp. (Exty’(M,, M) = sHomy(I, M,)"), then

V,(Exty'(I, 1)) = ker e’ and ¥,(Extz'(I, I),) = ker &
Moreover if the natural map JHomg(M,, E) — JExt; (M,, M,) of (EF4(M,) is injective, then
coker e, S Homg(l, M,)"

iii) Finally let T — S - k be surjections of local Artin k-algebras with residue fields
k such that ker(T->S) = k (via T - k), let (M,5,Mys,b5) be a deformation of (M;,My,b) to §
and suppose we can deform M further to T. Then (Ext, (M,, M,), (resp. coker &) contains
the obstruction of the existence of an element by (resp. a deformation (M,7,M,,by)), b, €
oExtH(M,r, My7), which maps to bg € (Ext;’(M,s, Myg) (resp. to (M5, M,s,by)) via (-Y®,S where
M, are given (resp. some) deformations of M.
Proof (sketch) i) To prove the existence of the maps e; and the commutative diagram of
i), we enlarge the diagram (13) of the proof of proposition 2.1, say to a diagram (13*), by

including more Ext-groups. Letting morphisms in what follows be the obvious (compositions
of) maps from this enlarged diagram (13*), we see that

(22) oExtg (I, Dy = ker (Extg'(I, I) — oExtz’(Ky’, Ly’) )
mainly follows from
(23) oExtg' (K Ly) = sExt, (Ls’ Ky')' = 5Bt Ly’ ,M,)' = oExt,,*(M,Ly") = (Homg(My, M)

and the definition of (Extg'(I,]),;. Moreover since we as in (23) can see that (Extz'(K,’,K;")
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- oExt'(K,’,D) and (Ext,(M,, M;) - Ext,*(I, M,)" are isomorphic, it follows easily that the
composition oExtz'(1,1),; = oExtg!(I,1) - oExt'(K;’,I) admits a factorization

B oExtg'(I, D)y — oExty (K, Ky')

which is ¥, if we identify (Ext'(K,’,K;’) with (Ext'(M;, M,). Correspondingly (13%), (22)
and (Ext'(K,’,L;’) = 0 (cf. the proof of (2.1)) imply that the composition (Extz'(I,1),; -
oExt (D) = (Ext*(I,L;’) admits a factorization « fitting into a commutative diagram

oExtg (I, 1),y —=> oExtg'(Ly’, Ly’)
24) I8 o '

oExty (Ky', Ky )—¢> oExty Ly, Ky')

We shall deduce the morphisms e; and the commutative diagram of i) as a "factorization" of
(24). Indeed the duality (8) used twice and their spectral sequences, cf. (23), lead to

oExtg (Ly, L") — oExtg'(Ly’, Ky")
| o Sl
OExtms(MZI L3,) - OExrms(MZ: Kl,)

Using the spectral sequence converging to (Ext,>(M,,-), we get a commutative diagram
oExty (M, M) - - oExty (M, My)

¥ ¥
oExt'(d, 1),y —> oExt,’ My, Ly’)  — oExt,> (M, K;')
lg, © ' o '
0 - (Homg(M,, E) = Homg(M,, H,>(Ly")) = JHomg(M,, H, (K;"))

where the dotted arrow is €, and where the lower horizontal sequence is exact by (18). Hence
there exists a map e: (Extg'(l, I),; = oExty’(M,, M;) whose restriction to (Extg'(, I), = ker
¢, factorizes via e,. To get the commutative diagram of i), it remains to define e; such that
e;'¥,; = e. Considering (24) and the last diagram above, it suffices to prove that the
composition of f with (Exz, (M,,K,’) - (Hom,(M,,H 3(K,")) vanishes. To see this we look to
the proof of proposition 0.1 and the exact sequence 0 - K, = P, - K, = 0 occurring there.
We get that the composition of f with (Extg'(L,’,K;’) = (Extg'(Ls’,P,’) vanishes because the
composition naturally factorizes via oExt;'(K,’,P,’) which is zero. We conclude mainly by
oExty' (L’ ,Py) = oExt,’(My,P) = Homi(My,H,’(P’)) and H,’(K’) S H,’(Py’). The
claimed surjectivity of i) will be proved in iii) below.
ii) A part of the enlarged diagram (13%*) is

Bxtd Ky, Ky') — Bt (K, ]
Vf o {
oExt Ly, K'Y — oExty'(Ly, I

where the vertical map to the right identifies with Ext *(IK,’) = Extz*(IL,M,' —
oExt,M(ILLy) = Homg(I,M,)", i.e. the dual of the connecting morphism of the spectral
sequence sES4(I) of (3.2), and the commutative diagram of ii) is established.
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To prove the claim im ¥, = ker e,’, we consider the spectral sequence (E7*?(M,;) =

oExtd My, H, (D)) = oExt,’(My,I) = Extz’(I,My)" and sES*P(I) = Extg'(I, I)', and we get
a diagram of exact sequences

OEx[Rl(]uB’ Ml)
»
25) Extl(l, 1) —> sExt 2, M) — Homg(l, My"
01 }
* Hom(M;, My)

where we recognize the dotted compositions as e;” and ¢,. Since (Exti'(I,1),, = ker ¢, we
get the claim. Moreover note that the surjectivity of i) leads easily to ¥,(,Ext'(,1),) = ker &,.
Finally we get coker e, S _Homy(I, M,)" from the spectral sequence Ef‘(M;) =
oFxt (M, H 4(I)). Indeed the map e, appears as the connecting homomorphism e, E,"*(M,)
- E;*(M,), i.e. coker e, = E;**(M,), and the injectivity assumption of ii) is precisely the
injectivity of E,>4(M,) - E,>*(M,), i.e. we have E>*(M,) = 0. Hence coker e, = E,**(M,)
< oExt, (MyI) = Homy(I,M,)", as required.

iii) Now we sketch the proof of the obstruction statements. Indeed the commutative
diagram of the proposition is a "factorization" of (24) and the corresponding obstruction
statements for deforming b’: L;’ — K’ follows essentially from Laudal’s book [L], cf.
section 2.3 and theorem 2.3.3 (which treats the more difficult case of morphisms of
algebras). In our case (Ext;'(Ly’,K;’) contains the obstruction of deforming bg’: L'~ K;s’
further to T (cf. our section 1 for notations). The obstruction must sit in the subgroup Ex =
oExt(M,,M,) because it is the image of by via oExt(M,s,Mis) = Exty(Myr,Ms) —
oExty)(M,,M,), where the last morphism is the connecting homomorphism of the long exact
sequence obtained by applying (Extz*(M,,-) to the sequence 0 - M; = M;; > M5 = 0
associated to the given deformation M;; of M;;. We get in this way the obstruction
statements of iii) as a consequence of the corresponding, more well-known, statements
involving L;¢’, K¢’ and byg’.

The details of this obstruction calculus also show the surjectivity of (Extg'(l, 1), =
oExXt (M, M) Xy oExtg'(M,, M,). Indeed if (r;,1,) is an element of this product and T,
corresponds to a deformation Mg’ of M; to the dual numbers S = k[e], then the image of r,
(resp. 1,) in Ex is the difference of the obstruction o(b;M;s’,M,s’) - o(b;M;s’,M,s), resp.
o(b;M;5,Mys) - o(b; M’ ,M,s) where Mjq is the trivial deformation of M; and o(b;M,4’ ,M,s’)
denotes the obstruction of the existence of an element by € Ext;’(M,s’,M;s’) mapping to b
€ Ext(M,, M,). Since r; and r, map to the same element in Ex and o(b;M,s,M,s) = 0, we
get o(b;M;s’,M,s’) = 0. Hence there exists a deformation of b’: L;’—» K;” whose cokernel
is a deformation of ideal I, i.e. the deformation defines an element of (Ext;'(I, I), mapping
to (r,,I,), and the surjectivity is proved. This completes the proof (modulo some details).

One may from the proof of proposition 3.3iii) (where the obstruction calculus was
considered) see that the surjectivity onto the fiber product of (3.3i) is closely related to the
surjectivity of the tangent map of ¢ : H,, = V, and hence to the smoothness of ¢. We
expect indeed this obstruction calculus idea to lead to an independent proof of the smoothness
of ¢ : H, ,—> V,. We will, however, concentrate on other aspects of proposition 3.3, such

as the following criterion for V, to be smooth at (M;,M,,b). The result is an immediate
consequence of (3.3iii) and we state it as
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Proposition 3.4 Let X be a surface in P*. If the local deformation functors DefiM) are
Sformally smooth at M; (for instance if JExt2(M;, M) = 0) fori = 1,2, and if the morphism

&, : oExty (My, My) — (Ext’(M,, My)ley(cExty' (M,, M)

of proposition 3.3 is surjective, then V, is smooth at D = (M;,M,,b) (i.e. the local
deformation functor DefiD) is formally smooth at D).

We now come to the main theorem of this section
Theorem 3.5 Let X be a surface in P*, let
d, : JHomg(M,, My) —> coker d, = (Extg’(M,, My)/d)(¢Homg(M,, M,))

be the map of theorem 2.4, and let T, ;, be the tangent space of the fiber of ¢ : H ,—> V,

p

at (X S P*) determined in that theorem. Then the tangent space Ty,, = Ext'(1,D),/ T, ,of
V, at D = (M,,M,,b) is given. by the following exact sequence

0 — coker d; — TVp,D - OEXtRl(Mh M) Xg, OEXIRI(Mz, M) —0
where Ex = oExt,’(M,, M,) and where (Exty'(1, 1), is the tangent space of H,, at (X S P*).
We will prove the theorem above as an easy consequence of

Proposition 3.6 Let X be a surface in P, let

d, : JHomy(M,, M;) —> coker d, = (Ext*(M,, M,)/d,(;Homy(M,, M)
e : oFxty' My, My) — oExtg’(M,, M)
&, : oExt\(My, M) —> coker e,
be the maps of theorem 2.4 and proposition 3.3, and let EF? = Extf(I, H,%(]) be the
spectral sequence converging to Ext,?*(I, I) = Exta’?%(I, I)'. Then the tangent space
ofxtg'(I, 1), (resp. Ty,p) of H,, at (X S P*) (resp. of V, at D = (M,,M,,b)) is determined
by the three exact sequences below;
O -_— T-y,D = (E20.4)V -_— OExtRl(I’ I)p —_— TVp,D - O
0 — coker d; — ker[(E;"®)" = Homg(M,, E)] —> ker e,—> 0
0 — ker[(ES)" - (Homg(M,, E)] —> Ty, , —> ker & — 0

and Ej*? € E)* = Extp'(I, M,). In particular dim (Ext\(1, D, =

3 . 1 _ 1 ] .
1+ 63("5) +E (_1)'°oext1;(M23 Ml) _E (_1)l°oext1:(M1’ Ml) "E (_1)l°oext1;(M2’ M2) +€
i=0 i=1 i=1

where ¢ is defined by ¢ = dim coker é,.
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Proof The first exact sequence follows immediately from proposition 3.1 and remark 2.6ii).
To prove the exactness of the third sequence, we use the spectral sequence Ef? =
sExtP(, H%1D) and the arguments of (25) to get the long exact horizontal sequence in

B, MY~ Exte 0, My)' — oExte T, D/ (ELY > Ext(My, My)—1—
\ °c Vo
Homg(M,, E) — Homy(M,, E)

Note that coker d, ;' = (E;/?)' = (E.*)" and that d, ," (cf. remark 2.6ii) is the composition
of d, : sExte (I, M))' = Homg(M,, M,) - coker d, with the edge morphism coker d, =
E#A(M,) - sExt'(I, M,)" of the spectral sequence E(M,;) =  Extf(M,,H,(])). Since the
composition coker d, = E;»*(M,) - sExti\(I, M,)' = E,>*(M,) = Homy(M,, E) is zero, we
get a well-defined morphism coker d, ,* = (E;"*)" - (Homg(M,, E) which commutes with

¢, in the diagram above. Combining with ¥,(,Extz'(1,1),) = ker &,, we deduce the 3. exact
sequence.

To prove the exactness of the 2. sequence, we consider once more the spectral

sequence E/“P(M,) above..There are three non-vanishing terms, leading to the exact
© sequence

26) 0 —> E2(My) —> ker [Eutgl, My' - E,%()] —» E,X (M) —> 0

Observe that coker d, = E;2%(M,) = E_>*(M,) and ker e, = E;/*(M,) = E,*(M,) and since
E. %M, < E*M,) = ;Hom(M,, E), we see that (26) is isomorphic to

27) 0 —— coker d, —> ker [sExt\(I, M,)’ - JHom(M,, E)] — ker e; — 0
This leads indeed to the 2. exact sequence if we recall the factorization of d, .;* via d; which
implies that we in (27) can replace coker d, by coker d, and by  Extp!'(I, My)" by coker d, ;*
and still preserve exactness.
To see the dimension of (Ext;'(1, I),, we have by the 2. and the 3. exact sequence that
dim Ty,;, = dim coker d, + dim ker e, + dim ker &, = dim coker d, + (ext'(My,M,) -
EXC(M,, M) + dim coker e, + ext'(M,,M,) - dim coker e, + dim coker &,

and we conclude by the 1. exact sequence and corollary 2.7.

Proof of theorem 3.5. The theorem follows from the exact sequences of proposition 3.6 and
the exact sequence

0 —> ker e, —> Exty (M, M) Xg, oBxtg'(M,, My) —> ker & —> 0
see also proposition 3.3i), and we get easily the theorem.
If we in addition to the tangent spaces locate their obstruction spaces, we can prove

the following result for which we also have a direct proof in the spirit of proposition 3.3iii)
available. We have, however, chosen to sketch the proof by determining (or rather
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indicating) their obstruction spaces.
Theorem 3.7 Let X be a surface in P*, and suppose
oHomy(I, M;) = 0, (Homg(M;, M) =0 and (Hom(M,, E) = 0

Then the Hilbert schemes H,, = H,, = H, = H(d,p,=) are isomorphic at (X S P*).
Proof (sketch) It is straightforward to see that their tangent spaces are isomorphic by
proposition 3.1. Moreover the isomorphism H, = H(d,p, ) is proven in [K1]}, th. 3.6 and
rem. 3.7. To get the theorem it suffices to prove that the obstruction o, (I) of deforming a
graded ideal I (i.e. the surface X) in H,, is vanishing provided the corresponding obstruction
o(I) € Extg!(I, I) of deforming I in H, is zero. By theorem 1.1 the vanishing of o, (I is
equivalent to the vanishing of the corresponding object of V, which one may write as

¢
(o(My),0(My),0(b)) € oExte® (M, My) X Exts’(M,, My) X coker &,

If we continue the horizontal exact sequence of (25) we get a diagram

OatRl(Mlj Ml) —_—> COker 62 —_—> COker 6-1 -> 0 OEXIRQ(MI, Ml)
(28) w o ¥ o di b
= sExtz’ (I, My)' — sHomg(I, My)' — oExte’(I, ) — sExt"(I, My)' —> 0

where the obstructions involved are mapped to each other or are mapped to the same element
over a common image. In particular o(I) = 0 implies o(M;) = 0 because j is injective.
Moreover one may also see o(M,;) = 0 while the injectivity of i implies o(b) = 0 as well
(i.e. o{) is the image some element of (Extz'(M,, M;) which, mainly.via the map &, maps
to the couple (0(M,),o0(b)) of vanishing obstructions) and we are done.

Remark 3.8 Consulting proposition 3.3ii) we see that sHomg(I, M,) = 0 and the injectivity
of the natural map (Homg(M,, E) - Ext;>(M,, M,) lead to a surjective map

oEthl(I: n,— oExtkl(Mp M)

Using an easy part of the obstruction argument in the proof of theorem 3.7, we can therefore
prove that the "morphism" 7: H, ,—> Eg = isomorphism classes of R-modules M;, defined
by sending (X € P*) onto M;(X) = H.X(L), is smooth at (X S P*. Indeed the surjective
map of the Ext-groups is the tangent map of r, and, under the given assumptions above, we

see that the obstructions o(I) and o(M,) of the proof of theorem 3.7 vanish simultaneously,
whence the conclusion.

Corollary 3.9 (Small M,) Let X be a surface in P!, and suppose its modules E and H,’(R)
are supported to the left of M, (i.e (M,), # Oimplies E, = 0 and v > -5). Moreover suppose
the local deformation functor DefiM,) is formally smooth at M, (e.g. suppose (Extg*(M;,M,)
= 0), and that sHomy(I, M;) = 0. Then H,, and V, are smooth at X € P*) and D =
(M,,M,,b) respectively and the dimension of H,, at X S P is
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1 s
dimgH, = 1+38%(-5) - 8%(-5) - 2% (-1)'exti(M,, M,)
i=

Proof H,,and V,is smooth at (X & P* and D = (M;,M,,b) respectively by remark 3.8
and theorem 1.1. Moreover proposition 3.3ii) and jHomg(I, M,) = 0 imply that coker &, =
0 and we get the dimension formula from proposition 3.6 and 0.5 (note that (0.5) implies that
ExP(M,, M) = Ext*(M,, M,) ), and we conclude easily.

To illustrate our results, we consider an example of a surface X of P* where V, is
smooth and non-trivial at the corresponding (M,,M,,b) by proposition 3.4 or corollary 3.9.
The surface X has also the weak variant of "natural cohomology" given by proposition 0.4,
and the dimension formula of corollary 3.9 simplifies therefore further by introducing §'(-5).
Moreover the conditions of theorem 3.7 will be satisfied, and it follows that H , and
H(d,p,7) are isomorphic and smooth at (X S P¥%).

Example 3.10 Let X be the smooth rational surface with invariants d = 11, # = 11 (no 6-

secant) and K?> = -11 (cf. [P] or [DES]). In this case the graded modules M; = @ H'(I(v))
are supported at two consecutive degrees and satisfy

dim H'(I(3)) = 2, dim H'(I{(4))
dim HX(I 1)) = 3, dim H I 2))

1
1

Moreover I = I(X) admits a minimal resolution (cf. [DES])
0 = R(-9) = R(-8)®*® R(-1)® — R(-7)*® @ R(-6)®? - R(-5)®° > -0

It follows at once that sHomg(I, My) = 0 and Exf(M;, M) = O fori = 2 and j = 1,2. By
(3.9), (3.7) and (0.5) we get that H(d,p,7) = H,_, is smooth at (X € P*) and dimH, , =

1+83(-5)-82%(-5)+8Y(-5) =1+ 12h2(IX(1)) —h2(IX(2)) +3h1(IX(3)) —hl(IX(4)) =41
In this example it is, however, easier to use proposition 0.3 to get
14+8%(-5)-0%(-5) +86'(-5) = x(Np-8*(0)+8%(0)-6'(0) = 52d+7-1)-d>+2x(0y) = 41

because 6'(0) for i > 0 is easily seen to be zero. Finally, for the use of proposition 3.4, we
remark that, in this example, (Exf(M,, M,;) might be non-vanishing, but we still have a
surjective map &, by (3.3ii) and sHomg(I, M,) = 0, i.e. (3.4) applies.

LIAISON OF SURFACES

In this section we will show how to compute the dimension of H, , and the dimension
of its tangent space at (X S P*) provided we know how to solve the corresponding problem
for a linked surface X’, and visa versa. The result is particularly interesting when we start
with a surface which is generic in H(d,p, ) (e.g. H,, = H(d,p, ) at X) and it turns out that
the corresponding linked surface is non-generic (e.g. dimy.H. . . < dimy.H(d’,p’,7)). In that
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case a new surface (the generic one) with smaller cohomology has to exist. In remark 4.2
we give a criterion for the linked surface to be non-generic which can be useful for solving
such problems.

Now, if X and X’ are linked by a complete intersection Y of type (f,g), we recall
([PS], [M]) that the dualizing sheaf wy. satisfies wy. = I (f+g-5) where I, = ker(0,— Oy),
and moreover wy = Iy, (f+g-5). We get

x(0x(V)) + x(Ox(f+g-5-v)) = x(OL(V))

(29) K@ (V) = B (I(f+g-5-v)) ,for i =1and?2
(V) = B(Of+g-5+)) , for i = 0 and 2
H(0,(V)) = K (L (f+g-5-v)) , for i =0 and 2

from which we deduce d + d’ = fg and »’- © = (d’- d)(f+g-4)/2. Our main result is

Theorem 4.1 Let X and X’ be two surfaces in P* which are linked (algebraically) by a
complete intersection Y S P* of type (f.g), and suppose X (resp. X°) belongs to the Hilbert
scheme H,, = H(d,p, ™), , (resp. H,. ., = H(d’,p’,7’).. ) of constant.cohomology. Then

) dimg,, + BA) + RAL) = dimgH,,,, + K+ Rle(g)

or equivalently

dimyH,,. = dimd,, + R(Idf) + K@) - FOLFS)) - B(Oe-5))

ii) The dimension formulas of i) remain true if we replace dimH, , and dimyH. .. by
the dimension of their tangent spaces (Ext'(I(X), I(X)), and (Extz'(I(X*), I(X’)),. respectively.

iiiy H,,is smooth at (X S P*) if and only if H,.,. is smooth at (X’ € P%

Proof Let D(d,p,n,f,g) be the Hilbert flag scheme consisting of pairs (X,Y) of surfaces of

P* such that (X & P*) € H(d,p,7) and Y is a complete intersection of type (f,g) containing
X. By [K4], theorem 2.6, there is a liaison isomorphism

(30) D@,p,mf.8) =3 D@’ .p’,7’1.9).

given by sending (X,Y) onto (X’,Y) where X’ is linked to X by Y. Morover the projection
morphism p : D(d,p,n,f,g) = H(d,p, =), given by (X,Y) = X, is smooth at (X,Y) provided
H\(I(N) = H'(I(g)) = 0 ([K4], theorem 1.16ii). By [K4], remark 1.20, this smoothness
holds if we replace the vanishing above with the claim that the corresponding sheaves on
H(d,p, ) are locally free and commute with base change. It follows that the restriction of p
to p™(H,,,) is smooth, and since the fiber dimension of p at (X,Y) is precisely A°(Iy,() +

' Iy(8) = R°UD) + KILB)) - (ILD) - h°(ILg)) by [K4], theorem 1.16i), we get easily
any conclusion of the theorem.

Remark 4.2 1) The arguments of the proof also shows that we can, under the assumptions

H(I() = H(I(g) =0, HUx() = H(Ix(g) =0
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replace H , and H..,. in (4.1i) (resp. their tangent spaces in (4.lil)) by H(d,p,7) and
H(d’,p’,7") (resp. by H'(Ny) and H'(Ny) in (4.1ii)) and get valid dimension formulas
involving the whole Hilbert schemes (resp. their tangent spaces).

ii) If, however, the linkage is geometric, and if we assume H'(I(f)) = H'(I(g)) =
0, the injectivity of the natural map H'(Np — H(I(f)) © H*(I(g)) and dimyH, ,
dimyH(d,p, ), we can use [K4], theorem 1.27, to get bounds for the codimension ¢ =

dimy.H(d’,p’,7’) - dimy.H, . .. Indeed combining theorem 1.27 with corollary 2.14 of [K4],
we get

G K(D) + K UxAg)) - Ix(f) - K(lx(8)) < ¢ < K (Ix(f) + ' (Ix(8))

and moreover, the right inequality is an equality if and only if H(d’,p’,7’) is smooth at X’.
Finally by [K4], corollary 1.29, H(d’,p’,7’) is smooth at X’ (i.e. ¢ = K'(I()+H' (I:(g)))
provided H'(I;(V))*H*(I(v)) = 0 forv = fand v = g.

Example 4.3 Let X be the smooth rational surface of H(ll,\l_][()) of example 3.10, let Y be
a complete intersection of type. (5,5) containing X, and let X’ be the linked surface. Using
(29) we deduce x(Ox(v)) = TV-12v+9 from x(O(V)) = (11V*-9v+2)/2, i.e. X’ belongs to
Hd'p’, 7)) = H(14,QQ,/85. Moreover wy. = L,(5) is globally generated (cf. the resolution
of I of (3.10)) and the graded modules M;” = @ H'(I,.(v)) are supported at two consecutive
degrees and satisfy

dim H'(I,(3) = 1, dim H\(I4)) = 3
dim H(I (1)) = 1, dim H(L(2)) = 2

From these informations we find the minimal resolution of I’ = I(X’) to be
0 - R(-9)®® -> R(-8)®“ - R(-7)®*® - R(-60)®'"® R(-5)® > - 0
Thanks to theorem 4.1, we get that H, .. is smooth at (X' S P* and that
dimyH, . . = dimH, , + 2h°(I,(5)) - 2 (00)) = 57

Moreover by remark 4.2i) or theorem 3.7, H(d’,p’,7’) = H_, . is smooth at (X' c PY and
dimyH(d’,p’,x”) = 57. Note that in this case we neither have (Exf(M,, M;) = 0 nor
sHomy(I, M) = 0, i.e we can not apply corollary 3.9, and in order to use proposition 3.4
we have to argue hardly for the surjectivity of €,. But, as we have seen, the linkage result

above takes easily care of the smoothness and the dimension.

Example 4.4 Let Z be the surface which is linked to the surface X’ € H(14,Q9,’§5 of example
4.3 via a complete intersection of type (5,6) containing X’. Then Z belongs to H(16,7/15),
wz = I (6) is globally generated, and M;(Z) = D H'(I(v)), i = 1,2, are supported at two
consecutive degrees, and moreover;

RUL5) =1, @) =2 and K(IL0) = 1
31) RO0) =1, RIR) =3 ad RIEG) =1

H(1 o)
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By proposition 0.3, we know x(Ny) = 5Qd’+7’-1)-d*4+2x(0y) = 57 and since we
obviously have W*(Ny) = 0 (from A*(Oy(1)) = 0), we get h'(Ny) = 0 from (4.3). The
conditions of remark 4.2ii) are therefore satisfied, and, at Z, we get that H(16 is

: +.0
smooth of codimension 1 in H(16,m (which is smooth as well). Moreover

dimH6RYTD,, = dimeH,.,. + Ly (5)) + KTy (6)) - B(Oy) - B(Ox(1)) = 65

Hence Z belongs to a unique generically smooth component V of H(IGW of dimension
66, and the generic surface Z of V satisfies dim H(I3(5)) = dim H'(Ig(5)) = 0 while
elsewhere the dimension is unchanged, i.e. it is as in (31).
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