OSLO

INGENIÖRIĞGSKOLE

PREPRINT IN
MATHEMATICS
JULY., 1983

Cort Adelers gt. 30, Oslo 2 tlf. (02) 56 66 80 SINGULARITIES IN CODIMENSION 1 OF THE HILBERT SCHEME. AN EXAMPLE.

by

Jan O. Kleppe Oslo Ingeniørhøgskole

A well known example of Mumford shows that in the Hilbert scheme H(14,24) of space curves of degree d=14 and arithmetic genus g=24, there is a non-reduced component consisting generically of smooth connected curves sitting on smooth surfaces of degree 3. In fact for any $d\geq 14$ the Hilbert scheme H(d,g), where g is the largest number satisfying $g\leq \frac{1}{8}(d^2-4)$, contains a non-reduced component, the general member of which is a smooth curve on a smooth cubic surface. See (K1).

In this paper we will, however, give an example of a codimension 1 singularity of the Hilbert scheme H = H(16,29) which is not an intersection of irreducible non-embedded components. In fact we described in (K1,3.3) an irreducible closed subset $Z \subseteq H$ where dim Z = d+g+18 = 63 and $\operatorname{codim}_{Z}H = 1$ and proved that H was singular along Z. The general member X of Z is, in this case too, smooth and sits on a smooth cubic surface Y. And $L = \operatorname{Oy}(X)$ equals (12,4,4,4,4,4,2,2) via the usual isomorphism $\operatorname{PicY} \cong Z \oplus T$. See $(H,\operatorname{chV},4.8)$. In the following we will partially prove all this and in particular prove that Z is contained in a unique irreducible nonembedded component. The uniqueness was not treated in (K1).

By a curve X we will mean an equidimensional, (locally) Cohen Macaulay subscheme of $P = \mathbb{P}^3_k$ of dimension 1, and $H(d,g)_{CM}$ denotes the Hilbert scheme of such curves. Now let $R = k \left[X_0, X_1, X_2, X_3 \right]$ be a polynomial ring over an algebraically closed field k, and A = R/I the minimal cone of $X \subseteq P$. If $I_X = \ker (O_P \to O_X)$, then $I_X = \widetilde{I}$, and I has a minimal resolution of the form

¹⁾ Z is not an embedded component either.

1)
$$0 \longrightarrow \bigoplus_{i=1}^{h_3} (-n_{3i}) \longrightarrow \bigoplus_{i=1}^{h_2} (-n_{2i}) \longrightarrow \bigoplus_{i=1}^{h_4} (-n_{i}) \longrightarrow I \longrightarrow 0$$

Define $s(X)$, $e = e(X)$ and $c = c(X)$ by
$$s(X) = \min_{1 \le i \le h_4} n_{1i}$$

2)
$$H^{1}(X, 0_{X}(e)) \neq 0$$
 and $H^{1}(0_{X}(1)) = 0$ for $1 > e$, $H^{1}(P, I_{X}(c)) \neq 0$ and $H^{1}(I_{X}(1)) = 0$ for $1 > c$.

Put $c = -\infty$ in the arithmetically Cohen Macaulay case, i.e. where $H^1(I_X^{(1)}) = 0$ for all $1 \in \mathbb{Z}$. Morever splitting 1) into two short exact sequenses we get

- 3) $c(x) = \max_{3i} 4,$ as in 24) and 25). By the fact $\max_{1i} < \max_{2i}$, one proves $e(x) \le \max_{2i} 4$ with equality provided $\max_{3i} \le \max_{2i}$. Thus
- 4) e(x) < c(x) implies max $n_{2i} < max n_{3i}$. Since the resolution is minimal,
- 5) $\min n_{1i} < \min n_{2i} < \min n_{3i}$ For details, see (kl,2.2.7).

To begin with we recall two results from (K1) and the new proposition 3. Since (K1) has only appeared in my thesis and as a preprint we indicate the proofs of theorem 1 and proposition 6.

Liaison

Let $Y = V(F_1, F_2) \subseteq P$ be a global complete intersection of two surfaces of degree $f_i = \deg F_i$ for i = 1, 2, in which case we say Y is of type (f_1, f_2) , and let $X \subseteq Y$ be an inclusion of curves. In this situation there is a linked curve $X' \subseteq Y$ whose sheaf ideal $I_{X'/Y}$ in O_Y is

6) $I_{X'/Y} = \underbrace{\text{Hom}}_{0_Y} O_Y O_Y O_Y O_Y$ by the definition of X'. By (PS,1.3) X' is a curve, i.e. equidimensional and Cohen Macaulay, and the linked curve X" \subseteq Y of X' \subseteq Y is just X \subseteq Y.

Moreover as the dualizing sheaf $\omega_Y \simeq O_Y$ (f₁+f₂-4) and the corresponding $\omega_X \simeq \underline{\mathrm{Hom}}_{O_Y}(Q_X,\omega_Y)$,

- 6) yields
- 7) $I_{X'/Y} = \omega_X (4-f_1-f_2)$ and $I_{X/Y} = \omega_{X'} (4-f_1-f_2)$. Hence there is an exact sequence
- 8) $0 \longrightarrow \omega_X(4-f_1-f_2) \longrightarrow 0_Y \longrightarrow 0_X$, $\longrightarrow 0$ and a similar one interchanging X and X.

 Twisting by 1 and taking Euler Poincaré characteristics we deduce by Riemann Roch's theorem that

9)
$$d + d' = f_1 f_2 = (d-d') \frac{f_1 + f_2 - 4}{2}$$

Letting $h^{i}(F) \neq dimH^{i}(F)$ for any coherent F, we have by 7) $h^{O}(I_{X/Y}(1)) = h^{1}(O_{X}, (f_{1} + f_{2} - 4 - 1))$

10)
$$h^1(I_X(1)) = h^1(I_X, (f_1 + f_2 - 4 - 1))$$

 $h^1(O_X(1)) = h^0(I_X, (f_1 + f_2 - 4 - 1))$

See (K1,2.3.3) . Now a consequence of a main result in (K1) is

Theorem 1 Let the numbers d,g,d',g',f_1 and f_2 satisfy 9).

- i) The set of curves $U = \left\{ (X \subseteq P) \in H(d,g)_{CM} \mid \text{There is a Y of type } (f_1,f_2) \text{ con-} \right\}$ is open in $H(d,g)_{CM}$. In particular $U_{\underline{f}}(d,g) = \left\{ (X \subseteq P) \in U \mid H^{\underline{f}}(I_{\underline{X}}(f_1-4)) = 0 \text{ for } i = 1,2 \right\}$ is an open subscheme of $H(d,g)_{CM}$.
- ii) There is a diagram of quasiprojective k-schemes

$$U(d,g;f_1,f_2) \simeq U(d,g';f_1,f_2)$$
 $V_{f}(d,g) \qquad U_{f}(d,g')$

 In particular the irreducible , resp embedded components of $U_{\underline{f}}(d,g)$ and $U_{\underline{f}}(d',g')$ are in a one-to-one correspondence.

Main lines of proof In fact (Kl,1.1) implies the existence of a quasiprojective scheme $D(d,g;f_1,f_2)$ called the Hilbert-flag scheme, whose k-points are $D=D(d,g;f_1,f_2)=\left\{(X\subseteq Y\subseteq P)\mid (X\subseteq P)\in H(d,g)_{CM} \text{ and } Y \text{ of type } (f_1,f_2)\right\}$, representing a correspondingly defined functor. And if $X_S\subseteq Y_S$ is an inclusion of flat curves in PxS over S whose closed fibers belong to D, we can still define the linked curve $X_S\subseteq Y_S$ over S as in 6). One may see that X_S is S-flat because Ext $\begin{pmatrix} O_{X_S}, O_{Y_S} & O_{Y_$

11)
$$D(d,g; f_1,f_2) \simeq D(d,g';f_1,f_2)$$

defined by liason (K1,2.3.4). Furthermore the natural projection $p: D \longrightarrow H = H(d,g)$, given by $t = (X \subseteq Y \subseteq P) \longrightarrow (X \subseteq P)$, is smooth at t provided $H^1(I_X(f_i)) = 0$ for i = 1,2. In fact let $S \hookrightarrow S'$ be a morphism of affine k-schemes whose k-algebras are local artinian rings with residue fields k, and let a diagram of deformations, hence of flat schemes

$$\begin{array}{c} X_{S} & \longrightarrow & PxS \\ \uparrow S & & \uparrow \\ X_{S} & \longrightarrow & Y_{S} & \longrightarrow & PxS \end{array}$$

of X=Y=P and X=P be given. By $H^1(I_X(f_i)) = 0$ for i = 1,2, we have a surjective map

12)
$$H^{O}(I_{X_{S'}}(f_{1})) \longrightarrow H^{O}(I_{X_{S}}(f_{1}))$$

where $I_{X_S} = \ker (O_{PXS} \to O_{X_S})$, and this gives readily the existence of an S'-flat $Y_{S'} \subseteq PxS'$ containing $X_{S'}$ such that $Y_{S'} \times S = Y_{S}$. This proves precisely the smoothness of p, see (Kl,1.3.14). Smooth morphisms are open, and finally if $t = (X \subseteq V(F_1, F_2) \subseteq P)$ and $t' = (X \subseteq V(G_1, G_2) \subseteq P)$, there is an open $U \subseteq A_k^1 = \operatorname{Spec} k[T]$ containing T = O and T = 1 over which

 $Y_U = V(F_1+T(G_1-F_1), F_2+T(G_2-F_2)) \subseteq PxU$ is a flat complete intersection. See (M1, page 57) Clearly $Y_U \supseteq XxU$ and this proves that the fibers of p are connected. Moreover the fiber dimension is easily found (K1,1.3.12). Putting this together, recalling $h^1(I_X,(f_1)) = h^1(I_X(f_3-i^{-4}))$ for i=1,2 from 10), we get the theorem.

For a similar result, see (Bu).

Remark 2 In the applications it is often necessary to make a sequence of liaisons, and it is therefore desireable to use the set U of the theorem for such f_1 and f_2 for which there always exists a Y of type (f_1, f_2) containing X. By (PS,3.7) there exists a Y of type (f_1, f_2) where $f_1 = s(X)$ and $f_2 \le \max_{1:1} f_1$, the f_1 is belong to 1). In particular if e(X) < c(X) we get by 4) that $\max_{1:1} f_2 = \max_{1:1} f_3 = c(X) + 2$, i.e. there exists a global complete intersection Y of type (s(X), c(X) + 2) containing X.

We will now state a proposition, the proof of which is a consequence of

13)
$$c(X') = f_1 + f_2 - 4 - c(X)$$

14)
$$e(X') = f_1 + f_2 - 4 - s(X/Y)$$

15)
$$s(X'/Y) = f_1 + f_2 - 4 - e(X)$$

where n = s(X/Y) is the least integer satisfying $H^{O}(I_{X/Y}(n)) \neq 0$. These formulas results immediately from 10) provided $H^{1}(I_{X}(1)) = 0$ for $1 \neq c(X)$.

Proposition 3 i) Let $(X \subseteq P) \subseteq H(d,g)_{CM}$ and suppose e(X) < c(X) < s(X) and $H^1(I_X(1)) = 0$ for $1 \neq c(X)$. If we make liaison with a Y of type (f_1, f_2) where $f_1 = s(X)$ and $f_2 \le c(X) + 2$, then the linked curve $(X' \subseteq P)$ of $H(d,g)_{CM}$ satisfies

$$e(X') < c(X') < s(X')$$
 and $H^{1}(I_{X'}(1)) = 0$ for $1 \neq c(X')$

- Moreover the linked curve satisfies either ii)
 - s(X') < s(X) , or
 - s(X') = s(X) and c(X') < c(X)2)

or we have the following situation 3) :

$$s(X') = s(X)$$
, $c(X') = c(X)$, $e(X') = e(X)$,

and the minimal resolutions of the sheaf ideals I_{v} and \mathbf{I}_{χ} , are both of the form

$$0 \longrightarrow O_{p}(-2r-2) \xrightarrow{\oplus r} O_{p}(-2r-1) \xrightarrow{\oplus 4r} O_{p}(-2r) \xrightarrow{\oplus 3r+1} \longrightarrow I_{X'''} \longrightarrow 0$$

In this case, called the stationary case, we have $c(X)-2 = e(X), s(X) = c(X)+2 \text{ and } h^{1}(I_{X}(c(X))) = r$ and for the degree and arithmetic genus of X and X', $d = \frac{1}{2}s^2$, $g = \frac{1}{3}(s-3)(s^2-1)$ where s = s(X) = 2r

Proof i) Since the sequence of sheaf ideals

$$0 \rightarrow I_{Y} \rightarrow I_{X'} \rightarrow I_{X'/Y} \rightarrow 0$$

 $0 \to I_Y \to I_X, \longrightarrow I_{X'/Y} \to 0$ is exact and $H^1(I_Y(1)) = 0$ for any 1, we get

16)
$$s(X') = min(s(X), s(X'/Y))$$

because s(Y) = s(X). Correspondingly $s(X) \leq s(X/Y)$. Observe also that

17)
$$e(X') < c(X') \iff s(X/Y) > c(X)$$

by 13) and 14) and since by assumption $c(X) < s(X) \le s(X/Y)$, we get

$$e(X') < c(X')$$
.

To prove c(X') < s(X') we see as in 17) that c(X') < s(X'/Y)

because e(X) < c(X). To finish prop 3i) it remains to prove $c(X') < s(X) = f_1,$

see 16). However by 13) this is equivalent to

 $f_1 + f_2 - 4 - c(X) < f_1$, i.e. to $f_2 - 4 < c(X)$

which is true by the assumption on f2.

ii) Since $s(X') = \min (s(X), s(X'/Y)) \le s(X)$ is always true we get either 1) of prop 3ii) or the case s(X')=s(X) which we consider in the following. As in remark 2,

$$s(X') \leq c(X')+2$$

and the inequality $f_2 \le c(X) + 2$ leads therefore to $c(X') = f_1 + f_2 - 4 - c(X) \le f_1 - 2 = s(X') - 2$. Combining we get

$$s(X') = c(X') + 2,$$

and since $s(X') = s(X) \le f_2 \le c(X) + 2$ we have either

2) of prop 3ii) or the case

s(X') = s(X) and s(X) = f = c(X)+2which we now consider. By 3), 4) and 5), $s(X) = \min_{1} n_{1} \le \min_{2} n_{2} -1 \le \min_{3} n_{3} -2$

 $\max_{1i} \frac{1}{2i} = \max_{2i} \frac{1}{2i} \leq \max_{3i} \frac{1}{2i} = c(X) + 2, \text{ and } s(X) = c(X) + 2 \text{ leads to equalities everywhere in 18).}$ The resolution of I_X must therefore be of the form

 $0 \longrightarrow 0_{p}(-s-2)^{\bigoplus l} \longrightarrow 0_{p}(-s-1)^{\bigoplus (l+t-1)} \longrightarrow 0_{p}(-s)^{\bigoplus t} \longrightarrow 1 \longrightarrow 0$ where s = s(X). Since s = s(X') = c(X')+2 and e(X') < c(X'), the resolution of I_{X} , is of the same form replacing t by t' and 1 by 1'. As $t \ge 3$ and $t' \ge 3$ we have s(X) = s(X/Y) and s(X') = s(X'/Y) and s(X') = s(X'/Y) and s(X') = s(X'/Y) and s(X') = s(X'/Y)

$$e(X) = f_2-4 = e(X')$$
 and $e(X) = c(X)-2$.

Moreover subtracting

$$\binom{s+2}{3}$$
 -d(s-1)-1+g = $\chi(I_X(s-1)) = 0$

 $\binom{s}{3}$ -d (s-3) -1+g = $\chi(I_{\chi}(s-3))$ =0

where $\chi(I_X(1)) = \chi(0_P(1)) - \chi(0_X(1)) = (1+3) - (dl+1-g)$ is the Hilbert polynomial of the sheaf ideal I_X , we get

$$2d = {\binom{s+2}{3}} - {\binom{s}{3}} = s^2$$

The genus of X is therefore

$$g = d(s-1)+1-{s+2 \choose 3} = \frac{1}{3}(s^2-1)(s-3)$$

Finally

8

$$\chi(I_{X}(s-2)) = -h^{1}(I_{X}(s-2)) = {s+1 \choose 3} -d(s-2) -1+g = -\frac{1}{2}s$$
and
$$\chi(I_{X}(s)) = h^{0}(I_{X}(s)) = {s+3 \choose 3} -ds -1+g = \frac{1}{2}(3s+2)$$

The same arguments hold for the linked curve as well, and we are done.

Example. We will illustrate by considering the example H = H(16,29) in question. Start with a curve $X \subseteq P$ of H satisfying $H^4(I_X(1)) = 0$ for $1 \neq 4$ and $h^1(I_X(4)) = 1$. Since $X(I_X(1)) = {1+3 \choose 3} - (dl+1-g)$, we get $X(I_X(3)) = 0$, $X(I_X(4)) = -1$, $X(I_X(5)) = 4$. Hence e(X) = 2, e(X) = 4 and e(X) = 5.

Now if we make a sequence of liaisons and each time use a complete intersection $Y \supseteq X$ of type (s(X),c(X)+2) we get in succession linked curves with datas (d,g,e(X),c(X),s(X)) as follows (16,29,2,4,5), (14,22,2,3,5), (11,13,1,3,4), $(9,\sqrt{1,2,4})$, (7,4,0,2,3), (5,1,0,1,3), (4,0,-1,1,2), (2,-1,-2,0,2), (2,-1,-2,0,2)

These datas are immediately found by using 13), 14), 15), together with computing $\chi(I_{\chi}(s(X)))$. Moreover the reader may readily check that $X \subseteq P$ and the linked curves of this sequence belong to the corresponding sets $U_{\underline{i}}$ of theorem 1i), thus giving more generally

Corollary 4 For any numbers d,g and r, let $U_r(d,g) = \left\{ (X \subseteq P) \in H(d,g)_{CM} \middle| \begin{array}{l} h^1(I_X(c(X))) = r \text{ and } H^1(I_X(1)) = 0 \text{ for} \\ 1 \nmid c(X) \text{ and } e(X) < c(X) < s(X) \end{array} \right\}$ Then the functions e(-),c(-) and s(-) defined on $U_r(d,g)$ are constant and $U_r(d,g)$ is open in $H(d,g)_{CM}$. Moreover $U_r(d,g)$ is smooth, resp irreducible if and only if the corresponding set of the stationary case $U_r(2r^2,\frac{1}{3}(2r-3)(4r^2-1))$

is smooth, resp irreducible.

<u>Proof.</u> The function $\chi(I_{X_4}(1))$ on H(d,g), i.e. with 1 fixed and varying $(X_1 \subseteq P) \in H(d,g)$, is constant. Since for $(X \subseteq P) \in U_r(d,g)$,

$$\chi(I_{X}(1)) = \begin{cases} h_{1}^{O}(I_{X}(1)) & \text{for } 1 > c(X) \\ -h_{1}(I_{X}(1)) & \text{for } 1 = c(X) \\ h_{1}(0_{X}(1)) & \text{for } -4 < 1 < c(X) \end{cases}$$

we find that e(-), c(-) and s(-) are constant on $U_{r}(d,g)$. By the semicontinuity of $h^{i}(I_{X}(1))$ they are also constant in some H(d,g)-neighbour hood of an arbitrary $(X \subseteq P) \in U_r(d,g)$. Thus $U_r(d,g)$ is open in H(d,g).

Now let $(f_1,f_2) = (s(X),c(X)+2)$ where $(X \subseteq P) \in U_r(d,g)$. If the $U_{\underline{f}}$'s are as in theorem 1, then we claim that $U_r(d,g) \stackrel{=}{\subseteq} U_f(d,g)$ and $U_r(d',g') \subseteq U_f(d,g')$. In fact remark 2 and $c(X) < s(X) = f_1 \le f_2 = c(X) + 2$ gives easily $H^1(I_X(f_i)) = 0 = f_1 = f_2$ = $\mathrm{H}^{1}(\mathrm{I}_{\mathrm{X}}(\mathrm{f}_{\mathrm{i}}-4))$ for $\mathrm{i}=1,2$, thus proving $\mathrm{U}_{\mathrm{r}}(\mathrm{d},\mathrm{g})\subseteq \mathrm{U}_{\mathrm{f}}(\mathrm{d},\mathrm{g})$. And moreover by proposition 3,

$$s(X') \leq s(X) = f_1$$

and by 13) and $f_2 = c(X) + 2$,

$$c(X')+2 = f_1 \leq f_2$$

Hence for any $(X' \subseteq P) \in U_r(d',g')$ there exists a $Y \subseteq P$ of type (f_1,f_2) containing X', and again $H^1(I_{X'}(f_i)) = 0 = H^1(I_{X'}(f_i-4))$ for i = 1,2 for instance by 10). It follows that

$$H^{1}(I_{X},(f_{i})) = 0 = H^{1}(I_{X},(f_{i}-4))$$
instance by 10). It follows the

 $U_r(d',g') \subseteq U_f(d',g')$.

Finally consider the diagram of theorem 1ii) and let $U_r(d,g;f_1,f_2) = p^{-1}(U_r(d,g))$ and $U_r(d',g';f_1f_2) = p'-1(U_r(d',g'))$

We gêt easily a diagram

where p and p'are smooth surjective morphisms of geometrically irreducible fibers. This diagram covers each step in the liaison sequence ending with the stationary case. proceed from the diagram above letting $(f_1', f_2') =$ (s(X'), c(X')+2) where $(X'\subseteq P) \in U_r(d,g')$ etc. This proves the corollary.

- Remark 5 i) By proposition 6, $U_r(d,g)$ is smooth of dimension 4d if it is non-empty.
- ii) It is well known that the set $U_1(2,-1)$ of corollary 4 is smooth and irreducible. For a reference we get by (B) that the moduli scheme M(0,1) of stable rank 2 vector bundles is a smooth connected scheme and so is $U_1(2,-1)$ by (Kl 1). It follows that the set $U_1(16,29)$ is smooth and irreducible.

On the cohomology of the normal bundle.

Let $N_X = Hom_{Op}(I_X, O_X)$ be the normal bundle of $X \subseteq P$ and consider the minimal resolution 1).

Proposition 6. Let XSP be a curve.

- i) If $c(X) < \min_{2i} n_{2i}$ and $H^{1}(I_{X}(n_{1i}^{-4})) = 0$ for $1 \le i \le r_{1}$ then $h^{1}(N_{X}) = \sum_{i=1}^{h_{1}} h^{1}(0_{X}(n_{1i})) \sum_{i=1}^{h_{2}} h^{1}(0_{X}(n_{2i})) + \sum_{i=3}^{h_{3}} h^{1}(0_{X}(n_{3i}))$ In particular if e(X) < s(X), then $H^{1}(N_{X}) = 0$
- ii) Moreover let W(s), $s = n_{1i}$ for some i, be the closed subset of H(d,g) given by

$$W(s) = \left\{ (X \subseteq P) \in H(d,g) \mid h^{O}(I_{X}(s)) > 0 \right\}$$
Then

 $\operatorname{codim}_{W(s)}^{H(d,g)} = h^{1}(I_{X}(s))$ at $(X \subseteq P)$ provided the three conditions of i) are satisfied.

Main lines of proof We will only need the vanishing result of $H^1(N_X)$ together with ii) of which we concentrate. If M and N = $\bigoplus N_1$ are graded R-modules, let $_1\text{Ext}_m^i$ (M,-) be the right derived functor of the covariant left-exact $\Gamma_m(\text{Hom}_R(M,-))_1$ where $\Gamma_m(N)_1 = \ker(N_1 \longrightarrow \Gamma(P,N(1)))$, and consider the exact sequence (SGA2,expVI)

19)
$$\longrightarrow_{\mathbb{Q}} \operatorname{Ext}_{\mathbb{R}}^{2} (I,I) \xrightarrow{}_{\mathbb{Q}} \operatorname{Ext}_{\mathbb{R}}^{2} (I,I) \xrightarrow{}_{\mathbb{Q}} \operatorname{Ext}_{\mathbb{Q}}^{2} (\widetilde{I},\widetilde{I}) \xrightarrow{}_{\mathbb{Q}} \operatorname{Ext}_{\mathbb{R}}^{3} (I,I) \xrightarrow{}_{\mathbb{Q}} 0$$

Using that the projective dimension of $\widetilde{\mathbf{I}}$ is 1 (locally), one proves $N_X \simeq \underline{\mathrm{Ext}}_{\mathsf{Op}}^1$ ($\widetilde{\mathsf{I}},\widetilde{\mathsf{I}}$). Hence

 $H^{1}(N_{X}) \simeq \operatorname{Ext}_{O_{\mathbf{P}}}^{2}(\widetilde{\mathbf{I}},\widetilde{\mathbf{I}}).$ Moreover the spectral sequence $0^{\operatorname{Ext}_{\mathbf{R}}^{\mathbf{P}}(\mathbf{I},\mathbf{H}_{\mathbf{m}}^{\mathbf{3-p}}(\mathbf{I}))}$

 $0 \xrightarrow{\text{Ext}^3(\text{I},\text{I})} \text{ implies that} \\ 0 \xrightarrow{\text{m}} (\text{I},\text{I}) \simeq_0 \text{Hom}(\text{I},\text{H}_{\text{m}}^3(\text{I})) \simeq_0 \text{Hom}(\text{I},\text{ΘH}^1(\text{o}_{\text{X}}(\text{I})))}.$ Finally the right-exactness of $0 \xrightarrow{\text{Ext}^2_{\text{R}}(\text{I},\text{-})} \text{applied to}$

 $\begin{array}{c} \oplus \mathbb{R}(-\mathbf{n}_{1\,\mathbf{i}}) \longrightarrow \mathbb{I} \longrightarrow 0 \text{ and the duality} \\ \mathbb{H}^{1}(\widehat{\mathbb{I}}(\mathbf{n}_{1\,\mathbf{i}}-4))^{\vee} \cong \mathbb{E}\mathsf{xt}_{\mathsf{Op}}^{2}(\widehat{\mathbb{I}}(\mathbf{n}_{1\,\mathbf{i}}-4), \, \mathsf{O}_{\mathsf{p}}(-4)) \cong_{0} \mathbb{E}\mathsf{xt}_{\mathsf{R}}^{2}(\mathbb{I}, \mathbb{R}(-\mathbf{n}_{1\,\mathbf{i}})) \\ \text{proves that } \underset{0}{\to} \mathbb{E}\mathsf{xt}^{2}(\mathbb{I}, \mathbb{I}) = 0. \quad \text{Combining we get} \\ \mathbb{H}^{1}(\mathbb{N}_{\mathsf{X}}) \cong \underset{0}{\to} \mathbb{H}^{\mathsf{om}}(\mathbb{I}, \mathfrak{G}\mathbb{H}^{1}(\mathbb{O}_{\mathsf{X}}(\mathbb{I}))) = \ker(\mathfrak{G}\mathbb{H}^{1}(\mathbb{O}_{\mathsf{X}}(\mathbf{n}_{1\,\mathbf{i}})) \xrightarrow{\Psi} \end{array}$

⊕H¹(0_X(n_{2i})))

(and since one may prove that $\operatorname{coker} \psi^{\sim} \operatorname{\mathfrak{G}H}^1(0_{\chi}(n_{3i}))$ we have i)). Anyway $H^{1}(N_{X}) = 0$ provided e(X) < s(X)= $\min n_{1i}$. For details, see (K1,2.2.9).

The conclusion ofii) follows easily from the theory of Hilbert-flag schemes developped in (K1). In fact consider

- $D = \{ (X \subseteq Y \subseteq P) \mid (X \subseteq P) \in H(d,g) \text{ and } Y \text{ a pur surface of deg s} \}$ Then W(s) = Imp via the natural projectionp: $D \rightarrow H(d,g)$. If A^1 and A^2 are the tangent space and "obstruction space" of D at $(X \subseteq Y \subseteq P)$ respectively, there is an exact sequence
- $0 \to \operatorname{H}^{0}(\operatorname{I}_{X}(s)) \to \operatorname{A}^{1} \to \operatorname{H}^{0}(\operatorname{N}_{X}) \xrightarrow{X} \operatorname{H}^{1}(\operatorname{I}_{X}(s)) \to \operatorname{A}^{2} \to \operatorname{H}^{1}(\operatorname{N}_{X}) \to \operatorname{H}^{4}(\operatorname{Q}(s))$ see (Kl,1.3.). Therefore the conclusion of ii) follows provided γ is surjective and $H^{1}(N_{\chi}) = 0$

However continuing 19) to the left we get ${}_{0}\mathrm{Ext}^{1}(\mathtt{I},\mathtt{I}) \to \mathrm{Ext}^{1}_{\mathtt{Op}} \ (\widetilde{\mathtt{I}},\widetilde{\mathtt{I}}) \xrightarrow{\beta} {}_{0}\mathrm{Ext}^{2}_{\mathtt{m}} \ (\mathtt{I},\mathtt{I}) \to {}_{0}\mathrm{Ext}^{2}(\mathtt{I},\mathtt{I})$ $\emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset \qquad \mathbb{I} \qquad \qquad \emptyset$

observing that

 ${}_0^{\operatorname{Ext}}_{\mathfrak{m}}^2(I,I) = {}_0^{\operatorname{Hom}}(I,H_{\mathfrak{m}}^2(I)) = \ker\left(\mathfrak{GH}^1(I_X(n_{1i})) \to \mathfrak{GH}^1(I_X(n_{2i})) \right)$ and recalling c(X) < min n_{2i}. Now composing \mathfrak{g} with the projection $\mathfrak{GH}^1(I_X(n_{2i})) \to \mathfrak{H}^1(I_X(n_{2i}))$ we get the map \mathfrak{g} which therefore is surjective.

- Remark 7 Let $(X \subseteq Y \subseteq P) \in D$ and suppose X is a <u>divisor</u> on Y. Then A^2 is seen to be the cokernel of some map : A H¹ $(O_Y(s)) \rightarrow H^1(N_{X/Y})$ where $N_{X/Y} = \underbrace{Hom}_{O_Y}(I_{X/Y}, O_X) \simeq \omega_X(4-s)$ by (K1,1.3). Hence if $\underline{s \leq 3}$, then $A^2 = 0$ and we have under these conditions a result similar to proposition 6 where we in the proof use 20) instead of 19). This gives
- i) $H^{1}(N_{X}) \xrightarrow{} H^{1}(O_{X}(s))$ and
- ii) $h^1(I_X(s)) h^1(0_X(s)) \le \operatorname{codim}_{W(s)} H(d,g) \le h^1(I_X(s))$ at $(X \subseteq P)$ with equality to the right if and only if H(d,g) is smooth at $(X \subseteq P)$. Moreover using i) we easily get
- iii) $\dim D=h^0(N_X)+h^0(I_X(s))-h^1(I_X(s))=4d+X(I_X(s))=$ (4-s)d+g-2+(\$\frac{s+3}{3}\$) for the dimension of D at (X\(\frac{c}{2}Y\(\frac{c}{2}P\)).

Singularities of codimension 1 of H(16,29).

In the introduction we described a family Z of H = H(16,29) whose general curve X \subseteq P was contained in a smooth surface Y of degree s=3 and L = O_Y(X) = (12,4,4,4,4,2,2) via Pic Y \cong $\mathbb{Z}^{\oplus 7}$.

Since we by remark 7 have a surjective

L = $\frac{\text{Hom}}{\text{OY}}(\text{I}_{\text{X/Y}}, \text{O}_{\text{Y}}) \longrightarrow \frac{\text{Hom}}{\text{OY}}(\text{I}_{\text{X/Y}}, \text{O}_{\text{X}}) \simeq \omega_{\text{X}}$ (1) with kernel O_{Y} and since L(-4) = (0,0,0,0,0,-2,-2) we find $\text{h}^{1}(\text{O}_{\text{X}}(3)) = \text{h}^{0}(\omega_{\text{X}}(-3)) = \text{h}^{0}(\text{L}(-4)) = 1$, $\text{h}^{1}(\text{N}_{\text{X}}) = \text{h}^{1}(\text{O}_{\text{X}}(3)) = 1$, $\text{h}^{1}(\text{O}_{\text{X}}(1)) = 0$ for $1 \geq 4$, dim Z = d+g+18 = 63

¹⁾ and for instance X is reduced

see remark 7i) and 7iii). Moreover by (K1,3.1.3), $H^{1}(I_{X}(1)) = 0$ for $1 \notin \{3,4,5,6\}$

See also (D).

Now if $V \subseteq H$ is any irreducible non-embedded component containing \mathbb{Z}_{+} then we claim that

V is a reduced i.e. a generically smooth component of dimension

4d = 64 and a sufficently general curve $(X_1 \subseteq P)$ of V satisfies

$$s(X_1) = 5$$
, $e(X_1) = 2$ and $h^1(I_{X_1}(1)) = \begin{cases} 1 & \text{for } 1 = 4 \\ 0 & \text{for } 1 \neq 4 \end{cases}$.

This is proved in (K1,3.3). And then remark 5ii) implies that the family Z is contained in only one component V of the form 22). Moreover H(16,29) is singular along Z because a general curve $(X \subseteq P)$ of Z satisfies $h^1(N_X) = 1$ by 21), and for a general curve $(X \subseteq P)$ of V we have $h^0(N_X) = 0$ dim V = 4d, hence $H^1(N_X) = 0$ (or simply, $H^1(N_X) = 0$ by proposition 6). Finally by the structure theorem of (L,5.2.10) the completion of the local ring of H(16,29) at the general $(X \subseteq P)$ of Z is a complete intersection (a power series k-algebra divided out by an element). It follows that Z is not an embedded component either.

Finally we briefly indicate a proof of 22). By the semicontinuity of $h^0(I_X^-(1))$ there are three possibilities for a general curve $(X_1 \subseteq P)$ of V

A) $s(X_1) = 5$, B) $s(X_1) = 4$ and C) $s(X_1) = 3$ because $\mathcal{X}(I_{X_1^4}(5)) = 4$. The case C) is easily excluded because any such maximal irreducible family V of H has dimension d+g+63<4d by remark 7iii), contradicting the assumption that V is a component. The case B) leads similarly to a contradiction as proved in (K1,3.3).

To motivate for this we will remark that, classically, maximal irreducible families of curves sitting on surfaces of degree 4 should have dimension g+33=62<4d See (N) on (K1,p148). Hence curves as in B) should not form a component.

In the remaining case A) we get

$$s(X_1) = 5 \quad , \quad h^1(O_{X_1}(3)) = h^1(I_{X_1}(3)) \quad \text{and } h^1(I_{X_1}(4)) = 1$$
 because $X(I_{X_1}(3)) = 0$ and $X(I_{X_1}(4)) = -1$.

Ai) First suppose $h^1(I_{X_1}(3)) = 0$, and let $Y_1 \supseteq X_1$ be of type (5,5). For the linked curve we get by 9) and 10), $d(X_1^1) = 9$, $g(X_1^1) = 8$, $g(X_1^1) = 4$, $g(X_1^1) = 2$ and $g(X_1^1) = 1$ Hence

$$s(X_1') = c(X_1') + 2$$
 and $c(X_1') > e(X_1')$.

By 4) and 5),

$$s(X_1') = \min_{\substack{\Lambda_1 \\ \text{max } n_{1i} \le \text{max } n_{2i}-1 \le \text{max } n_{3i}-2}} \min_{\substack{\Lambda_1 \\ \text{max } n_{1i} \le \text{max } n_{2i}-1 \le \text{max } n_{3i}-2}} = c(X_1')+2$$

So we have equalities everywhere, and the resolution of $I_1' = \bigoplus H^0(I_{X_4'}(1))$ is therefore

23) $0 \longrightarrow R(-6) \xrightarrow{N} R(-5) \xrightarrow{\oplus 6} \longrightarrow R(-4) \xrightarrow{\oplus 6} \longrightarrow I_1' \longrightarrow 0$ Splitting 23) into short exact sequences, one proves that

24) $0 \rightarrow \text{H}^{1}(I_{X_{1}^{\prime}}(1)) \rightarrow \text{H}^{3}(O_{p}(-6+1)) \rightarrow \text{H}^{3}(O_{p}(-5+1))$ is exact. And dualizing 23) we get

$$R(5)^{\bigoplus 6} \xrightarrow{t} N \qquad R(6) \longrightarrow C \longrightarrow 0$$

where by 24) the graded cokernel C satisfies

25) $C_{-1-4} \simeq Hom_k (H^1(I_{X_4'}(1)), k).$

C is therefore of finite length, hence supported at the maximal ideal of R. It follows that the radical of the ideal generated by the elements of the matrix $N = \begin{bmatrix} L_1, L_1, \dots, L_6 \end{bmatrix}$ is

 $r((L_1,L_2,...,L_6)) = (X_0,X_1,X_2,X_3)$. Combining with the degree $degL_i = 1$, we have

It follows from proposition 6 that

$$H^{1}(N_{y}) = 0$$

The corresponding component V is therefore as in 22).

Aii) The remaining case for a general curve (X \subseteq P) of V is $h^1(I_{X_4}(3)) = 1$, $H^1(I_{X_4}(1)) = 0$ for 1 < 3 and $s(X_1) = 5$. If we link $X_1 \subseteq$ P by a complete intersection Y_1 of type $(f_1, f_2) = (5, 5)$ and we consider the resolution of the sheaf ideal of the linked curve X_1' in P, one proves as in Ai) that $H^1(I_{X_4'}(1)) = 0$ for $1 \notin \{2,3\}$, i.e. $H^1(I_{X_4}(1)) = 0$ for $1 \notin \{3,4\}$ But then there is an open set U of the component V which is contained in the set $U_{\underline{f}}(16,29)$ of theorem 1 because $H^1(I_{X_4}(5)) = 0 = H^1(I_{X_4}(1))$.

The corresponding family p'(p-1(U)) obtained by liaison is therefore open in H(9,8), hence form an irreducible component V' of H(9,8). The general curve $X' \subseteq P$ of V' satisfies, however, $s(X'_1) = \min (5, f_1 + f_2 - 4 - e(X_1)) = 3$, and using proposition 6ii) we get the contradiction

$$codim_{V}$$
, H(9,8) = h¹(I_X, (3)) = 1.

References

- (B) Barth, W.: Some properties of stable rank 2 vector bundles on \mathbb{P}_n . Math. Ann. 226, 125 150 (1977)
- (Bu) Buchweitz. R.O: Contributions à la theorie des singularités. Univ. Paris VI (Thesis)
- (D) Demazure M.: Surface de Del Pezzo II. Eclater n points dans p². Sem. sur les sing. des surfaces Centre de Math. Ecole Polytechnique (1976 1977)
- (H) Hartshorne, R. Algebra Geometry. Springer Verlag (1977).
- (K1) Kleppe, J.O. The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space. No 5-March 31-1981. Preprint Ser, Inst of Math., Univ. of Oslo (and part of thesis).

- (Kl1) Kleppe, J.O.: Deformations of reflective sheaves of rank 2 on P³. No 4 - March 10 - 1982. Preprint Ser. Inst. of Math., Univ. of Oslo.
- (L) Laudal, O.A.: Formal Moduli of Algebraic Structures Springer Lecture Notes 754 (1979).
- (M) Mumford, D. Further Pathologies in Algebraic Geometry.
 Amer. J. Math. 84 642-648 (1962).
- (M1) Mumford, D.: Lectures on Curves on an Algebraic Surface.
 Annals of Math. Studies 59, Princeton Univ. Press (1966).
- (N) Noether, M. Zur Grundlegung der Theorie der algebraischen Raumcurven. J. Reine u. Angew. Math. 271 318 (1882) (or Steinerische Preisschrift, Verlag d. Kønig. Akad.d Wiss., Berlin 1883).
- (PS) Peskine, C and Szpiro, L.: Liaison des variétés algébriques. Invent. Math. 26, 271 - 302 (1974)
- (SGA2) Grothendieck, A.: Cohomologie locale des faisceaux coherents et Théorèmes de Lefshetz locaux et globaux.

 North-Holland, Amsterdam (1968).

Jan O. Kleppe Oslo ingeniørhøgskole Cort Adelersgt 30 OSLO 2, NORWAY