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SINGULARITIES IN CODIMENSION 1 OF
THE HILBERT SCHEME. AN EXAMPLE.

by

Jan O. Kleppe
Oslo Ingenigrhggskole

A well known example of Mumford shows that in the Hilbert

scheme H(14,24) of space curves of degree d = 14 and arithmetic
genus g = 24, there is a non-reduced component consisting
generically of smooth connected curves sitting on smooth sufféces
of degree 3. 1In fact for any d>14 the Hilbert scheme H(d,q),
where g is the largest number satisfying 9<1Kd-—4) ‘contains: a non-
reduced component, the general member of wh1ch is a smooth curve
on a smooth cubic surface. See (K1) .

In this paper we will, however, give an example of a
codimension 1 singularity of the Hilbert scheme H = H(16,29)

which is not an intersection of irreducible non—embedded

comEonentg? In fact we described in (K1,3.3) an irreducible

closed subset Z S H where dim Z = d+g+18 = 63 and codimZH = 1

and proved that H was singular along Z. The general member

X of Z is, in this case too, smooth and sits on a smooth cubic
surface Y. And L = Oy( X) equals (12,4,4,4,4,2,2) via the
usual isomorphism PicY & g @7. See(H,chv,4.8).

In the following we will partially prove all this and in parti-
cular prove that Z is contained in a unique irreducible non-

embedded component. The uniqueness was not treated in (Kl).

By a curve X we will mean an equidimensional, (locally)

Cohen Macaulay subscheme of P= Pi of -dimemrsion 1, and
H(d,g)CM denotes the Hilbert scheme of such curves. Now let
"R =L:[Xc),X1,X2,Xé] be a polynomial ring over an algebraically
closed field k , and A = R/I.the minimal cone of X& p,

If IX = ker (OPq—>ox), then I =='$ r and I has a minimal

X
resolution of the form

1) Z is not an embedded component either.



hy Ry My
1) 00— (?R(—n3i)-—)- (?R(—n?_i)-—-> @R(-vﬂ—é I— 0
Define s(X), e = e(X) and ¢ = c(x) by

s(X) =minn_, ,
12ish, 11

H' (X,0, (e)) 40 and H' (0, (1))=0 for 1>e,

2
) H1(P,IX(c))#0 and H1(IX(1))=O for 1>c.

Put ¢ = -ee in the arithmetically Cohen Macaulay case, i.e.
where H1(IX (¥)) = 0 for all 1 € Z. Morever splitting 1) into

two short exact sequenses we get

3) c(x) = maxn,. = 4,
as in 24) and 25). By the fact maxn1i < maani, one proves
e(x) < maxn,. = 4
with equality provided max N, < max nZi . Thus
4) e(X) < c(x) implies max n2i < max n3'.
i
Since the resolution is minimal,
5) min n, < min n2i < min n3i

For details, see (K1,2.2.7).

To begin with we recall two results from (Xl)and the new
proposition 3. Since (K1) has only appeared in my thesis and

as a preprint we indicate the proofs of theorem 1 and proposition
6.

Liaison

Let Y = V(Fy,F)) € P be a global complete intersection of two

surfaces of degree fi = deg F, for i = 1,2 , in which case we

say Y is of type (f1 f2) » and let X€Y be an inclusion of curves,
4

In this situation there is a linked curve X '€ Y whose sheaf ideal

IX'/Y in OY is

6) Igr)y = HﬂOY(OX,OY ) '

by the definition of x'. By (PS,1.3) X' is a curve, i.e.

equidimensional and Cohen Macaulay, and the linked curve
X"eY of X'ESY is just X €Y.



Moreover as the dualizing sheafIU¢Y: Oy (£,+f,- 4) and the
corresponding wy ® Homoya&,m&),

6) yields

7 IX'/Y - wx(4_f1_f2) and IX/Y - WX|(4"f.]!-f2) .
Hence there is an exact sequence

8) o— wx(4—f1—f2)-—> OY—> OX,—-> 0
and a similar one interchanging X and x'.
Twisting by 1 and taking Euler - Poincaré characteristics

we deduce by Riemann Roch's theorem that

9) a4 d: = f1f? £+ £, -4
g-9 =(d-d") R

tetting hi(F)EdimHi(F)’for any coherent F, we have by 7)
n%(Iy y(1)) = h' (Oy (£, + £,- 4 - 1))

10) h' (1,(1) =nh' (T (£, + £,- 4 = 1))
h' (04 (1)) = n° (Tys §Eq + £,- 4 = 1))

See (K1,2.3.3) . Now a consequence of a main result in (K1) is

Theorem 1 Let the numbers d,qg,d',g9',£, and fé satisfy 9).

1

i) The set of curves 4 :
l.There is a Y of1type (f1,f ) con-
U = -{(xszp)e H(d'g)CM' taining X and H (IX(fin =g9for i=1,
is open in H(d,g)cﬂ.In particular
Up(@,9) = {(xsp)eu | BY(I L (£,-4)) = 0 for i = 1,2}

ol
is an open subscheme of H(d’g)CM”

ii) There is a diagram of quasiprojective k-schemes
u(d,gi £,,£,) o~ U(d,g'; £10%))
le Lr
Ug(d,9) Ug(d;g') _
where p and p' are smooth surjective morphisms of
geometrically irreducible fibers of fiber dimension
O <
g;h (IX/Y(fi)) for any (X<P) of Ui(d,g) and Y of

_type (f,,f,) containing X, and & h (£,)) respectively.

X/Y



In particular the irreducible , resp embedded components
]
of Uf(d,g) and Uf (dl ,9 ) are in a one-to-one corres-

pondence.

Main lines of proof 1In fact (K1,1.1) implies the existence

of a quasiprojective scheme D(d,g;fhfz) called the Hilbert-
flag scheme, whose k-points are D = D(d,g;f, ,£;) =§}XEYSP)|
(XsP) € H(d,g) -y and Y of type (f;,f, )},representing a

correspondingly defined functor. And if XSS YS is an
inclusion of flat curves in PxS over S whose closed fibers
belong to D, we can still define the'linked curve X'SS-. YS
over1S as in 6). One may see that XS is S-flat because

Ext O (OXSI OYs ® k(s)) = O for any s€ S and for the

same reason liaison and specialization commutes, and we there-

fore get an isomorphism of schemes

11) D(d,gi £q,£q) o2 D(d',g';f1,f2)

defined by liason (K1,2.3.4) . Furthermore the natural

projection p : D—>H = H(d,g), given by t = (X&Y ESP)—>

(X€P), is smooth at t provided H1(Ix(fi‘)) =0 for i = 1,2.

In fact let S=S' be a morphism of affine k-schemes whose

k-algebras are local artinian rings with residue fields Kk,

and let a diagram of deformations, hence of flat schemes
Rgi be———p PxS'

3 o
Xg &> Yo ©—> PxS
of X<YSP and XSP be given. By H'(I,(f.)) = 0 for i = 1,2,

we have a surjective map

12) HO(IXs. (£,))—— BO(L, (£)

where IXS = ker '(OPXS —> OXS_ ), gnd this gives readily the
existence of an S -flat YS.EPxS' containing XS‘ such that
Y >és = YS This proves precisely the smoothness of p, see
(k1,1.3.14). Smooth morphisms are open, and finally if

t = (Xev(F ,F,)<P) and t' = (X€V(G,,G,) £P), there is an

open U¢ /A]1 = Spec k[T] containing T = O and T = 1 over which



Yy = V(Fq+T(Gy=Fq), Fp+T(G,~F2)) € PxU -
is a flat complete intersection. See (M1,. page 57)
Clearly YUEE XxU and this prove$ that the fibers of p are
connected. Moreover the fiber dimension is easily found
(K1,1.3.12). Putting this together, recalling h1(IX,(f ) =
- B(I (£, -4)) for i = 1,2 from 10), we get the theorem.

For a similar result, see (Bu) .

Remark 2 In the applications it is often necessary to make
a sequence of liaisons, and it is therefore desireable
to use the set U of the theorem for such f, and f2 for

1
which there always exists a Y of type ' (fpfz) containing X.

By (ps,3. 7) there exists a Y of type (f ,f2) where f1 = s(X)

and f2< max n1i » the n, l's belong to 1). In particular
if e(X) < c(X) we get by 4) that max n1 . < max né =
c(X)+2, i.e. there exists a global complete intersection

Y of type (s(X),c(X)+2) containing X.

We will now state a proposition, the proof of which is a

consequence of

13) c(x') = £]+f2—4-C(X)

f1+f2—4—s(X/Y)

14) e(xXx")
15) s(X'/Y) = f1+f2—4—e(X)

where n = s(X/Y) is the least integer satisfying
H° (IX/Y(n))+ 0.These formulas results immediately from 10)
provided H1(Ix(l)) = 0 for 1% c(X).

Proposition 3 i) Let (XcP) =3 H(d,g)(:M and suppose .
e(X)<c(X)<s(X) and H (1 (ln = 0 for 1¥4c(X). If we make
liaison with a Y of type_( 1,f2) where f1= s (X) and
fzi c(X)+2, then the linked curve (X'€sP) of H(d,g)cm

satisfies

e(X')<c(X')<s(X') and H?(Ix,(l ))= 0 for 1 4 c(X')




ii) Moreover the linked curve satisfies either
1) s(X') < s(X) , or
2) s(X') = s(X) and c(X') < c(X)

or we have the following situation 3)

s(X') = s(X) , c(X') = c(X) , e(X') = e(X),
and the minimal resolutions of the sheaf ideals IX and
are both of the form '

I,
% @4r

0—> OP(-2r—2)®r-———> op (-2r-1) 94— OP(—2r)®3r+1

In this case, called the stationary case, we have

c(X)-2 = e(X), s(X) = c(X)+2 and h1(IX(c(X)))= r
and for the degree and arithmetic genus of X and X',
d = %sl, g = %(5-3)(52—1) where s = s(X) = 2r

Proof i) Since the sequence of sheaf ideals
0— ?Y_) IX,——> IX'/Y >0
is exact and H (I,(1)) = 0 for any 1, we get
16) s(X') = min ( s(X), s(X'/Y))
because s(Y) = s(X). Correspondingly s (X) < s(X/Y).
Observe also that

17) e(X') < c(X") & s(X/Y) > c(X)

by 13) and 14) and since by assumption c(X) < s(X) < s(X/Y),

we get
e(X') < c(x').

To prove c(X') < s(X') we see as in 17) that
c(X') < s(X'/Y)

because e(X) < c(X). To finish prop 3i) it remains to prove
c(X') < s(X) = f1,

see 16). .However by 13) this is equivalent to

f +f -4-c(X) < f1, i.e. to f2—4 < c(X)

which is true by the assumption on f2.



ii) Since s(X') = min (s(X), s(X'/Y)) < s(X) is always

true we get either 1) of prop 3ii) or the case s(X')=s(X)

which we consider in the following. As in remark 2,
s(X') < c(x')+2,

and the inequality fzi c(X)+2 leads therefore to

c(X") = fy+fy-4-c(X) < £,-2 = s(X')-2,

Combining we get
s(X') = (") +2,

and since s(X') = s(X) < f2£ c(X)+2 we have either

2) of prop 3ii) or the case

s(X') = s(X) and s(X) = f2 = c(X)+2
‘which we now consider. By 3), 4) and 5),
2

S(X) = min n < min n2i_1 < min n

1i 3i

18) Al Al

max n . < max n, -1 < max n,,-2 = c(X)+2, and

21
s(X)=c(X)+2 leads to equalities everywhere in 18). The
resolution of %{must therefore be of the form

0 =05 (-5-2)P > 0, (-s-1) @Iy o (L@ 51

where s = s(X). Since s = s(X') = c(X')+2 and e(X') < c(x'"),
the resolution of IX, is of the same form replacing‘t by t'
and 1 by 1' . As t 2 3 and t' > 3 we have s(X) = s(X/Y)

and s(X') = s(X'/Y) and 14), 15) giveé readily

e(X) = f2—4 = e(X') and e(X) = c(X)-2.
Moreover subtracting
(ng) -d(s-1)-1+g = X(Ix(s-1 )
(§)-d(s—3)—1+g XXIx(s-3)) =)
where X(I, (1))= X(0,(1))-X(0, (1)) = (133)-(a1+1-g) is

1l
o

the Hilbert polynomial of the sheaf ideal IX we get
. B¥2 . .8 _ 2
2d = ( 3 ) (3) = 8

The genus of X is therefore

s+2

g = d(s=1+1- (%3 = 1(s2-1) (s-3)



Finally

X1, 66-2)) = -h NI (s-2)) = (SIh-a(s-2)-1+g = -1s
and '

X(Iy(s)) = hO(IX(s)) = (833)—ds -1+g = 5(3s+2)

The same arguments hold for the linked curve as well, and

we are done.

Example. We will illustrate by considering the example

H = H( 16,29)CM in question. Start with a curve X€P of H
satisfying Hi(Ix(l)) = 0 for 1 +4 and h1(IX(4)) = Pq

since  X(Ix(1) = (*3%)-(alv1-g), we get X(I,(3)) = 0,
X1y ) = -1, X(I4(5)) = 4. Hence e(X) = 2, c(X) = 4
and s(X) = 5.

Now if we make a sequence of liaisons and each time use a
complete intersection Y2 X of type (s(X),c(X)+2) we get in
succession linked curves with datas (d,g,e(X),c(X),s{X)) as
follows (16,29,2,4,5), (14,22,2,3,5), {11,13,1,3,4),
(9,%,1,2,4), (7,4,0,2,3), (5,1,0,1,3), (4,0,-1,1,2) ,
(2,-1,-2,0,2), (2,-1,-2,0,2)

These datas are immediately found by using 13), 14), 15),
together with computing Xﬁlx(s(xn). Moreover the reader
may readily check that X&P and the linked curves of this
sequence belong to the corresponding sets Ug of theorem 1i),

thus giving more generally

Corollary 4 For any numbers d,g and r, let a
h'(Ifc(X)))=r and H' (L, (1))=0 for
Upld,g) = {(XEP)E H(d’g)CNJl#c(X) and e (X)< c(X)<s (X)

Then the functions e(-),c(-) and s(-) defined on UI(d,g)

are constant and Ur(d,g) is open in H(d,g)CM. Moreover
Ur(d,g) is smooth, resp irreducible if and only if the
corresponding set of the stationary case

U, (21,3 (2r-3) (4x%-1))

is smooth, resp irreducible.

Proof. The function IRIX (1)) on H(d,g), i.e. with 1
1

fixed and varying (X1§ P) e H(d,g), is constant.

Since for (X&P) € v (d,g),

h?(lx(l)) for 1 >c(X)
XL, ( 1)) = ~h (I (1)) for 1 =c(X)

h' (0, (1)) for =-4<l<c(X)



we find that e(-), C( ) and s(-) are constant on U (d,qg).

By the semicontinuity of hl(I (1)) they are also constant

in some H(d,g)-neighbour hood of an arbitrary (X< P) e U,(d,qg).
Thus Ur(d,g) is open in H(d,qg).

Now let (f ,f2) = (s(X),c(X)+2) where (XEP) e IJ (d,g).
If the Uf's are as in theorem 1, then we claim that

U.(d,q) s (d,g) and U Ldrgne Ug(dig'). In fact remark 2 and
c(X) < s(X) f1 < f2= c(X)+2 gives easily H (I (£, ))— 0 =
= HJ(I (£, —4» for i = 1,2, thus proving U (d,g) Uf(d,g).
And moreover by proposition 3, -

s(X') < s(X) = f1
and by 13) and f2 = c(X)+2,
. c(Xv)+2 = f1<f2
Hence for any (X's€P)e U (d',g ) there exists a YS P of
type (f f2) contalnlng X‘ and again

B (I, (£)) = 0 = Hi(I , (£ .-4))
for i = 1,2 for 1nstance by 10). It follo&s that
Ur(d', ") € Ui(d"“)'

|um

Finally consider the diagram of theorem 1ii) and let
U, (digif,£5) = pTU_(a,9)) and U (a',q'if £,) -
p -lu (a',g")
We get eagily a diagram
U ldyg if ,£)= U (d',g"f £ )
1 17 2
lp $
Ur(d,g) U, (dig")
where p and p'are smooth surjective morphisms of geometrically
irreducible fibers. This diagram covers each step in the
liaison sequence ending with the stationary case. 1In fact we
proceed from the diagram above letting (f',fé) =
(s(X'), c(X'")+2) where (X'erP) € U (d,g ) etc. This proves
the corollary.
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Remark 5 i) By proposition 6, Ur(d,g) is smooth

of dimension 4d if it is non-empty.

ii) It is well known that the set U1(2,—1) of corollary 4 is
smooth and irreducible. For a reference we get by (B)
that the moduli scheme M(0,1) of stable rank 2 vector
bundles is a smooth connected scheme and so is U1(2,—1)
by (K1 1). It follows that the set Ui(16,29) is smooth
and irreducible.

On the cohomology of the normal bundle.

Let N = HOm (I ,0 ) be the normal bundle of X€ P and consider
the mlnlmal resolutlon 1).

Proposition 6. Let XS P be a curve.

i) If c(X) < min n2i and
1 _ _ .
H (Ix(n1i 4)) = 0 for 1§1£r1
then 2 UZ)
1 _ 1
M = 3 nlioy 22,}‘ (0y(nyg) )+ Zb' (0 (ngy))

In particular if e(X) < s(X), then
1 =
H (NX) =0

ii) Moreover let W(s), s = N,y for some i, be the closed subset

of H(d,g) given by

W(s) ={ (X € P)E H(,q) hO(IX (s)) > o}
Then
codim, H(d,q) = h1(IX(s)) at (X P)

provided the three conditions of i) are satisfied.

Main lines of proof We will only need the vanishing result of

H (N ) together with ii) of which we concentrate. If M and N =

G)N are graded R-modules, let 1Exti‘l (M,-) be the right derived
functor of the covariant left-exact r‘(Hom (M, - )) where
F (N) = ker(N — [ (P, N(l))) and con51der the exact

sequence (sGa2, expVI)
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2 2 2 (F,T)—s Ext3 (I,1)es o -
19) —> gBxts (I,I)—-—>0ExtR (I,I)— ExtOE(I,I)=—>O xt- (I,I)— o

20)

Using that the projective dimension of I is 1

1 ~ a0
(locally), one proves NX o ExtoP (I,I). Hence

B (N,) ExtgP (1,1).
Moreover the spectral sequence ExtR(I H3 p(I )) =
Ext3(I I) implies that

OExt3(I I) < Hom(I, H (1)) —Hom(I OH (0g (1)) .

Finally the rlght exactness of 0Ext (IL,-) applled to

0

@R(—n1l) —> I—> 0 and the dgallty
1
H (T (n, —4)) = Extg, (I(n 14), 0p(-4)) ':OExtIZ{(I,R(—n.li))
proves that 0Ext (I,I) = 0. Combining we get
H' (N ) & Hom (I, oK (0, (1)))= ker (@ H' (0 x (nq1)) >
(0 (n )))

(and since one may prove that coker\r”eH (0 (n3 ))

we have i)). Anyway H (N ) = 0 provided e(X) < s (X)

= min n,, - For details, see (K1,2.2.9).

The conclusion ofii) follows easily from the theory of
Hilbert-flag schemes developped in (K1). In fact consider

= {(XEYEP) , (X=P)€H(d,g) and Y a éégcgurface of deg S_}
Then W(s) = Imp via the natural projection
p : D =3H(d,g). If A1 and A2 are the tangent space and
"obstruction space" of D at (XSY<SP) respectively, there
is an exact sequence

0—s 1%z (s))-—>A1-+H (N )¥>H (I, (s)) => a%sq] (NX)—»H (Q(s)

see (K1,1.3.) . Therefore the conclusion of ii)

follows provided Y’ is surjective and H (NX) =0
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However continuing 19) to the left we get

1 1 o 2 2
oExt (I,1)—> Exto, (I, 1) f> Ext? (1,1)—> (Ext®(I1,1)
i SI f1 n
1o () @1 (I, (n,,)) 0
X x M1

observing that
OExti(Iy~I)=0Hom(I.Hi(I) )= ker (@H (I, (n.))— ®H “(I;n,.))

and recalling c(X) < min n Now composing'g with the

‘ 21°
projecthnm@H1(IX(n1.)y—»fi(Ix(s)) we get the map Yy which
i

therefore is surjective.

Remark 7 Let (X€YSP) € D and suppose X is a divisor on Y.

Then Azis seen to be the cokernel of some map : ol

1 1 = ' I -
H'(Oy(s)) =>H (Ny,y) where Ny y= HomOY(IX/Y.oX) Wy (4-s)
by (¥1,1.3). Hence if s £3°, then 2*=0 and we have

under these conditions a result similar to proposition 6
where we in the proof use 20) instead of 19).
This gives

i) RTUIE=N H'(04(s))
and

ii) n' (Iy(s)) - h1(ox(s))5 codim  H(d,q) < h! (I, (s)) at (XsP)
with equality to the right if and only if H(d,g) is smooth
at (X€P). Moreover using i) we easily get

111) dim p=h® (N,) +h (L, (s) b (T, () =4d+X(T, (s)) =
(4—s)d+g—2+(sg3).for the dimension of D at (XSYEP).

Singularities of codimension 1 of H(16,29).

In the introduction we described a family Z of H = H(16,29)

whose general curve X <SP was contained in a smooth surface

Y of degree s=3 and L = Oy(X) = (12,4,4,4,4,2,2) via Pic ¥ =
a7

4 i

Since we by remark 7 have a surjective

L = HomoY(IX/Y,OY)—-» Homoy(&/Y,OX) = wx (1)

with kernel Oy and since L(-4) = (0,0,0,0,0,-2,-2) we find
0

h1(0(3)) = " (wy(-3)) = (L (-4)) = 1,

h'ay) = n' (o, 3) =1, n' (@) =0 for12a,

dim Z = d+g+18 = 63

21)

1) and for instance X is reduced
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see remark 7i) and 7iii). Moreover by (X1,3.1.3),
B (1,(1) = 0 for 1% {3,4,5,6}
See also (D).
Now if V € H is any irreducible non-embedded component
containing Z, then we claim that
V is a reduced i.e. a generically smooth component ef
dimension
4d = 64 and a sufficently general curve (X, P)

979 ﬁof V satisfies

s(X1) =5, e(X;) = 2 and
1 for 1 = 4
{ 0 for 1 % 4.
This is proved in (K1,3.3) . And then remark 5ii) implies that

1 =
h (Ixi(L)) =

the family Z is contained in only one component v of the form
22). Moreover H(16,29) is singular along Z because a general
curve (XSP) of Z satisfies h1(N ) = 1 by 21), and for a
general curve (X £ P) of V we have h° (NX ) = dim V = 44,

hence H1(NX ) =0 (or simply, H1(N % = 0 by proposition 6).
Flnally by the structure theorem of (L 5 2.10) the completion
OEL}( of the local ring of H(16,29) at the general (XS P) of %
is a complete intersection (a power series k-algebra divided
out by an element). It follows that Z is not an embedded

component either.

Finally we briefly indicate a proof of 22). By the semiconti-
nuity of ho(%<(l)) there are three possibilities for a general
curve (X1S P) of Vv

a) s(X1) =5, B) s(Xq) = 4 and C) s(Xq) = 3
because XXIXJS)) = 4. The case C) is easily excluded because
any such maximal irreducible family V of H has dimension
d+g+63<4d by remark 7iii), con'ﬁfﬁ&ictan~thewassumption that V
is a component. The case B) leads 81mllar@$Y to a contradiction

as proved in (XK1,3.3) . L



23)

24)

25)
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To motivate for this we will remark that, classically, maximal
irreducible families of curves sitting on surfaces of degree

4 should have dimension g+33 = 62<4d

See (N) on (K1,p148) . Hence curves as in B) should not form

a component.

In the remaining case A)we get
s(Xq)=5 , h' (0g, (3)) = h' (Ix,(3)) and h' (Ix, (4)) =1
because X(Iy, (3)) = 0 and X1y, (4)) = =1.

Ai) First suppose h1(I (3)) =0 , and let Y13 X1be of type

(5,5). For the linked curve we get by 9) and 10), d(X' ) =9,

g(X1 ) = 8, s(X1 ) = 4, c(X1 ) = 2 and e(X1 ) =1
Hence

S(Xi ) = C(X{ ) +2 and c(x; ) >-e(X{ ) .
By 4) and 5),

s(Xi) = m%?ln1i§ min n,.-1 < minA?3i—2

max n,; < max ny;-1 < max Ng;=2 = c(X ) +2
So we have equalities everywhere, and the resolution of

I =® H (T .(l)) is therefore

0—> R(-6) 25 B1-5) % . mi~gy ¥y 11 —> 0
Spllttlng 23) into short exact sequences, one proves that
0 = H (Iy X! (1)) —> u> (Op(-6+1) ) —> H> (Op(=5+1))

is exact. And dualizing 23) we get

R(5)® My r6) — ¢ —> 0
where by 24) the graded cokernel C satisfies

C_1-4 < Homy (H1(IX; (1)) ,k)
C is therefore of finite length, hence supported at the
maximal ideal of R. It follows that the radical of the ideal
generated by the elements of the matrix N = [L1,L1, ,L6] is

r((Ly,Ly, ... Lg)) = (xo,x1,x2,x3).
Combining with the degree degLi =1, we have

(L L2,..., L ) = (XOIX1IX2IX )I
i.e. “C_b and by 25) and 10) we get

CoEN(r, ) = o forlsd.

Xy
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It follows from propbsition 6 that
", ) =0
Xy '
The corresponding component V is therefore as in 22).

Aii) The remaining case for a general curve (X €P)of V is
h1(IX1(3)) =1, H‘(Ixi(l)) - 0 for 1<3 and s (X, ) =5
If we link X1E P by a complete intersection‘Y1 of type
(€ ffi) = (5,5) and we consider the resolution of the sheaf
ideal of the linked curve X! in P, one proves as in Ai) that
H1(I x, 1)) =0 for 1¢{2,3} , i.e. H1(g( (1) =0 for 1¢[3,4}
But then there is an open set U of the component v whlch is
contalned in the set Uf(16 29) of theorem 1 because H (I (5))=
0 =& (Ty, (1)) .

The corresponding family p'(p=1(U)) obtained by liaison is
therefore open in H(9,8), hence form an irreducible comEonent
v' of H(9,8). The general curve X; €P of V' satisfies,
however, s(X1) = min (5,f1+f2—4—e(X1)) =3, and using
proposition 6ii) we get the contradiction '
codimg ,H(9,8) = h1(IX;(3)) = 1.
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