Halphen Gaps and Good Space Curves

Bollettino U.M.I (8) 1-B, 1998, 429-450 ([K98])
Jan O. Kleppe

1 Main Results

Let $\mathrm{H}(d, g)_{S}$ be the Hilbert scheme of smooth connected space curves. In this paper we state the
Conjecture 1.1. Let $s \geq 4, d \geq\binom{ s+2}{2}$ and $g \geq s d-\binom{s+3}{3}+2$. If $g \leq G_{0}(d, s)$, then there exists a generically smooth irreducible component V of $\mathrm{H}(d, g)_{S}$ of dimension $\operatorname{dim} V=(4-s) d+g+\binom{s+3}{3}-2$ whose general curve has maximal corank and sits on a smooth surface of degree s in \mathbb{P}^{3}.

Here a curve C (with sheaf ideal \mathcal{I}_{C}) has maximal corank if $H^{1}\left(\mathcal{I}_{C}(v)\right)=0$ whenever $H^{2}\left(\mathcal{I}_{C}(v)\right) \neq$ 0 . Moreover $G_{0}(d, s)$ was introduced by C. Walter in [2] where he conjectured that there exists curves C in $\mathrm{H}(d, g)_{S}$ sitting on a smooth degree-s surface in \mathbb{P}^{3} (whence (d, g, s) is not an Halphen gap) in the range

$$
\begin{equation*}
(s-4) d+1-\binom{s-1}{3} \leq g \leq G_{0}(d, s), d \geq\binom{ s-1}{2} \text { and } s \geq 4 . \tag{1.2}
\end{equation*}
$$

Using [1] we easily get Conjecture 1.1 for $s=4$ from [1, Prop. 2.1]. In this case $G_{0}(d, 4)$ is 1 (for $d \not \equiv 0 \bmod 4$), otherwise 2 less that the maximum genus in range C. Note that Walter proves (1.2) for $s=4$ with C of maximal corank by extending Mori's well known existence result for curves on a smooth quartic. In [1] we also show the existence of generically smooth irreducible components of $\mathrm{H}(d, g)_{S}$ of dimension $d+g+18$ whose general curve C sits on a smooth cubic surface in the range

$$
3 d-18+(d-12)(d-15) / 18 \leq g \leq 1+d(d-3) / 6, \quad(d, g) \notin\{(30,91),(33,103),(34,109)\},
$$

and we characterize those C that are not of maximal corank, see [1, Prop. 3.1 and 3.5].
In this paper [K98] we show Conjectures 1.1 and (1.2) for every $s \geq 4, d \geq\binom{ s}{2}$ and $g \geq$ $(s-3) d+1-\binom{s}{3}$ provided $G_{1}^{\prime}(d, s)<g \leq G_{0}(d, s)$ where $g=G_{1}^{\prime}(d, s)$, for fixed s, is a piecewise linear curve in the (d, g)-plane defined in [K98, Rem. 3.5]. Using the upper bound of $G_{1}^{\prime}(d, s)$ given in Rem. 3.5, we get

$$
G_{0}(d, s)-G_{1}^{\prime}(d, s) \geq s^{2}(s-4) / 32
$$

Since one may similarly prove $G_{0}(d, s)-G_{1}^{\prime}(d, s) \leq s(s+2)^{2} / 32$, the range where we prove both conjectures is asymptotically $s^{3} / 32$. This result is a consequence of a more general result (see [K98, Thm.2.9]), showing that we may link curves of maximal rank $\left(H^{1}\left(\mathcal{I}_{C}(v)\right)=0\right.$ for $v \geq s(C):=$ minimal degree of a surface $\supset C)$ with $H^{2}\left(\mathcal{I}_{C}(s(C)-1)\right)=0$ and $H^{1}\left(\mathcal{N}_{C}\right)=0\left(\mathcal{N}_{C}\right.$ the normal sheaf) to curves belonging to a unique component V satisfying Conjecture 1.1 by using a complete intersection of e.g. bidegree $(s(C)+1, t)$ for $t \geq s(C)+4$. Such curves are supposed to exist for every (d, g) in the A^{\prime} or $F W$-range (but complete proofs seem missing). If we, however, suppose that such curves exist everywhere in the $F W$-range, the Conjectures 1.1 and (1.2) will hold in an even larger range, see Theorem 3.3 and Cor. 3.4 of [K98].

References

[1] J.O. Kleppe. On the existence of Nice Components in the Hilbert Scheme $\mathrm{H}(d, g)$ of Smooth Connected Space Curves. Boll. U.M.I. (7) 8-B (1994), 305-326.
[2] C. Walter. Curves on Surfaces with a Multiple Line. J. reine angew. Math. 412 (1990), 48-62.

